Protein Dynamics & Sequence Analysis

ProDy Tutorial
Release 1.5.1

Ahmet Bakan

December 24, 2013

CONTENTS

Introduction 1
1.1 Structural Ensemble Analysis 1
1.2 Elastic Network Models e e e 1
1.3 Trajectory Analysis 1
1.4 Visualization e e e e 2
How to Start 3
21 UsingProDy e 3
22 Interactive Usage 3
23 Using Documentation e 4
ProDy Basics 6
3.1 FileParsers o e e e e 6
32 AnalysisFunctions 7
3.3 Plotting Functions 7
3.4 Protein Structures e e e e e e e e e 8
35 Atom Groupso 9
3.6 ProDy Verbosity 10
Atom Groups 11
41 Buildingan Atom Group 11
42 Storing datain AtomGroup 15
Atom Selections 18
5.1 AtomSelections e e e 18
52 Operationson Selections L 20
Hierarchical Views 24
6.1 Hierarchical Views e e e 24
6.2 Chains e e 25
6.3 Residues e e e e e 27
6.4 ATOMS e e e e e e e e 29
6.5 StateChanges e 29
Structure Analysis 30
7.1 Measure geometric properties L L L o 30
72 Compare and align structures L L 30
73 Writing PDBfiles 31
Dynamics Analysis 33

10

8.1 PCAC Calculations. e 33

82 ANMCalculations e e e 34
8.3 Comparative Analysis L 35
84 OutputDataFiles. e 36
85 External Data e e e e 36
8.6 PlottingData 36
87 MoreExamples 37
Sequence Analysis 38
9.1 AccessPfam e e 38
9.2 Parse MSA e e e e e e e e 38
93 SequenCes 38
9.4 Analysis e 39
Applications Tutorial 41
10.1 AlignPDBfiles 41
10.2 ANM calculations i e e e e e e 41
10.3 PCA calculations 0 e e e e e e 42

CHAPTER
ONE

INTRODUCTION

ProDy is an application programming interface (API) designed for structure-based analysis of protein dy-
namics, in particular for inferring protein dynamics from large heterogeneous structural ensembles. It
comes with several command line applications (ProDy Applications') and graphical user interface for visu-
alization (Normal Mode Wizard?). This tutorial shows core features of ProDy and some basic analysis tasks.
You can find links to more detailed and advanced tutorials below.

1.1 Structural Ensemble Analysis

ProDy is primarily designed for analysis of large heterogeneous structural datasets for a protein composed of
sequence homologs, mutants, or ligand bound structures that have with missing loops or terminal residues.
Dominant patterns in structural variability are extracted by principal component analysis (PCA) of the
ensemble. Helper functions allow for comparison of dynamics inferred from experiments with theoretical
models and simulation data. For detailed usage examples see Ensemble Analysis®.

1.2 Elastic Network Models

ProDy can be used for normal mode analysis (NMA) of protein dynamics based on elastic network mod-
els (ENMs). Flexible classes allow for developing and using customized gamma functions in ENMs and
numerous helper functions allow for comparative analysis of experimental and theoretical datasets. See
Elastic Network Models* for detailed usage examples.

1.3 Trajectory Analysis

In addition to analysis of experimental data and theoretical models, ProDy can be used to analyze trajec-
tories from molecular dynamics simulations, such as for performing essential dynamics analysis (EDA).
ProDy supports DCD file format, but trajectories in other formats can be parsed using other Python pack-
ages and analyzed using ProDy. See Trajectory Analysis® for detailed usage examples.

Thttp:/ /prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps

Zhttp:/ /prody.csb.pitt.edu/tutorials/nmwiz_tutorial /intro.html#nmwiz

Shttp:/ /prody.csb.pitt.edu/tutorials/ensemble_analysis/index.html#ensemble-analysis
4http: / /prody.csb.pitt.edu/tutorials/enm_analysis/index.html#enm-analysis

Shttp:/ /prody.csb.pitt.edu/tutorials/ trajectory_analysis/index.html#trajectory-analysis

http://prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://prody.csb.pitt.edu/tutorials/ensemble_analysis/index.html#ensemble-analysis
http://prody.csb.pitt.edu/tutorials/enm_analysis/index.html#enm-analysis
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/index.html#trajectory-analysis

ProDy Tutorial, Release 1.5.1

1.4 Visualization

Finally, results from ProDy calculations can be visualized using NMWiz, which is a VMD? plugin GUL
NMWiz can also be used for submitting ProDy calculations for molecules in VMD. See NMWiz Tutorial” for
analysis of various types of datasets and visualization of protein dynamics.

6http: / /www.ks.uiuc.edu/Research/vmd
7http: / /prody.csb.pitt.edu/tutorials/nmwiz_tutorial/index.html#nmwiz-tutorial

1.4. Visualization

http://www.ks.uiuc.edu/Research/vmd
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/index.html#nmwiz-tutorial

CHAPTER
TWO

HOW TO START

2.1 Using ProDy

ProDy can be used in a number of ways:

1. interactively in a Python shell,

2. as a command line program via ProDy Applications’,
3. from within VMD via Normal Mode Wizard?,
4

. or as a toolkit for developing new software.

2.1.1 Python for beginners
Familiarity with Python programming language will help when using ProDy. If you are new to Python, or
to programming, you may start with one of the following tutorials:

e The Python Tutorial®

e Python Scientific Lecture Notes*

¢ A Primer on Python for Life Science Researchers®

2.2 Interactive Usage

In the rest of this tutorial, we assume that you will be typing commands in a Python shell. ProDy will
automatically download PDB files and save them to current working directory, so you may want start
Python from inside of a directory that you make for this tutorial:

$ mkdir prody_tutorial
$ cd prody_tutorial

Thttp:/ /prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps

Zhttp:/ /prody.csb.pitt.edu/tutorials/nmwiz_tutorial /intro. html#nmwiz

3http:/ /docs.python.org /tutorial /

4http:/ /scipy-lectures.github.com/

5 http:/ /www.ploscompbiol.org/article/info%3Ad0i%2F10.1371%2Fjournal.pcbi.0030199

http://prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://docs.python.org/tutorial/
http://scipy-lectures.github.com/
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.0030199

ProDy Tutorial, Release 1.5.1

2.2.1 Start Python shell

For best interactive usage experience, we strongly recommend that you use [Python® instead of the standard
Python shell. IPython shell provides many user-friendly features, such as dynamic introspection and help,
and also convenient integration of Numpy” and Matplotlib®.

If you have installed IPython, type in:

$ ipython

If you also installed Matplotlib, use:

$ ipython --pylab

—--pylab option will import Matplotlib and Numpy automatically, and is equivalent to the following:

In [1]: from pylab import =«
In [2]: ion() # turn interactive mode on

If you don’t have IPython yet, use:

$ python

On Windows, after you make the directory, make a Shift+right click in itin Windows Explorer and
then select Open command window here option. Then start C: \Python27\python.exe. Alternatively, you
may run IDLE (Python GUI) or Python (command line) from the start menu.

2.2.2 Import from ProDy

We import all ProDy functions and classes into the current namespace as follows:

In [3]: from prody import =

There are other ways to import ProDy contents. You may use import prody as pd and prefix all func-
tions calls with pd., if you prefer not to overcrowd the target namespace. Alternatively, if you want to use
contents of a specific module, such as proteins, you can use from prody.proteins import x. You
should, however, avoid using from prody.proteins.pdbfile import =, because location of meth-
ods in submodules may change without notice.

2.3 Using Documentation

ProDy documentation is quite comprehensive and you can access it in a number of different ways. In
interactive sessions, API reference can be accessed using the built-in Python function help () 9.

help (select) # help on select module
help (fetchPDB) # help on parsePDB function

This function prints documentation on screen, and you will need to type g to exit from help view. If you
are using the interactive Python shell (IPython), you can also get help using ?:

Ohttp:/ /ipython.org

7http:/ /www.numpy.org

8http:/ /matplotlib.org

http:/ /docs.python.org/library/ functions.html#help

2.3. Using Documentation 4

http://ipython.org
http://www.numpy.org
http://matplotlib.org
http://docs.python.org/library/functions.html#help

ProDy Tutorial, Release 1.5.1

In [4]: fetchPDB

Type: function

String Form:<function fetchPDB at 0x4ed0668>

File: /home/abakan/Code/ProDy/prody/proteins/localpdb.py

Definition: fetchPDB (xpdb, =xxkwargs)

Docstring:

Return path(s) to PDB file(s) for specified *pdbx identifier(s). Files
will be sought in user specified xfolderx or current working director, and
then in local PDB folder and mirror, if they are available. If *copyx*

is set xxTruexx, files will be copied into xfolderx. If xcompressedx is
**Falsexx, all files will be decompressed. See :func: ‘pathPDBFolder' and
:func: ‘pathPDBMirror' for managing local resources, :func:‘.fetchPDBviaFTP"

and :func:‘.fetchPDBviaFTP' for downloading files from PDB servers.

2.3.1 Searching documentation

You can search entire documentation, including manual and tutorial pages, by typing in a keyword, func-
tion, or class name. Try searching for selections to get to Atom Selections'?, for example.

Toolbox

Show code snippets for copying:

and output ¥

Enter search terms or a module,

class or function name:

selections

2.3.2 Copying code snhippets

When reading online documentation, you can use Show code button on the right hand side panel to display
only code snippets. From this view, you can copy code directly into a file, i.e. click Select and then Ctr1+C
to have the text in your clipboard. To return to the documentation click the Close button.

B show code and output 1M

Ohttp:/ /prody.csb.pitt.edu/manual/reference /atomic/select.html#selections

2.3. Using Documentation 5

http://prody.csb.pitt.edu/manual/reference/atomic/select.html#selections

CHAPTER
THREE

PRODY BASICS

We start with importing everything from ProDy package:
In [1]: from prody import =«

In [2]: from pylab import =

In [3]: ion{()

Functions and classes are named such that they should not create a conflict with any other package. In this
part we will familiarize with different categories of functions and methods.

3.1 File Parsers

Let’s start with parsing a protein structure and then keep working on that in this part. File parser function
names are prefixed with parse. You can get a list of parser functions by pressing TAB after typing in
parse:

In [4]: parse<TAB>

parseArray parseHeatmap parseNMD parsePDBStream
parseSTRIDE parseDCD parseMSA parsePDB
parsePQR parseSparseMatrix parseDSSP parseModes
parsePDBHeader parsePSFE

When using parsePDB (), usually an identifier will be sufficient, If corresponding file is found in the
current working directory, it will be used, otherwise it will be downloaded from PDB servers.

Let’s parse structure 1p38' of p38 MAP kinase (MAPK):

In [5]: p38 = parsePDB(’1p38’) # returns an AtomGroup object

In [6]: p38 # typing in variable name will give some Iinformation
Out[6]: <AtomGroup: 1p38 (2962 atoms)>

We see that this structure contains 2962 atoms.
Now, similar to listing parser function names, we can use tab completion to introspect p38 object:

In [7]: p38.num<TAB>
p38.numAtoms p38.numChains p38.numFragments p38.numSegments
p38.numBonds p38.numCoordsets p38.numResidues

Thttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=1p38

http://www.pdb.org/pdb/explore/explore.do?structureId=1p38

ProDy Tutorial, Release 1.5.1

This action printed a list of methods with num prefix. Let’s use some of them to get information on the
structure:

In [8]: p38.numAtoms ()
Oout [8]: 2962

In [9]: p38.numCoordsets () # returns number of models
Out[9]: 1
In [10]: p38.numResidues () # water molecules also count as residues

Out [10]: 480

3.2 Analysis Functions

Similar to parsers, analysis function names start with calc:

In [11]: calc<TAB>

calcADPAxes calcCrossProjection calcMSF calcRMSF

calcADPs calcCumulOverlap calcOccupancies calcRankorder
calcANM calcDeformVector calcOmega calcShannonEntropy
calcAngle calcDihedral calcOverlap calcSgFlucts
calcCenter calcDistance calcPerturbResponse calcSubspaceOverlap
calcCollectivity calcFractVariance calcPhi calcTempFactors
calcCovOverlap calcGNM calcProjection calcTransformation
calcCovariance calcGyradius calcPsi

calcCrossCorr calcMSAOccupancy calcRMSD

Let’s read documentation of calcGyradius () function and use it to calculate the radius of gyration of
p38 MAPK structure:

In [12]: H calcGyradius

Type: function
String Form:<function calcGyradius at 0x4d422a8>
File: /home/abakan/Code/ProDy/prody/measure/measure.py

Definition: calcGyradius (atoms, weights=None)
Docstring: Calculate radius of gyration of xatomsx.

In [13]: calcGyradius (p38)
OQut [13]: 22.057752024921747

3.3 Plotting Functions

Likewise, plotting function names have plot prefix and here is a list of them:

In [14]: show<TAB>

showContactMap showEllipsoid showNormedSgFlucts showScaledSgFlucts
showCrossCorr showFractVars showOccupancies showShannonEntropy
showCrossProjection showHeatmap showOverlap showSgFlucts
showCumulFractVars showMSAOccupancy showOverlapTable

showCumulOverlap showMode showProjection

showDiffMatrix showMutinfoMatrix showProtein

We can use showProtein () function to make a quick plot of p38 structure:

3.2. Analysis Functions 7

ProDy Tutorial, Release 1.5.1

In [15]: showProtein (p38);

X 20

30 -10

This of course does not compare to any visualization software that you might be familiar with, but it comes
handy to see what you are dealing with.

3.4 Protein Structures

Protein structures (. pdb files) will be the standard input for most ProDy calculations, so it is good to famil-
iarize with ways to access and manage PDB file resources.

3.4.1 Fetching PDB files
First of all, ProDy downloads compressed PDB files when needed. If you prefer saving decompressed files,
you can use fetchPDB () function as follows:

In [16]: fetchPDB(’1p38’, compressed=False)
Out[1l6]: "1p38.pdb’

Note that ProDy functions that fetch files or output files return filename upon successful completion of the
task. You can use this behavior to shorten the code you need to write, e.g.:

In [17]: parsePDB(fetchPDB(’'1p38’, compressed=False)) # same as p38 parsed above
Out[17]: <AtomGroup: 1lp38 (2962 atoms)>

We downloaded and save an uncompressed PDB file, and parsed it immediately.

3.4.2 PDB file resources

Secondly, ProDy can manage local mirror of PDB server or a local PDB folders, as well as using a server
close to your physical location for downloads:

3.4. Protein Structures 8

ProDy Tutorial, Release 1.5.1

* One of the wwPDB? FIP servers in US, Europe or Japan can be picked for downloads using
wwPDBServer ().

* A local PDB mirror can be set for faster access to files using pathPDBMirror ().
¢ A local folder can be set for storing downloaded files for future access using pathPDBFolder ().
If you are in the Americas now, you can choose the PDB server in the US as follows:
In [18]: wwPDBServer (‘us’)
If you would like to have a central folder, such as ~Downloads/pdb, for storing downloaded PDB files
(you will need to make it), do as follows:

In [19]: mkdir /home/abakan/Downloads/pdb;
In [20]: pathPDBFolder (' /home/abakan/Downloads/pdb’)

Note that when these functions are used, ProDy will save your settings in .prodyrc file stored in your
home folder.

3.5 Atom Groups

As you might have noticed, parsePDB () function returns structure data as an AtomGroup object. Let’s
see for p38 variable from above:

In [21]: p38
Out[21]: <AtomGroup: 1p38 (2962 atoms)>

Data from this object can be retrieved using get methods. For example:

In [22]: p38.getResnames ()

out [22] :

array ([’GLU’, ’'GLU’, 'GLU’, ..., "HOH’, ’'HOH’, ’'HOH'],
dtype=’156")

In [23]: p38.getCoords()

Oout [23]:

array ([[28.492, 3.212, 23.4651,
[27.552, 4.354, 23.629],
[26.545, 4.432, 22.489]7,
[18.872, 8.33 , 36.7161,
[-22.062, 21.632, 42.029],
[1.323, 30.027, 65.10311)

To get a list of all methods use tab completion, i.e. p38.<TAB>. We will learn more about atom groups in
the following chapters.

3.5.1 Indexing

An individual At om can be accessed by indexing At omGroup objects:

2http: / /www.wwpdb.org/

3.5. Atom Groups 9

http://www.wwpdb.org/

ProDy Tutorial, Release 1.5.1

In [24]: atom = p38[0]

In [25]: atom
Out [25]: <Atom: N from 1p38 (index 0)>

Note that all get/set functions defined for At omGroup instances are also defined for Atom instances,
using singular form of the function name.

In [26]: atom.getResname ()
Out[26]: 'GLU’

3.5.2 Slicing

It is also possible to get a slice of an At omGroup. For example, we can get every other atom as follows:
In [27]: p38[::2]

Out[27]: <Selection: ’'index 0:2962:2’ from 1p38 (1481 atoms)>

Or, we can get the first 10 atoms, as follows:

In [28]: p38[:10]
Out [28]: <Selection: 'index 0:10:1" from 1p38 (10 atoms)>

3.5.3 Hierarchical view

You can also access specific chains or residues in an atom group. Indexing by a single letter identifier will
return a Chain instance:

In [29]: p38['A"]

Out[29]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

Indexing atom group with a chain identifier and a residue number will return Residue instance:

In [30]: p38['A", 100]

Out [30]: <Residue: ASN 100 from Chain A from 1p38 (8 atoms)>

See Atomic classes® for details of indexing atom groups and Hierarchical Views (page 24) for more on hierar-
chical views.

3.6 ProDy Verbosity

Finally, you might have noticed that ProDy prints some information to the console after parsing a file or
doing some calculations. For example, PDB parser will print what was parsed and how long it took to the
screen:

@> 1p38 (./1p38.pdb.gz) is found in the target directory.
@> 2962 atoms and 1 coordinate sets were parsed in 0.08s.

This behavior is useful in interactive sessions, but may be problematic for automated tasks as the messages
are printed to stderr. The level of verbosity can be controlled using confProDy () function, and calling it
as confProDy (verbosity='none’) will stop all information messages permanently.

3http: / /prody.csb.pitt.edu/manual/reference /atomic/index.html#atomic

3.6. ProDy Verbosity 10

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#atomic

CHAPTER
FOUR

ATOM GROUPS

Below example shows how to build an At omGroup from scratch. We start by importing everything from
the ProDy package and the NumPy package:

In [1]: from prody import =
In [2]: from pylab import =

In [3]: ion{()

4.1 Building an Atom Group

The best way to start constructing an AtomGroup is by setting the coordinates first. Number of atoms will
be automatically set according to the size of the coordinate data array:

In [4]: wtrl = AtomGroup (’'Water’)

In [5]: wtrl
Out [5]: <AtomGroup: Water (0 atoms; no coordinates)>

In [6]: coords = array([[1, O, O], [O, O, O], [O, O, 111, dtype=float)

In [7]: coords

out[7]:

array ([[1., 0., 0.7,
[0., 0., 0.7,
[0., 0., 1.11)

In [8]: wtrl.setCoords (coords)

In [9]: wtrl
Out [9]: <AtomGroup: Water (3 atoms)>

4.1.1 Attributes

Attributes must be passed in a list or an array whose size is the same as the number of atoms.

In [10]: wtrl.setNames([’H’, "O’, "H'])

In [11]: wtrl.setResnums([1, 1, 11])

11

ProDy Tutorial, Release 1.5.1

In [12]: wtrl.setResnames ([’'WAT’, ’'WAT’", "WAT’'])

Accessing data will return a copy of the data:

In [13]: wtrl.getNames ()

Out[13]:

array (["H", "O", '"H'],
dtype=’156")

4.1.2 Atoms

Atoms are represented by instance of At om.

Iteration

Atoms in an At omGroup can be iterated over

In [14]: for a in wtrl: a

Indexing

Atoms in an atom group can be accessed via indexing:

In [15]: a = wtrl[O0]

In [16]: a
Out[16]: <Atom: H from Water (index 0)>

In [17]: a.getCoords()
Out[17]: array ([1., 0., 0.1)

4.1.3 Coordinate sets

Let’s add another coordinate set to the atom group:

In [18]: wtrl.addCoordset (array([(([0O, 1, 0], [0, O, O], [0, O, 111, dtype=float))

In [19]: wtrl
Out[19]: <AtomGroup: Water (3 atoms; active #0 of 2 coordsets)>

Note that number of coordinate sets is now 2, but active coordinate set index is still 0. Active coordinate set
incex can be changed for At omGroup
In [20]: a.setACSIndex (1)

In [21]: a
Out[21]: <Atom: H from Water (index 0; active #1 of 2 coordsets)>

Changing active coordinate set for an atom group, does not affect the active coordinate set of the atom
group:

In [22]: wtrl
Out [22]: <AtomGroup: Water (3 atoms; active #0 of 2 coordsets)>

4.1. Building an Atom Group 12

ProDy Tutorial, Release 1.5.1

Coordinates for the atom group will be returned from the active coordinate set

In [23]: a.getCoords()
Out[23]: array([0., 1., 0.1)

Iterations

Coordinate sets can also be iterated over for At om and At omGroup instances:

In [24]: for xyz in a.iterCoordsets(): xyz

4.1.4 Copying and Merging

Now let’s make another copy of this water:

In [25]: wtr2 = wtrl.copy()

In [26]: wtr2

Out[26]: <AtomGroup: Water (3 atoms; active #0 of 2 coordsets)>
Translate copy

Let’s translate the coordinates of wtr2 so that it does not overlap with wtrl

In [27]: wtr2.setCoords (wtr2.getCoords () + 2)

In [28]: wtr2.getCoords ()

Oout [28]:

array ([[3., 2., 2.1,
[2., 2., 2.1,
[2., 2., 3.11)

Above operation only translated the coordinate set at index 0

In [29]: wtr2.setACSIndex (1)

In [30]: wtr2.getCoords ()

Oout [30]:

array ([[0., 1., 0.1,
[0., 0., 0.7,
[0., 0., 1.10)

In [31]: wtr2.setCoords (wtr2.getCoords () + 2) # translate the 2nd coordset as well

Change attributes

Before we merge wtrl and wtr2, let’s change resid’s of wtr2:

In [32]: wtr2.setResnums([2, 2, 2])

In [33]: wtr2.getResnums ()
Out [33]: array([2, 2, 2])

We can do this in an alternate way too:

4.1. Building an Atom Group 13

ProDy Tutorial, Release 1.5.1

In [34]: wtr2.select(’all’).setResnums(2)

In [35]: wtr2.getResnums ()
Out [35]: array([2, 2, 2])

Note that the following won’t work:

In [36]: wtr2.setResnums (2)

TypeError Traceback (most recent call last)
<ipython-input-36-50al17a045d31> in <module> ()

—-——=> 1 wtr2.setResnums (2)

/home/abakan/Code/ProDy/prody/atomic/fields.pyc in setMethod(self, data)
261 def wrapSetMethod(fn) :

262 def setMethod(self, data):
-—> 263 return fn(self, data)
264 return setMethod

/home/abakan/Code/ProDy/prody/atomic/atomgroup.pyc in setData(self, array, var, dtype, ndim, none, f.

1152 if self._n_atoms == 0:
1153 self._n_atoms = len(array)
-> 1154 elif len(array) != self._n_atoms:
1155 raise ValueError (' length of array must match number '
1156 "of atoms’)

TypeError: object of type 'int’ has no len()

Merge two copies

Let’s merge two water atom groups:

In [37]: wtrs = wtrl + wtr2

In [38]: wtrs
Out [38]: <AtomGroup: Water + Water (6 atoms; active #0 of 2 coordsets)>

In [39]: wtrs.getCoords ()
out[39]:
array ([

~ ~ 0~

~

— — — e

NN WO O
~

NN O O O
~

w NN P OO

In [40]: wtrs.getNames ()

Oout [40]:

array([’H’, 'O’, ’'H’, 'H', 'O', 'H'],
dtype=’|S6")

In [41]: wtrs.getResnums ()
Oout[41]: array([1l, 1, 1, 2, 2, 2])

4.1. Building an Atom Group 14

ProDy Tutorial, Release 1.5.1

4.1.5 Hierarchical views

Hierarchical views of atom groups are represented by HierView.
Residues (and also chains) in an atom group can also be iterated over

In [42]: for res in wtrs.getHierView() .iterResidues(): res

4.1.6 Renaming an atom group
Finally, it’s is possible to change the name of wtrs from “Water + Water” to something shorter:
In [43]: wtrs.setTitle (' 2Waters’)

In [44]: wtrs
Out[44]: <AtomGroup: 2Waters (6 atoms; active #0 of 2 coordsets)>

4.2 Storing data in AtomGroup

Now let’s get an atom group from a PDB file:

In [45]: structure = parsePDB(’1p38")

In addition to what’s in a PDB file, you can store arbitrary atomic attributes in At omGroup objects.

4.2.1 Set a new attribute

For the purposes of this example, we will manufacture atomic data by dividing the residue number of each
atom by 10:

In [46]: myresnum = structure.getResnums() / 10.0

We will add this to the atom group using AtomGroup.setData () method by passing a name for the
attribute and the data:

In [47]: structure.setData ('myresnum’, myresnum)

We can check if a custom atomic attribute exists using AtomGroup.isDataLabel () method:

In [48]: structure.isDatalabel ('myresnum’)
Oout [48]: True

4.2.2 Access subset of data

Custom attributes can be accessed from selections:

In [49]: calpha = structure.calpha

In [50]: calpha.getData ('myresnum’)

Oout [507] :

array ([0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.,

4.2. Storing data in AtomGroup 15

ProDy Tutorial, Release 1.5.1

3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,
4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,
4.9, 5. , 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,
5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4, 6.5, 6.6,
6.7, 6.8, 6.9, 7., 7.1, 7.2, 7.3, 7.4, 7.5,
7.6, 7.7, 7.8, 7.9, 8. , 8.1, 8.2, 8.3, 8.4,
8.5, 8.6, 8.7, 8.8, 8.9, 9. , 9.1, 9.2, 9.3,
9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10. , 10.1, 10.2,
10.3, 10.4, 10.5, 10.0, 10.7, 10.8, 10.9, 11. , 11.1,
11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. ,
12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9,
13. , 13.1, 13.2, 13.3, 13.4, 13.5, 13.0, 13.7, 13.8,
13.9, 14. , 14.1, 14.2, 14.3, 14.4, 14.5, 14.06, 14.7,
14.8, 14.9, 15. , 15.1, 15.2, 15.3, 15.4, 15.5, 15.6,
15.7, 15.8, 15.9, 16. , 16.1, 16.2, 16.3, 16.4, 16.5,
16.6, 16.7, 16.8, 16.9, 17. , 17.1, 17.2, 17.3, 17.4,
17.5, 17.6, 17.7, 17.8, 17.9, 18. , 18.1, 18.2, 18.3,
18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 19. , 19.1, 19.2,
19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 19.9, 20. , 20.1,
20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, 20.9, 21. ,
21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, 21.8, 21.9,
22. , 22.1, 22.2, 22.3, 22.4, 22.5, 22.6, 22.7, 22.8,
22.9, 23. , 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.7,
23.8, 23.9, 24. , 24.1, 24.2, 24.3, 24 .4, 24.5, 24.6,
24.7, 24.8, 24.9, 25. , 25.1, 25.2, 25.3, 25.4, 25.5,
25.6, 25.7, 25.8, 25.9, 26. , 26.1, 26.2, 26.3, 26.4,
26.5, 26.6, 26.7, 26.8, 26.9, 27. , 27.1, 27.2, 27.3,
27.4, 27.5, 27.6, 27.7, 27.8, 27.9, 28. , 28.1, 28.2,
28.3, 28.4, 28.5, 28.6, 28.7, 28.8, 28.9, 29. , 29.1,
29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 29.8, 29.9, 30. ,
30.1, 30.2, 30.3, 30.4, 30.5, 30.6, 30.7, 30.8, 30.9,
31. , 31.1, 31.2, 31.3, 31.4, 31.5, 31.6, 31.7, 31.8,
31.9, 32. , 32.1, 32.2, 32.3, 32.4, 32.5, 32.6, 32.7,
32.8, 32.9, 33. , 33.1, 33.2, 33.3, 33.4, 33.5, 33.6,
33.7, 33.8, 33.9, 34. , 34.1, 34.2, 34.3, 34.4, 34.5,
34.0, 34.7, 34.8, 34.9, 35. , 35.1, 35.2, 35.3, 35.47)
4.2.3 Make selections
Custom atomic attributes can be used in selections:
In [51]: mysel = structure.select(’0 < myresnum and myresnum < 10”)

In [52]: mysel
Out [52]: <Selection: '0 < myresnum and myresnum < 10’ from 1p38 (788 atoms)>

This gives the same result as the following selection:

In [53]: structure.select (0 < resnum and resnum < 100’) == mysel
Out [53]: True

4.2.4 Save attributes

It is not possible to save custom attributes in PDB files, but saveAtoms () function can be used them to
save in disk for later use:

4.2. Storing data in AtomGroup 16

ProDy Tutorial, Release 1.5.1

In [54]: saveAtoms (structure)
Out[54]: "1p38.ag.npz’

Let’s load it using 1oadAtoms () function:

In [55]: structure = loadAtoms (’1p38.ag.npz’)

In [56]: structure.getData ('myresnum’)
Out[56]: array ([0.4, 0.4, 0.4, ..., 77.1, 77.3,

4.2.5 Delete an attribute

Finally, when done with an attribute, it can be deleted using At omGroup.delData () method:

In [57]: structure.delData ('myresnum’)
Out [57]: array ([0.4, 0.4, 0.4, ..., 77.1, 77.3,

77.61)

77.6])

4.2. Storing data in AtomGroup

17

CHAPTER
FIVE

ATOM SELECTIONS

This part gives more information on properties of At omGroup objects. We start with making necessary
imports. Note that every documentation page contains them so that the code within the can be executed
independently. You can skip them if you have already done them in a Python session.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: ion{()

5.1 Atom Selections

AtomGroup instances have a plain view of atoms for efficiency, but they are coupled with a powerful atom
selection engine. You can get well defined atom subsets by passing simple keywords or make rather so-
phisticated selections using composite statements. Selection keywords and grammar are very much similar
to those found in VMD'. Some examples are shown here:

5.1.1 Keyword selections

Now, we parse a structure. This could be any structure, one that you know well from your research, for
example.

In [4]: structure = parsePDB(’ 1p38")
In [5]: protein = structure.select ('protein’)

In [6]: protein
Out[6]: <Selection: ’'protein’ from 1p38 (2833 atoms)>

Using the "protein™ keyword we selected 2833 atoms out of 2962 atoms. Atomic.select () method
returned a Selection instance. Note that all get and set methods defined for the AtomGroup objects
are also defined for Selection objects. For example:

In [7]: protein.getResnames ()

out[7]:

array ([’'GLU’, ’'GLU’, ’'GLU’, ..., '"ASP’, 'ASP’, 'ASP’],
dtype=’156")

1http: / /www.ks.uiuc.edu/Research/vmd

18

http://www.ks.uiuc.edu/Research/vmd

ProDy Tutorial, Release 1.5.1

5.1.2 Select by name/type

We can select backbone atoms by passing atom names following "name" keyword:

In [8]: backbone = structure.select ('protein and name N CA C 0O')

In [9]: backbone
Out [9]: <Selection: ’'protein and name N CA C O’ from 1p38 (1404 atoms)>

Alternatively, we can use "backbone™ to make the same selection:

In [10]: backbone = structure.select ('backbone’)

We select acidic and basic residues by using residue names with "resname" keyword:

In [11]: charged = structure.select (' resname ARG LYS HIS ASP GLU’)

In [12]: charged
Out[1l2]: <Selection: ’'resname ARG LYS HIS ASP GLU’ from 1p38 (906 atoms)>

Alternatively, we can use predefined keywords “acidic” and “basic”.

In [13]: charged = structure.select (’acidic or basic’)

In [14]: charged
Out[l4]: <Selection: "acidic or basic’ from 1p38 (906 atoms)>

In [15]: set (charged.getResnames())
Out[15]: {’'ARG’', ’'ASP', ’'GLU’, ’'HIS’, "LYS’}

5.1.3 Composite selections

Let’s try a more sophisticated selection. We first calculate the geometric center of the protein atoms using
calcCenter () function. Then, we select the Ca and C8 atoms of residues that have at least one atom
within 10 A away from the geometric center.

In [16]: center = calcCenter (protein) .round(3)

In [17]: center
Out[17]: array([1.005, 17.533, 40.052])

In [18]: sel structure.select ('protein and name CA CB and same residue as ’
e P((x=1)**2 + (y=17.5)%%2 + (z-40.0)**x2)xx0.5 < 10")

In [19]: sel
Out[19]: <Selection: ’'protein and nam...)#**2)*x0.5 < 10’ from 1p38 (66 atoms)>

Alternatively, this selection could be done as follows:

In [20]: sel structure.select ('protein and name CA CB and same residue as '
e "within 10 of center’, center=center)

In [21]: sel
Out[21]: <Selection: ’'index 576 579 5... 1687 1707 1710’ from 1p38 (66 atoms)>

5.1. Atom Selections 19

ProDy Tutorial, Release 1.5.1

5.1.4 Selections simplified

In interactive sessions, an alternative to typing in .select (' protein’) or .select (' backbone’) is
using dot operator:

In [22]: protein = structure.protein

In [23]: protein
Out [23]: <Selection: ’'protein’ from 1p38 (2833 atoms)>

You can use dot operator multiple times:

In [24]: bb = structure.protein.backbone

In [25]: Dbb
Out [25]: <Selection: ' (backbone) and (protein)’ from 1p38 (1404 atoms)>

This may go on and on:

In [26]: ala_ca = structure.protein.backbone.resname_ALA.calpha

In [27]: ala_ca
Out[27]: <Selection: ' (calpha) and ((...and (protein)))’ from 1p38 (26 atoms)>

5.1.5 More examples

There is much more to what you can do with this flexible and fast atom selection engine, without the need
for writing nested loops with comparisons or changing the source code. See the following pages:

e Atom Selections® for description of all selection keywords

e Intermolecular Contacts® for selecting interacting atoms

5.2 Operations on Selections

Selection objects can used with bitwise operators:

5.2.1 Union

Let’s select 3-carbon atoms for non-GLY amino acid residues, and a-carbons for GLYs in two steps:

In [28]: betas = structure.select ('name CB and protein’)

In [29]: len(betas)
Out [29]: 336

In [30]: gly_alphas = structure.select ('name CA and resname GLY’)

In [31]: len(gly_alphas)
Oout[31]: 15

Zhttp:/ /prody.csb.pitt.edu/manual/reference /atomic/select.html#selections
3http: / /prody.csb.pitt.edu/tutorials/structure_analysis/contacts.html#contacts

5.2. Operations on Selections 20

http://prody.csb.pitt.edu/manual/reference/atomic/select.html#selections
http://prody.csb.pitt.edu/tutorials/structure_analysis/contacts.html#contacts

ProDy Tutorial, Release 1.5.1

The above shows that the p38 structure contains 15 GLY residues.
These two selections can be combined as follows:

In [32]: betas_gly_alphas = betas | gly_alphas

In [33]: betas_gly_alphas
Out [33]: <Selection: ' (name CB and pr...nd resname GLY)’ from 1p38 (351 atoms)>

In [34]: len(betas_gly_alphas)
Out [34]: 351

The selection string for the union of selections becomes:

In [35]: betas_gly_alphas.getSelstr()
Out [35]: ' (name CB and protein) or (name CA and resname GLY)'

Note that it is also possible to yield the same selection using selection string (name CB and protein)
or (name CA and resname GLY).

5.2.2 Intersection

It is as easy to get the intersection of two selections. Let’s find charged and medium size residues in a
protein:

In [36]: charged = structure.select (’'charged’)

In [37]: charged
Out [37]: <Selection: ’'charged’ from 1p38 (906 atoms)>

In [38]: medium = structure.select ('medium’)

In [39]: medium
Out [39]: <Selection: 'medium’ from 1p38 (751 atoms)>

In [40]: medium_charged = medium & charged

In [41]: medium_charged
Out[41]: <Selection: ' (medium) and (charged)’ from 1p38 (216 atoms)>

In [42]: medium_charged.getSelstr ()
Out[42]: ' (medium) and (charged)’

Let’s see which amino acids are considered charged and medium:

In [43]: set (medium_charged.getResnames())
Out [43]: {’ASP'}

What about amino acids that are medium or charged:

In [44]: set ((medium | charged) .getResnames|())
Out[44]: {"ARG’, ’'ASN’, ’'ASP’, 'CYS’, ’'GLU’, ’'HIS’, 'LYS’, "PRO’, ’'THR’, 'VAL’}

5.2.3 Inversion

It is also possible to invert a selection:

5.2. Operations on Selections 21

ProDy Tutorial, Release 1.5.1

In [45]: only_protein = structure.select ('protein’)

In [46]: only_protein

Out [46]: <Selection: ’'protein’ from 1p38 (2833 atoms)>

In [47]: only_non_protein = ~only_protein

In [48]: only_non_protein

Out [48]: <Selection: ’'not (protein)’ from 1p38 (129 atoms)>
In [49]: water = structure.select ('water’)

In [50]: water

Out [50]: <Selection: 'water’ from 1p38 (129 atoms)>

The above shows that 1p38 does not contain any non-water hetero atoms.

5.2.4 Addition

Another operation defined on the Select object is addition (also on other AtomPointer derived classes).

This may be useful if you want to yield atoms in an AtomGroup in a specific order. Let’s think of a simple

case, where we want to output atoms in 1p38 in a specific order:

In [51]: protein = structure.select ('protein’)

In [52]: water = structure.select ('water’)

In [53]: water_protein = water + protein

In [54]: writePDB(’ 1p38_water_protein.pdb’, water_protein)
Out [54]: '1p38_water_protein.pdb’

In the resulting file, the water atoms will precedes the protein atoms.

5.2.5 Membership

Selections also allows membership test operations:

In [55]: backbone = structure.select ('protein’)

In [56]: calpha = structure.select (’calpha’)

Is calpha* a subset of backbone®?

In [57]:
Oout [57]:

calpha in backbone
True

Or, is water in protein selection?

In [58]: water in protein
Out [58]: False
Other tests include:

4http:/ /prody.csb.pitt.edu/manual/reference/atomic/ flags.html#term-calpha
5 http:/ /prody.csb.pitt.edu/manual/reference /atomic/flags.html#term-backbone

5.2. Operations on Selections

22

http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-calpha
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-backbone

ProDy Tutorial, Release 1.5.1

In [59]: protein in structure
Out [59]: True

In [60]: backbone in structure
Out [60]: True

In [61]: structure in structure
Out[61]: True

In [62]: calpha in calpha
Out [62]: True

5.2.6 Equality

You can also check the equality of selections. Comparison will return True if both selections refer to the
same atoms.

In [63]: calpha = structure.select ('protein and name CA’)
In [64]: calpha2 = structure.select (’calpha’)

In [65]: calpha == calpha2
Out [65]: True

5.2. Operations on Selections 23

CHAPTER
SIX

HIERARCHICAL VIEWS

This part describes how to use hierarchical views. We start by importing everything from the ProDy pack-
age:

In [1]: from prody import =

6.1 Hierarchical Views

Then we parses a structure to get an At omGroup instance which has a plain view of atoms:

In [2]: structure = parsePDB(’3mkb’)

In [3]: structure
Out [3]: <AtomGroup: 3mkb (4776 atoms)>

A hierarchical view of the structure can be simply get by calling the At omGroup.getHierView () method:
In [4]: hv = structure.getHierView ()

In [5]: hv
Out [5]: <HierView: AtomGroup 3mkb (4 chains, 946 residues)>

6.1.1 Indexing

Indexing HierView instances return Chain:

In [6]: hv['A"]
OQut[6]: <Chain: A from 3mkb (254 residues, 1198 atoms) >

In [7]: hv['B"]
OQut[7]: <Chain: B from 3mkb (216 residues, 1193 atoms) >

In [8]: hv[’Z’] # This will return None, which means chain 7 does not exist

The length of the hv variable gives the number of chains in the structure:

In [9]: len (hv)
out[9]: 4

In [10]: hv.numChains ()
Oout[10]: 4

24

ProDy Tutorial, Release 1.5.1

It is also possible to get a Residue by directly indexing the HierVview instance:

In [11]: hv[’A’, 100]
Out[11]: <Residue: MET 100 from Chain A from 3mkb (8 atoms)>

Insertion codes can also be passed:

In [12]: hv[’A’, 100, ’'B’]

But this does not return anything, since residue 100B does not exist.

6.1.2 lterations

One can iterate over HierView instances to get chains:

In [13]: for chain in hv:
e chain

It is also possible to geta 1ist () ! of chains simply as follows:

In [14]: chains = list (hv)

In [15]: chains

Out[15]:

[<Chain: A from 3mkb (254 residues, 1198 atoms)>,
<Chain: B from 3mkb (216 residues, 1193 atoms)>,
<Chain: C from 3mkb (245 residues, 1189 atoms)>,
<Chain: D from 3mkb (231 residues, 1196 atoms)>]

6.1.3 Residues

In addition, one can also iterate over all residues:

In [16]: for i, residue in enumerate (hv.iterResidues()) :
e if i == 4: break
e print (residue)

6.2 Chains

In [17]: chA = hv['A’]

In [18]: chA
Out [18]: <Chain: A from 3mkb (254 residues, 1198 atoms)>

Length of the chain equals to the number of residues in it:

Thttp:/ /docs.python.org/library / functions. html#list

6.2. Chains

25

http://docs.python.org/library/functions.html#list

ProDy Tutorial, Release 1.5.1

In [19]: len(chA)
Out [19]: 254

In [20]: chA.numResidues ()
Out [20]: 254

6.2.1 Indexing

Indexing a Chain instance returns a Residue instance.

In [21]: chA[1l]
Out [21]: <Residue:

If a residue does not exist, None is returned:

In [22]: chA[1000]

In [23]: chA[l,

If residue with given integer number does not exist, None is returned.

ALA 1 from Chain A from 3mkb

(5 atoms) >

"A'] # Residue 1 with insertion code A also does not exist

6.2.2 lterations

Iterating over a chain yields residues:

In [24]: for i,

residue in enumerate (chi) :

if 1 ==

break

print (residue)

Note that water atoms, each constituting a residue, are also part of a chain if they are labeled with that
chain’s identifier.

This enables getting a 1ist () ? of residues simply as follows:

In [25]: chA_residues =

list (chA)

In [26]: chA_residues[:4]

out[26]:

[<Residue:
<Residue:
<Residue:
<Residue:

ALA
PHE
THR
GLY

1 from Chain
2 from Chain
3 from Chain
4 from Chain

B

In [27]: chA_residues[-4:]

out[27]:

[<Residue:
<Residue:
<Residue:
<Residue:

HOH
HOH
HOH
HOH

471 from
485 from
490 from
493 from

Chain
Chain
Chain
Chain

from 3mkb (
from 3mkb (
from 3mkb (
from 3mkb (

A from
A from
A from
A from

Zhttp:/ /docs.python.org/library/ functions.html#list

3mkb
3mkb
3mkb
3mkb

5 atoms) >,
11 atoms) >,
7 atoms) >,
4 atoms) >]

(1
(1

atoms
atoms
atoms
atoms

’

o~

6.2. Chains

26

http://docs.python.org/library/functions.html#list

ProDy Tutorial, Release 1.5.1

6.2.3 Get data

All methods defined for At omGroup class are also defined for Chain and Residue classes:

In [28]: chA.getCoords()

Oout [28]:

array([[-2.139, 17.026, -13.287],
[-1.769, 15.572, -13.111],
[-0.296, 15.257, -13.467],
[-5.843, 17.181, -16.86],
[-13.199, -9.21 , -49.692]
[-0.459, 0.378, —-46.156]

o~

)

In [29]: chA.getBetas()
Out[29]: array ([59.35, 59.14, 58.5, ..., 57.79, 47.77, 40.77])

6.2.4 Selections
Finally, you can select atoms from a Chain instance:
In [30]: chA_backbone = chA.select (' backbone’)

In [31]: chA_backbone
Out[31]: <Selection: ’ (backbone) and (chain A)’ from 3mkb (560 atoms) >

In [32]: chA_backbone.getSelstr ()
Out [32]: ' (backbone) and (chain A)’

As you see, the selection string passed by the user is augmented with “chain” keyword and identifier
automatically to provide internal consistency:

In [33]: structure.select (chA_backbone.getSelstr())
Out [33]: <Selection: '’ (backbone) and (chain A)’ from 3mkb (560 atoms) >

6.3 Residues

In [34]: chA_resl = chA[l]

In [35]: chA_resl
Out [35]: <Residue: ALA 1 from Chain A from 3mkb (5 atoms)>

6.3.1 Indexing

Residue instances can be indexed to get individual atoms:

In [36]: chA_resl[’/CA’]
Out [36]: <Atom: CA from 3mkb (index 1)>

In [37]: chA_resl[’CB’]
Out [37]: <Atom: CB from 3mkb (index 4)>

In [38]: chA_resl[’'X’"] # if atom does not exist, None 1is returned

6.3. Residues 27

ProDy Tutorial, Release 1.5.1

6.3.2 lterations

Iterating over a residue instance yields At om instances:

In [39]: for i, atom in enumerate (chA_resl):
e if i == 4: break
e print (atom)

Atom N (index 0)

Atom CA (index 1)

Atom C (index 2)

Atom O (index 3)

This makes it easy to geta 1ist () of atoms:

In [40]: list (chA_resl)

Out [40]:

[<Atom: N from 3mkb (index 0)>,
<Atom: CA from 3mkb (index 1)>,
<Atom: C from 3mkb (index 2)>,
<Atom: O from 3mkb (index 3)>,
<Atom: CB from 3mkb (index 4)>]

6.3.3 Get data

All methods defined for At omGroup class are also defined for Residue class:

In [41]: chA_resl.getCoords()
Out [41]:

array ([[-2.139, 17.026, -13.287]
[-1.769, 15.572, —-13.111]
[-0.296, 15.257, -13.467],
[0.199, 14.155, -13.155]
[-2.752, 14.639, -13.898]

o~

)

In [42]: chA_resl.getBetas()
Out[42]: array([59.35, 59.14, 58.5 , 59.13, 59.02])

6.3.4 Selections
Finally, you can select atoms from a Residue instance:
In [43]: chA_resl_bb = chA_resl.select (’backbone’)

In [44]: chA_resl_bb
Out [44]: <Selection: '’ (backbone) and ... and (chain A))’ from 3mkb (4 atoms)>

In [45]: chA_resl_Dbb.getSelstr ()
Out [45]: ' (backbone) and (resnum 1 and (chain A))’

Again, the selection string is augmented with the chain identifier and residue number (resnum*).

Shttp:/ /docs.python.org/library/ functions.html#list
4http:/ /prody.csb.pitt.edu/manual /reference/atomic/ fields.html#term-resnum

6.3. Residues 28

http://docs.python.org/library/functions.html#list
http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resnum

ProDy Tutorial, Release 1.5.1

6.4 Atoms

The lowest level of the hierarchical view contains At om instances.

In [46]: chA_resl_CA = chA_resl[’CA’]

In [47]: chA_resl_CA
Out[47]: <Atom: CA from 3mkb (index 1)>

Get atomic data

All methods defined for At omGroup class are also defined for At om class with the difference that method
names are singular (except for coordinates):

In [48]: chA_resl_CA.getCoords ()
Out[48]: array([-1.769, 15.572, -13.111])

In [49]: chA_resl_ CA.getBeta()
Out[49]: 59.140000000000001

6.5 State Changes

A HierView instance represents the state of an AtomGroup instance at the time it is built. When chain
identifiers or residue numbers change, the state that hierarchical view represents may not match the current
state of the atom group:

In [50]: chA.setChid(’X")

In [51]: chA
Out [51]: <Chain: X from 3mkb (254 residues, 1198 atoms)>

In [52]: hv[’X’] # returns None, since hierarchical view is not updated
In [53]: hv.update() # this updates hierarchical view

In [54]: hv[’'X"]
Out [54]: <Chain: X from 3mkb (254 residues, 1198 atoms)>

When this is the case, HierView.update () method can be used to update hierarchical view.

6.4. Atoms 29

CHAPTER
SEVEN

STRUCTURE ANALYSIS

ProDy comes with many functions that can be used to calculate structural properties and compare struc-
tures. We demonstrate only some of these functions. For more detailed examples, see Structure Analysis'
tutorial.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: ion{()

7.1 Measure geometric properties

Let’s parse a structure:

In [4]: p38 = parsePDB(’'1p38")

Functions for analyzing structures can be found in measure? module. For example, you can calculate phi
(¢) and psi (v) for the 10th residue, or the radius of gyration of the protein as follows:

In [5]: calcPhi(p38[10,])
Out [5]: —-115.5351427673999

In [6]: calcPsi(p38[10,])
Out[6]: 147.49025666398765

In [7]: calcGyradius (p38)
Out[7]: 22.057752024921747

7.2 Compare and align structures

You can also compare different structures using some of the methods in proteins module. Let’s parse
another p38 MAP kinase structure

In [8]: bound = parsePDB(’'1zz2")

You can find similar chains in structure 1p38 and 1zz2 using matchChains () function:

Thttp:/ /prody.csb.pitt.edu/tutorials/structure_analysis/index.html#structure-analysis
2http: / / prody.csb.pitt.edu/manual/reference /measure/index.html#prody.measure

30

http://prody.csb.pitt.edu/tutorials/structure_analysis/index.html#structure-analysis
http://prody.csb.pitt.edu/manual/reference/measure/index.html#prody.measure

ProDy Tutorial, Release 1.5.1

In [9]:

In [10]:
Out[107]:

In [11]:
Out[1l1]:

In [12]:
Out[1l2]:

In [13]:
Out[13]:

apo_chA, bnd_chA, seqgid, overlap = matchChains (p38, bound) [0]

apo_chA
<AtomMap: Chain A from 1p38 -> Chain A from 1zz2 from 1p38 (337 atoms)>

bnd_chA
<AtomMap: Chain A from 1zz2 -> Chain A from 1p38 from 1zz2 (337 atoms)>

seqgid
99.40652818991099

overlap
96

Matching Co atoms are selected and returned as At omMap instances. We can use them to calculate RMSD
and superpose structures.

In [14]:
Out[14]:

In [15]:

In [16]:
Out[1l6]:

In [17]:

In [18]:

calcRMSD (bnd_chA, apo_cha)
72.930230869465859

bnd_chA, transformation = superpose (bnd_chA, apo_cha)

calcRMSD (bnd_chA, apo_chAa)
1.86280149086955

showProtein (p38);

showProtein (bound) ;

7.3 Writing PDB files

PDB files can be written using the writePDB () function. The function accepts objects containing or refer-
ring to atomic data.

Output selected atoms:

7.3. Writing PDB files 31

ProDy Tutorial, Release 1.5.1

In [19]: writePDB(’ 1p38_calphas.pdb’,
Out[19]: "1p38_calphas.pdb’

Output a chain:

In [20]: chain_A = p38[’'A’]

In [21]: writePDB(’ 1p38_chain_A.pdb’,
Out[21]: "1p38_chain_A.pdb’

p38.select (' calpha’))

chain_A)

As you may have noticed, this function returns the file name after it is successfully written. This is a general
behavior for ProDy output functions. For more PDB writing examples see Write PDB file®.

Shttp:/ /prody.csb.pitt.edu/tutorials/structure_analysis/pdbfiles.html#writepdb

7.3. Writing PDB files

32

http://prody.csb.pitt.edu/tutorials/structure_analysis/pdbfiles.html#writepdb

CHAPTER
EIGHT

DYNAMICS ANALYSIS

In this section, we will show how to perform quick PCA and ANM analysis using a solution structure of
Ubiquitin!. If you started a new Python session, import ProDy contents:

In [1]: from prody import =
In [2]: from pylab import =

In [3]: ion{()

8.1 PCA Calculations

Let’s perform principal component analysis (PCA) of an ensemble of NMR models, such as 2k392. First, we
prepare the ensemble:

In [4]: ubi = parsePDB(’2k39’, subset=’calpha’)
In [5]: ubi_selection = ubi.select (' resnum < 717)
In [6]: ubi_ensemble = Ensemble (ubi_selection)

In [7]: ubi_ensemble.iterpose()

Then, we perform the PCA calculations:

In [8]: pca = PCA('/Ubiquitin’)
In [9]: pca.buildCovariance (ubi_ensemble)
In [10]: pca.calcModes ()

This analysis provides us with a description of the dominant changes in the structural ensemble. Let’s see
the fraction of variance for top ranking 4 PCs:

In [11]: for mode in pcal:4]:
e print (calcFractVariance (mode) .round (2))

1http: / /en.wikipedia.org/wiki/Ubiquitin
Zhttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=2k39

33

http://en.wikipedia.org/wiki/Ubiquitin
http://www.pdb.org/pdb/explore/explore.do?structureId=2k39

ProDy Tutorial, Release 1.5.1

PCA data can be saved on disk using saveModel () function:

In [12]: saveModel (pca)
Out[l2]: ’"Ubiquitin.pca.npz’

This function writes data in binary format, so is an efficient way of storing data permanently. In a later
session, this data can be loaded using 1oadModel () function.

8.2 ANM Calculations

Anisotropic network model (ANM) analysis can be performed in two ways:
The shorter way, which may be suitable for interactive sessions:

In [13]: anm, atoms = calcANM(ubi_selection, selstr=’calpha’)

The longer and more controlled way:

In [14]: anm = ANM('ubi’) # instantiate ANM object
In [15]: anm.buildHessian (ubi_selection) # build Hessian matrix for selected atoms
In [16]: anm.calcModes () # calculate normal modes

In [17]: saveModel (anm)
Out[17]: 'ubi.anm.npz’

Anisotropic Network Model (ANM)® provides a more detailed discussion of ANM calculations. The above
longer way gives more control to the user. For example, instead of building the Hessian matrix using uni-
form force constant and cutoff distance, customized force constant functions (see Custom Gamma Functions®)
or a pre-calculated matrix (see ANM. setHessian ()) may be used.

Individual Mode instances can be accessed by indexing the ANM instance:

In [18]: slowest_mode = anm[0]

In [19]: print(slowest_mode)
Mode 1 from ANM ubi

In [20]: print(slowest_mode.getEigval () .round(3))
1.714

Note that indices in Python start from zero (0). Oth mode is the 1st non-zero mode in this case. Let’s confirm
that normal modes are orthogonal to each other:

In [21]: (anm[0] = anm[1]).round(10)
Out[21]: 0.0

In [22]: (anm[0] = anm([2]).round(10)
Oout[22]: 0.0

Shttp:/ /prody.csb.pitt.edu/tutorials/enm_analysis/anm.html#anm
4http:/ /prody.csb.pitt.edu/tutorials /enm_analysis/gamma.html#gamma

8.2. ANM Calculations 34

http://prody.csb.pitt.edu/tutorials/enm_analysis/anm.html#anm
http://prody.csb.pitt.edu/tutorials/enm_analysis/gamma.html#gamma

ProDy Tutorial, Release 1.5.1

As you might have noticed, multiplication of two modes is nothing but the dot () > product of mode vec-
tors/arrays. See Normal Mode Algebra® for more examples.

8.3 Comparative Analysis

ProDy comes with many built-in functions to facilitate a comparative analysis of experimental and theo-
retical data. For example, using printOverlapTable () function you can see the agreement between
experimental (PCA) modes and theoretical (ANM) modes calculated above:

In [23]: printOverlapTable(pcal:4], anm[:4])
Overlap Table

ANM ubi
#1 #2 #3 #4
PCA Ubiquitin #1 -0.21 +0.30 -0.17 -0.47

PCA Ubiquitin #2 +0.01 +0.72 +0.08 +0.05
PCA Ubiquitin #3 +0.31 +0.11 +0.18 +0.19
PCA Ubiquitin #4 +0.11 -0.02 -0.17 -0.39

Output above shows that PCA mode 2 and ANM mode 2 for ubiquitin show the highest overlap (cosine-
correlation).

In [24]: showOverlapTable(pcal:4], anm[:4]);

1.0
0.9
0.8

40.7

0.4

4 modes from ANM ubi

0.3

0.2

0.1

0.0

1 2 3 4
4 modes from PCA Ubiquitin

This was a short example for a simple case. Ensemble Analysis’ section contains more comprehensive ex-
amples for heterogeneous datasets. Analysis® shows more analysis function usage examples and Dynamics
Analysis® module documentation lists all of the analysis functions.

Shttp:/ /docs.scipy.org/doc/numpy /reference/ generated /numpy.dot.html#numpy.dot

6http: / /prody.csb.pitt.edu/tutorials/enm_analysis/normalmodes.html#normalmode-operations
"http:/ /prody.csb.pitt.edu/tutorials/ensemble_analysis/index.html#pca

8http:/ /prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_analysis.html#pca-xray-analysis
9http: / / prody.csb.pitt.edu/manual/reference /dynamics/index. html#dynamics

8.3. Comparative Analysis 35

http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot
http://prody.csb.pitt.edu/tutorials/enm_analysis/normalmodes.html#normalmode-operations
http://prody.csb.pitt.edu/tutorials/ensemble_analysis/index.html#pca
http://prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_analysis.html#pca-xray-analysis
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#dynamics
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#dynamics

ProDy Tutorial, Release 1.5.1

8.4 Output Data Files

The writeNMD () function writes PCA results in NMD format. NMD files can be viewed using the Normal
Mode Wizard" VMD plugin.

In [25]: writeNMD (’ubi_pca.nmd’, pcal[:3], ubi_selection)
Out[25]: "ubi_pca.nmd’

Additionally, results can be written in plain text files for analysis with other programs using the
writeArray () function:

In [26]: writeArray(’ubi_pca modes.txt’, pca.getArray (), format=’ ")
Out[26]: "ubi_pca_modes.txt’

8.5 External Data

Normal mode data from other NMA, EDA, or PCA programs can be parsed using parseModes () function
for analysis.

In this case, we will parse ANM modes for p38 MAP Kinase calculated using ANM server!! as the external
software. We use oanm_eigvals.txt and oanm_slwevs.txt files from the ANM server.

You can either download these files to your current working directory from here or obtain them for another
protein from the ANM server.

In [27]: nma = parseModes (normalmodes=’'oanm_slwevs.txt’,
e eigenvalues='oanm_eigvals.txt’,
....: nm_usecols=range(l,21), ev_usecols=[1], ev_usevalues=range (6,26))

In [28]: nma
Out [28]: <NMA: oanm_slwevs (20 modes; 351 atoms) >

In [29]: nma.setTitle ('’ 1p38 ANM’)
In [30]: slowmode = nmal[0]

In [31]: print (slowmode.getEigval () .round(2))
0.18

8.6 Plotting Data

If you have Matplotlib'?, you can use functions whose name start with show to plot data:

In [32]: showSgFlucts (slowmode) ;

10http: / /prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
11http: / /ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi
2http:/ /matplotlib.org

8.4. Output Data Files 36

http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi
http://matplotlib.org

ProDy Tutorial, Release 1.5.1

0.10 Mode 1 from NMA 1p38 ANM

o

=}

=)
T

o
=}
B

Square fluctuations

0.02

0.00 ! L
0 150 200 250 300 350

Indices

50 100

Plotting"® shows more plotting examples and Dynamics Analysis'* module documentation lists all of the
plotting functions.

8.7 More Examples

For more examples see Elastic Network Models'> and Ensemble Analysis'® tutorials.

Bhttp:/ /prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_plotting. html#pca-xray-plottin
tp:/ /prody.csb.p Y y-p g P YP g
http:/ /prody.csb.pitt.edu/manual /reference/dynamics/index.html#dynamics

p:/ /prody.csb.p yn yn
5http:/ /prody.csb.pitt.edu/tutorials/enm_analysis/index.html#enm-analysis
16http: / /prody.csb.pitt.edu/tutorials /ensemble_analysis/index.html#ensemble-analysis

8.7. More Examples 37

http://prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_plotting.html#pca-xray-plotting
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#dynamics
http://prody.csb.pitt.edu/tutorials/enm_analysis/index.html#enm-analysis
http://prody.csb.pitt.edu/tutorials/ensemble_analysis/index.html#ensemble-analysis

CHAPTER
NINE

SEQUENCE ANALYSIS

Evol component of ProDy package brought new fast, flexible, and efficient features for handling multiple
sequence alignments and analyzing sequence evolution. Here, we just give a brief introduction to these
features. For more detailed examples, see Evol Tutorial'.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: ion{()

9.1 Access Pfam

First, let’s fetch an MSA file from Pfam? database:

In [4]: filename = fetchPfamMSA (' pkinase’, alignment='seed’)

In [5]: filename
Out [5]: ’'pkinase_seed.sth’

We downloaded the seed alignment for Protein Kinase (Pkinase’) family.

9.2 Parse MSA

As you might guess, we will parse this file using parseMSA () function:

In [6]: msa = parseMSA (filename)

In [7]: msa
Out[7]: <MSA: pkinase_seed (54 sequences, 476 residues)>

9.3 Sequences

You can access Sequence objects by indexing MSA:

lhttp: / /prody.csb.pitt.edu/tutorials/evol_tutorial /index.html#evol-tutorial
2http: / /pfam.sanger.ac.uk/
Shttp:/ /pfam.sanger.ac.uk/family /Pkinase

38

http://prody.csb.pitt.edu/tutorials/evol_tutorial/index.html#evol-tutorial
http://pfam.sanger.ac.uk/
http://pfam.sanger.ac.uk/family/Pkinase

ProDy Tutorial, Release 1.5.1

In [8]: seq = msal0]

In [9]: seq
Out [9]: <Sequence: CHK1_SCHPO (pkinase_seed[0]; length 476; 263 residues and 213 gaps)>

In [10]: print (seq)
YHIGREIGTGAFASV. .RLCYDDNAKI......... YAVKEFVNKK.HATSCMNAGVWARR. . . . o v v vt v v et MASEIQLHKLCNG

You can also slice MSA objects and iterate over sequences:

In [11]: for seq in msa[:4]:
e repr (seq)

9.4 Analysis

Evol component includes several functions for calculating conservation and coevolution properties of
amino acids, which are shown in Evol Tutorial*. Here, let’s take a look at calcMSAOccupancy () and
showMSAOccupancy () functions:

In [12]: occ = calcMSAOccupancy (msa, count=True)

In [13]: occ.min()
Out[13]: 1.0

This shows that an amino acid is present only in one of the sequences in the MSA.

In [14]: showMSAOccupancy (msa, count=True);

4http: / /prody.csb.pitt.edu/tutorials/evol_tutorial /index. html#evol-tutorial

9.4. Analysis 39

....HKN..I..T]

http://prody.csb.pitt.edu/tutorials/evol_tutorial/index.html#evol-tutorial

ProDy Tutorial, Release 1.5.1

60 Occupancy: pkinase_seed

50

40

30

Count

20

10

0 100 200 300 400 500
MSA column index

You see that many residues are not present in all sequences. You will see how to refine such MSA instances
in Evol Tutorial®.

5 http:/ /prody.csb.pitt.edu/tutorials/evol_tutorial /index.html#evol-tutorial

9.4. Analysis 40

http://prody.csb.pitt.edu/tutorials/evol_tutorial/index.html#evol-tutorial

CHAPTER
TEN

APPLICATIONS TUTORIAL

You can use ProDy A]aplicatiom‘l to perform some automated tasks, such as ANM/GNM/PCA calculations,
fetching and aligning PDB files, making atom selections, or identify contacts. ProDy applications are han-
dled by a script that comes with all installation packages. You can run the script from a central location
such as /usr/local/bin:

$ prody -h

or from the current working directory:

$./prody -h

or:

$ python prody -h

or on Windows:

$ C:\Python27\python.exe C:\Python27\Scripts\prody -h

These lines will print available ProDy applications. You can get more help on a specific commands as
follows:

$ prody anm -h

10.1 Align PDB files

prody align> command can be used to download and align structures for given PDB identifiers:

$ prody align 1p38 1r39 1zz2

Structures will be automatically downloaded from wwPDB FTP servers and saved in the current working
directory. Additionally, you can configure ProDy to use a local mirror of PDB or to store downloaded files
in a local folder. See ProDy Basics (page 6) part of the tutorial.

10.2 ANM calculations

prody anm?® can be used to perform ANM calculations:

Thttp:/ /prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps
Zhttp:/ /prody.csb.pitt.edu/manual/apps/prody/align.html#prody-align
3http:/ /prody.csb.pitt.edu/manual /apps/prody/anm.html#prody-anm

41

http://prody.csb.pitt.edu/manual/apps/prody/index.html#prody-apps
http://prody.csb.pitt.edu/manual/apps/prody/align.html#prody-align
http://prody.csb.pitt.edu/manual/apps/prody/anm.html#prody-anm

ProDy Tutorial, Release 1.5.1

$ prody anm 1p38 -a -A

—a and -A options will make ProDy output all data and figure files.

10.3 PCA calculations

prody anm®* can be used to perform PCA calculations. The following example will perform PCA calculations
for Ca atoms of the p38 MAP kinase using files:

¢ ProDy Tutorial files (ZIP)
¢ ProDy Tutorial files (TGZ)

$ tar -xzf p38_trajectory.tar.gz
$ prody pca —a —-A —--select calpha —--pdb p38.pdb p38_100frames.dcd

Acknowledgments

Continued development of Protein Dynamics Software ProDy is supported by NIH through R01 GM099738
award. Development of this tutorial is supported by NIH funded Biomedical Technology and Research
Center (BTRC) on High Performance Computing for Multiscale Modeling of Biological Systems (MMBios”) (P41
GM103712).

*http:/ /prody.csb.pitt.edu/manual/apps/prody /anm.html#prody-anm
5 http:/ /mmbios.org/

10.3. PCA calculations 42

http://prody.csb.pitt.edu/manual/apps/prody/anm.html#prody-anm
http://mmbios.org/

	Introduction
	Structural Ensemble Analysis
	Elastic Network Models
	Trajectory Analysis
	Visualization

	How to Start
	Using ProDy
	Interactive Usage
	Using Documentation

	ProDy Basics
	File Parsers
	Analysis Functions
	Plotting Functions
	Protein Structures
	Atom Groups
	ProDy Verbosity

	Atom Groups
	Building an Atom Group
	Storing data in AtomGroup

	Atom Selections
	Atom Selections
	Operations on Selections

	Hierarchical Views
	Hierarchical Views
	Chains
	Residues
	Atoms
	State Changes

	Structure Analysis
	Measure geometric properties
	Compare and align structures
	Writing PDB files

	Dynamics Analysis
	PCA Calculations
	ANM Calculations
	Comparative Analysis
	Output Data Files
	External Data
	Plotting Data
	More Examples

	Sequence Analysis
	Access Pfam
	Parse MSA
	Sequences
	Analysis

	Applications Tutorial
	Align PDB files
	ANM calculations
	PCA calculations

