%mProDy

Protein Dynamics & Sequence Analysis

Evol Tutorial
Release 1.5.1

Anindita Dutta, Ahmet Bakan

December 24, 2013

CONTENTS

1 Introduction 1
1.1 Required Programs. e 1
1.2 Recommended Programs 1
1.3 Getting Started 1
2 Pfam Access 2
21 SearchPfam e 2
22 Retrieve MSAfiles L 3
3 MSA Files 5
31 Parsing MSAfiles 5
3.2 Filteringand Slicing 6
33 MSAobjects 6
34 Merging MSAs e 7
35 Writing MSAs e 8
4 Evolution Analysis 9
41 GetMSAdata. 9
42 Refine MSA e 9
43 Occupancy calculation L 10
44 Entropy Calculation 11
45 Mutual Information Lo 12
46 OutputResults e 14
47 Rank-ordering e 14
5 Sequence-Structure Comparison 15
51 Entropy Calculation 15
52 Mobility Calculation 15
5.3 Comparison of mobility and conservation 16
54 Writing PDBfiles 17
6 Evol Application 18
Bibliography 19

CHAPTER
ONE

INTRODUCTION

This tutorial shows how to obtain multiple sequence alignments (MSA) from Pfam, how to manipulate
MSA files, and obtain conservation and coevolution patterns.

1.1 Required Programs

Latest version of ProDy' and Matplotlib” required.

1.2 Recommended Programs

[Python? is highly recommended for interactive usage.

1.3 Getting Started

To follow this tutorial, you will need the following files:

There are no required files.

We recommend that you will follow this tutorial by typing commands in an IPython session, e.g.:

$ ipython

or with pylab environment:

$ ipython —--pylab

First, we will make necessary imports from ProDy and Matplotlib packages.

In [1]: from prody import =
In [2]: from pylab import =
In [3]: ion{()

We have included these imports in every part of the tutorial, so that code copied from the online pages is
complete. You do not need to repeat imports in the same Python session.

Thttp:/ /prody.csb.pitt.edu
Zhttp:/ /matplotlib.org
Shttp:/ /ipython.org

http://prody.csb.pitt.edu
http://matplotlib.org
http://ipython.org

CHAPTER
TWO

PFAM ACCESS

The part shows how to access Pfam database. You can search protein family accession numbers and infor-
mation using a sequence or PDB/UniProt identifiers. MSA files for families of interest can be retrieved in a
number of formats.

In [1]: from prody import =
In [2]: from matplotlib.pylab import =«

In [3]: ion() # turn interactive mode on

2.1 Search Pfam

We use searchPfam () for searching. Valid inputs are UniProt ID, e.g. PIWI_ARCFU!, or PDB identifier,
e.g. 3luc” or "31ucA" with chain identifier.

Matching Pfam accession (one or more) as keys will map to a dictionary that contains locations (alignment
start, end, evalue etc), pfam family type, accession and id.

We query Pfam using the searchPfam (). with a UniProt ID.

In [4]: matches = searchPfam(’PIWI_ARCFU’)

It is a good practice to save this record on disk, as NCBI may not respond to repeated searches for the same
sequence. We can do this using Python standard library pickle’ as follows:

In [5]: import pickle

Record is save using dump () * function into an open file:
In [6]: pickle.dump (matches, open(’pfam_search PIWI_ARCFU.pkl’, "w’))
Then, it can be loaded using 1oad () 5 function:

In [7]: matches = pickle.load(open(’'pfam _search PIWI_ARCFU.pkl’))

In [8]: matches
Out [8] :

1http: / /www.uniprot.org/uniprot/PIWI_ARCFU

Zhttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=3luc
3http:/ /docs.python.org/library / pickle.html#pickle

*http:/ /docs.python.org/library/pickle. html#pickle.dump
Shttp:/ /docs.python.org/library / pickle.html#pickle.load

http://www.uniprot.org/uniprot/PIWI_ARCFU
http://www.pdb.org/pdb/explore/explore.do?structureId=3luc
http://docs.python.org/library/pickle.html#pickle
http://docs.python.org/library/pickle.html#pickle.dump
http://docs.python.org/library/pickle.html#pickle.load

Evol Tutorial, Release 1.5.1

{"PF02171": {"accession’: ’'PF02171',
rid’: 'piwi’,

"locations’: [{’ali_end’: 74057,

"ali_start’: ’111',
"bitscore’: 228.70",
"end’ : "406",
"evalue’: "1.le-64",
"hmm_end’ : 73017,
"hmm_start’: 27,
"start’: 7110"1}7,

"type’: 'Pfam-A’}}

Input can also be a protein sequence or a file containing the sequence:

In [9]: sequence = (/PMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSE’
"PCALCSLHSIGKIGGAQNRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA')

In [10]: matches = searchPfam(sequence)
In [11]: pickle.dump (matches, open(’'pfam _search_sequence.pkl’, "w’))
In [12]: matches = pickle.load(open('pfam_search_sequence.pkl’))

In [13]: matches
Oout[13]:
{"PF01187": {’"accession’: 'PF01187.13",
"class’: ’'Domain’,
rid’: 'MIF’,
"locations’: [{’ali_end’: 7114",
"ali_start’: 17,
"bitscore’: '174.2',
"end’: 114",
"evalue’: '7.7e-52",
"evidence’ : "hmmer v3.0’,
"hmm_end’: 71147,
"hmm_start’: ’17,
"significant’: "17,
"start’: 71"}],
"type’: 'Pfam-A’}}

Input sequence cannot have gaps and should be at least 12 characters long.

For sequence searches, we can pass additional parameters to searchP fam () like search_b which will search
pfam B and skip_a that will not search pfamA database. Additional parameters include ga that uses gath-
ering threshold instead of e-value, evalue cutoff can also be specified and timeout that can be set higher
especially when searching larger sequences, default is t imeout=60 seconds.

In [14]: matches = searchPfam(sequence, search_b=True, evalue=2.0)

2.2 Retrieve MSA files

Data from Pfam database can be fetched using fetchP famMSA ().

Valid inputs are Pfam ID, e.g. Piwi®, or Pfam accession, e.g. PF021717 obtained from searchPfam().

6http: / /pfam.sanger.ac.uk/family /Piwi
7http: / /pfam.sanger.ac.uk/family/PF02171

2.2. Retrieve MSA files 3

http://pfam.sanger.ac.uk/family/Piwi
http://pfam.sanger.ac.uk/family/PF02171

Evol Tutorial, Release 1.5.1

Alignment type can be "full’ (default), "seed", "ncbi" or "metagenomics" or "rpl5" or "rp35" or
"rp55" or "rp75".

In [15]: fetchPfamMSA(’piwi’, alignment=’'seed’)

A compressed file can be downloaded by setting compressed=True. The format of the MSA can be of
"selex" (default), "stockholm" or "fasta". This will return the path of the downloaded MSA file. The
output name can be specified, for by default it will have "accession/ID_alignment.format".

Note that in this case we passed a folder name, the downloaded file is saved in this folder, after it is created
if it did not exist. Also longer timeouts are necessary for larger families. Some other parameters like gap,
order or inserts can be set, as shown in the following example.

In [16]: fetchPfamMSA('PF02171", compressed=True, gaps='mixed’,
....: inserts=’"lower’, order=’alphabetical’, format=’fasta’)

2.2. Retrieve MSA files 4

CHAPTER
THREE

MSA FILES

This part shows how to parse, refine, filter, slice, and write MSA files.

In [1]: from prody import =«
In [2]: from matplotlib.pylab import =
In [3]: ion{() # turn interactive mode on

Let’s get Pfam MSA file for protein family that contains PIWI_ARCFU":

In [4]: searchPfam('PIWI_ARCFU’) .keys ()

In [5]: fetchPfamMSA ('PF02171’, alignment=’seed’)

3.1 Parsing MSA files

This shows how to use the MSAFile or parseMSA () to read the MSA file.

Reading using MSAFile yields an MSAFile object. Iterating over the object will yield an object of Sequence
from which labels, sequence can be obtained.

In [6]: msafile = 'PF02171_seed.sth’
In [7]: msafobj = MSAFile (msafile)

In [8]: msafobj
Out [8]: <MSAFile: PF02171_seed (Stockholm; mode "rt’)>

In [9]: msa_seq_list = list (msafobj)

In [10]: msa_seq _list[0]
Out [10]: <Sequence: TAG76_CAEEL (length 395; 307 residues and 88 gaps)>

parseMSA () returns an MSA object. We can parse compressed files, but reading uncompressed files are
much faster.

In [11]: fetchPfamMSA ('PF02171", compressed=True)

In [12]: parseMSA('PF02171 full.sth.gz’)

1http: / /www.uniprot.org/uniprot/ PIWI_ARCFU

http://www.uniprot.org/uniprot/PIWI_ARCFU

Evol Tutorial, Release 1.5.1

In [13]: fetchPfamMSA(’'PF02171", format=’fasta’)
In [14]: parseMSA('PF02171_full.fasta.gz’)

Iterating over a file will yield sequence id, sequence, residue start and end indices:

In [15]: msa = MSAFile('PF02171 seed.sth’)
In [16]: for seqg in msa:

..... seq

3.2 Filtering and Slicing

This shows how to use the MSAFile object or MSA object to refine MSA using filters and slices.

3.2.1 Filtering

Any function that takes label and sequence arguments and returns a boolean value can be used for filtering
the sequences. A sequence will be yielded if the function returns True. In the following example, sequences
from organism ARATH are filtered:

In [17]: msafobj = MSAFile (msafile, filter=lambda 1bl, seq: ’'ARATH’ in 1bl)
In [18]: for seqg in msafobj:

e seg.getLabel ()

3.2.2 Slicing

A list of integers can be used to slice sequences as follows. This enables selective parsing of the MSA file.

In [19]: msafobj = MSAFile (msafile, slice=list (range(10)) + list(range(374,384)))

In [20]: list (msafobj) [0]
Out [20]: <Sequence: TAG76_CAEEL (length 20; 19 residues and 1 gaps)>

Slicing can also be done using MSA. The MSA object offers other functionalities like querying, indexing,
slicing row and columns and refinement.

3.3 MSA objects

3.3.1 Indexing

Retrieving a sequence at a given index, or by id will give an object of Sequence:
In [21]: msa = parseMSA (msafile)
In [22]: seq = msal0]

In [23]: seq

3.2. Filtering and Slicing 6

Evol Tutorial, Release 1.5.1

Out [23]: <Sequence: TAG76_CAEEL (PF02171_seed[0]; length 395; 307 residues and 88 gaps)>

In [24]: str(seq)
Out[24]: "CIIVVLQS.KNSDI.YMTVKEQSDIVHGIMSQCVLMKNVSRP......... TPATCANIVLKLNMKMGGIN. . SRIVADKITNKYLVDQP"

Retrieve a sequence by UniProt ID:

In [25]: msa[’YQ53_CAEEL’]
Out [25]: <Sequence: YQS53_CAEEL (PF02171_seed[6]; length 395; 328 residues and 67 gaps)>

3.3.2 Querying
You can query whether a sequence in contained in the instance using the UniProt identifier of the sequence
as follows:

In [26]: 'YQ53_CAEEL’ in msa
Oout [26]: True

3.3.3 Slicing

Slice an MSA instance to give a new MSA. object :

In [27]: new_msa = msal:2]

In [28]: new_msa

Oout [28]: <MSA: PF02171_seed’ (2 sequences, 395 residues)>
Slice using a list of UniProt IDs:

In [29]: msa[:2] == msa[[’'TAG76_CAEEL’, '016720_CAEEL’]]
out [29]: True

Retrieve a character or a slice of a sequence:

In [30]: msa[0,0]
Out [30]: <Sequence: TAG76_CAEEL (length 1; 1 residues and 0 gaps)>

In [31]: msa[0,0:10]
Out [31]: <Sequence: TAG76_CAEEL (length 10; 9 residues and 1 gaps)>

Slice MSA rows and columns:

In [32]: msa[:10,20:40]
Out [32]: <MSA: PF02171_seed’ (10 sequences, 20 residues)>

3.4 Merging MSAs

mergeMSA () can be used to merge two or more MSAs. Based on their labels only those sequences that
appear in both MSAs are retained, and concatenated horizontally to give a joint or merged MSA. This
can be useful while evaluating covariance patterns for proteins with multiple domains or protein-protein
interactions. The example shows merging for the multi-domain receptor 3KG2? containing pfam domains

Zhttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=3KG2

3.4. Merging MSAs 7

http://www.pdb.org/pdb/explore/explore.do?structureId=3KG2

Evol Tutorial, Release 1.5.1

PF01094° and PF00497*.

In [33]: fetchPfamMSA(/PF00017’, alignment=’'seed’)
In [34]: fetchPfamMSA ('PF07714’, alignment=’seed’)

Let’s parse and merge the two files:

In [35]: msal = parseMSA ('PF00017_seed.sth’)

In [36]: msal
Out [36]: <MSA: PF00017_seed (58 sequences, 109 residues)>

In [37]: msa2 = parseMSA('PF07714_seed.sth’)

In [38]: msa2
Out [38]: <MSA: PF07714_seed (145 sequences, 484 residues)>

In [39]: merged = mergeMSA (msal, msaZ2)

In [40]: merged
Out [40]: <MSA: PF00017_seed + PF07714_seed (14 sequences, 593 residues)>

Merged MSA contains 14 sequences.

3.5 Writing MSAs

writeMSA () can be used to write MSA. It takes filename as input which should contain appropri-
ate extension that can be ".s1x" or ".sth" or ".fasta" or format should be specified as "SELEX",
"Stockholm" or "FASTA". Input MSA should be MSAFile or MSA object. Filename can contain ".gz"
extension, in which case a compressed file will be written.

In [41]: writeMSA(’'sliced MSA.gz’, msa, format=’SELEX’)
Out[41]: ’'sliced_MSA.gz’

In [42]: writeMSA(’'sliced MSA.fasta’, msafobj)
Out [42]: ’'sliced_MSA.fasta’

writeMSA () returns the name of the MSA file that is written.

3http: / /pfam.sanger.ac.uk/family /PF01094
4http: / /pfam.sanger.ac.uk/family /PF00497

3.5. Writing MSAs 8

http://pfam.sanger.ac.uk/family/PF01094
http://pfam.sanger.ac.uk/family/PF00497

CHAPTER
FOUR

EVOLUTION ANALYSIS

This part follows from MSA Files (page 5). The aim of this part is to show how to calculate residue conser-
vation and coevolution properties based on multiple sequence alignments (MSAs). MSA

First, we import everything from the ProDy package.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: ion() # turn interactive mode on

4.1 Get MSA data

Let’s download full MSA file for protein family RnaseA!. We can do this by specifying the PDB ID of a
protein in this family.

In [4]: searchPfam(’ 1K2A’) .keys ()
In [5]: fetchPfamMSA ('PF00074")

Let’s parse the downloaded file:

In [6]: msa = parseMSA('PF00074_full.sth’)

4.2 Refine MSA

Here, we refine the MSA to decrease the number of gaps. We will remove any columns in the alignment
for which there is a gap in the specified PDB file, and then remove any rows that have more than 20% gaps.
refineMSA () does all of this and returns an MSA object.

In [7]: msa_refine = refineMSA (msa, label=’RNAS2_HUMAN’, rowocc=0.8, seqid=0.98)

In [8]: msa_refine
Out[8]: <MSA: PF00074_full refined (label=RNAS2_HUMAN, rowocc>=0.8, seqgid>=0.98) (533 sequences, 128

MSA is refined based on the sequence of RNAS2._ HUMAN?, corresponding to 1K2A?.

Thttp:/ /pfam.sanger.ac.uk/family /RnaseA
Zhttp:/ /www.uniprot.org/uniprot/RNAS2_HUMAN
Shttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=1K2A

http://pfam.sanger.ac.uk/family/RnaseA
http://www.uniprot.org/uniprot/RNAS2_HUMAN
http://www.pdb.org/pdb/explore/explore.do?structureId=1K2A

Evol Tutorial, Release 1.5.1

4.3 Occupancy calculation

Evol plotting functions are prefixed with show. We can plot the occupancy for each column to see if there
are any positions in the MSA that have a lot of gaps. We use the function showMSAOccupancy () that uses
calcMSAOccupancy () to calculate occupancy for MSA.

In [9]: showMSAOccupancy (msa_refine, occ="res’);

cupanqy. PF00074_full refined (label=RNAS2_HUMAN, rowocc>=0.8, seqid>=C

0.8 -

Occupancy
o
o

o
IS

0.2

0.0
0 20 40 60 80 100 120 140

MSA column index

Let’s find the minimum:

In [10]: calcMSAOccupancy (msa_refine, occ="res’) .min();

We can also specify indices based on the PDB.

In [11]: indices = list (range(4,132))

In [12]: showMSAOccupancy (msa_refine, occ=’'res’, indices=indices);

‘cupangy; PF00074_full refined (label=RNAS2_HUMAN, rowocc>=0.8, seqid>=C

0.8

QOccupancy
o
o

o
~
T

0.0
0 20 40 60 80 100 120 140

MSA column index

4.3. Occupancy calculation 10

Evol Tutorial, Release 1.5.1

Further refining the MSA to remove positions that have low occupancy will change the start and end posi-
tions of the labels in the MSA. This is not corrected automatically on refinement. We can also plot occupancy
based on rows for the sequences in the MSA.

4.4 Entropy Calculation

Here, we show how to calculate and plot Shannon Entropy. Entropy for each position in the MSA is cal-
culated using calcShannonEntropy (). It takes MSA object or a numpy 2D array containg MSA as input
and returns a 1D numpy array.

In [13]: entropy = calcShannonEntropy (msa_refine)

In [14]: entropy

Oout[1l4]:

array ([2.63800919, 2.45450938, 1.42041785, 2.15639571, 1.63907879,
2.09393186, 1.82330678, 0.25908259, 2.00605129, 1.69565943,
0.86225618, 0.37467677, 1.61399529, 2.152871 , 2.37773811,
2.03304806, 2.22500579, 2.47038886, 1.39355386, 0.04095142,
0.96975454, 2.49565623, 1.40664469, 0.42308606, 2.1870084 ,
2.1912902 , 1.37821019, 1.78935302, 1.9773083 , 1.66724354,
2.38991496, 2.16435735, 2.23861691, 0.07666912, 0.53090604,
2.17685992, 2.05601916, 0.39718599, 0.66921337, 0.22814177,
1.13067592, 0.73408808, 1.7134237 , 1.75080943, 1.99947939,
2.42045936, 1.86751707, 1.03884166, 2.06000272, 1.84548923,
1.30756389, 0.14081204, 2.40116039, 2.06824591, 2.20118327,
1.86602952, 1.93722842, 2.31294099, 0.55243632, 1.40868441,
1.77233537, 1.45889218, 1.25211336, 1.65401333, 2.32637287,
2.50318713, 0.95322287, 0.6088434 , 1.516984 , 2.16086557,
0.49502443, 2.2973572 , 1.93483556, 2.31261882, 1.4581374 ,
2.2167319 , 1.51758558, 0.5770289 , 2.04402151, 0.07524241,
1.93959113, 1.44071683, 1.42274434, 1.9023148 , 1.81370905,
1.70753063, 1.89902445, 0.81650334, 1.71242241, 1.68083773,
0.98479639, 1.8581422 , 0.04095142, 2.13080516, 0.06205112,
2.01730025, 1.96933716, 2.09058798, 2.47214553, 2.38254327,
2.44521881, 1.69081665, 2.15967129, 1.40280104, 1.65347276,
0.90701065, 0.96741081, 0.1092195 , 1.61548777, 1.75714973,
2.15960565, 1.78756768, 1.92852948, 2.08465504, 0.42115912,
0.3488321 , 1.25056073, 0.9596198 , 2.35731046, 1.26015433,
1.54531754, 1.3825499 , 1.27762709, 0.01552932, 0.41832099,
0.32073906, 1.12347468, 0.127399747])

entropy is a 1D Numpy array. Plotting is done using showShannonEntropy ().

In [15]: showShannonEntropy (entropy, indices);

4.4. Entropy Calculation 11

Evol Tutorial, Release 1.5.1

3.0 .

Entropy

2.5

~
o

Shannon entropy
=
L

=
o

0.5

0.0

40

4.5 Mutual Information

60 80 100 120 140

None

We can calculate mutual information between the positions of the MSA using buildMutinfoMatrix ()
which also takes an MSA object or a numpy 2D array containing MSA as input.

In [16]: mutinfo = buildMutinfoMatrix (msa_refine)

In [17]: mutinfo
out[17]:
array ([[O. ,
0.31217035,
[0.8023522¢,
0.40552489,
[0.55114673,
0.40110279,
Cey
[0.16578316,
0.57198283,
[0.31217035,
0. ,
[0.10893036,
0.39735979,

Result is a 2D Numpy array.

O O O O O O

O O O O O O

.8023522¢,
.108930361],

’

.104363927,
.59997967,
.137582647,

.13780672,
.355233167,
.40552489,
.397359797,
.10436392,

11)

We can also apply normalization

0.

0.

0.

0.

55114673, ..., 0.16578316,
.59997967, ..., 0.13780672,

, ..., 0.16524 ,
16524 ; ..., O. ’
40110279, ..., 0.57198283,
13758264, ..., 0.3552331¢,

using applyMutinfoNorm() and correction

using

4.5. Mutual Information

12

Evol Tutorial, Release 1.5.1

applyMutinfoCorr () to the mutual information matrix based on references [Martin05] (page 19)
and [Dunn08] (page 19), respectively.

In [18]: mutinfo_norm = applyMutinfoNorm(mutinfo, entropy, norm='minent’)
In [19]: mutinfo_corr = applyMutinfoCorr (mutinfo, corr="apc’)

Note that by default norm="sument" normalization is applied in applyMutinfoNorm and
corr="prod" is applied in applyMutinfoCorr.

Now we plot the mutual information matrices that we obtained above and see the effects of different cor-
rections and normalizations.

In [20]: showMutinfoMatrix (mutinfo);

Mutual Information

okml s i I,
1.05
]
100 ! T8 11E | 5
b § I i 1 0.90
é 80 [i i i H0.75
£ [E |
£ =i e =g =1 0.60
S oot bde Rl g bl gle
s L ' AR
& . e ™ T = 10.45
= =1 =
40
- — 0.30
} o i | A
b &
0 B -I 2 0.15
—
I F o1 = i ! h = 0.00
20 40 60 80 100 120

MSA column index

In [21]: showMutinfoMatrix (mutinfo_corr, clim=[0, mutinfo_corr.max ()],
xlabel="1K2A: 4-1317);

Mutual Information
. 0.48

0.42

1K2A: 4-131

20 40 60 80 100 120
1K2A: 4-131

4.5. Mutual Information 13

Evol Tutorial, Release 1.5.1

4.6 Output Results

Here we show how to write the mutual information and entropy arrays to file. We use the writeArray ()
to write Numpy array data.

In [22]: writeArray (/1K2A_MI.txt’, mutinfo)
Out[22]: "1K2A_MI.txt’

This can be later loaded using parseArray ().

4.7 Rank-ordering

Further analysis can also be done by rank ordering the matrix and analyzing the pairs with highest mutual
information or the most co-evolving residues. This is done using calcRankorder (). A z-score normal-
ization can also be applied to select coevolving pairs based on a z score cutoff.

In [23]: rank_row, rank_col, zscore_sort = calcRankorder (mutinfo, zscore=True)

In [24]: asarray(indices) [rank_row[:5]]
Out[24]: array([128, 129, 130, 130, 1291])

In [25]: asarray(indices) [rank_col[:5]]
Oout[25]: array([127, 127, 129, 127, 128])

In [26]: zscore_sort[:5]
Out[26]: array ([4.86370837, 4.35821895, 4.04974775, 4.03299096, 3.42713102])

4.6. Output Results 14

CHAPTER
FIVE

SEQUENCE-STRUCTURE
COMPARISON

The part shows how to compare sequence conservation properties with structural mobility obtained from
Gaussian network model (GNM) calculations.

In [1]: from prody import =
In [2]: from matplotlib.pylab import =

In [3]: dion () # turn interactive mode on

5.1 Entropy Calculation

First, we retrieve MSA for protein for protein family PF00074:

In [4]: fetchPfamMSA ('PEF00074")

We parse the MSA file:

In [5]: msa

parseMSA (' PF00074_full.sth”)

Then, we refine it using refineMsA () based on the sequence of RNAS1_BOVINZ:

In [6]: msa_refine = refineMSA (msa, label=’RNAS1_BOVIN’, rowocc=0.8, seqid=0.98)

We calculate the entropy for the refined MSA:

In [7]: entropy = calcShannonEntropy (msa_refine)

5.2 Mobility Calculation

Next, we obtain residue fluctuations or mobility for protein member of the above family. We will use chain
B of 2W5I°.

1http: / /pfam.sanger.ac.uk/family/PF00074
2http: / /www.uniprot.org/uniprot/RNAS1_BOVIN
Shttp:/ /www.pdb.org/pdb/explore/explore.do?structureld=2W5I

15

http://pfam.sanger.ac.uk/family/PF00074
http://www.uniprot.org/uniprot/RNAS1_BOVIN
http://www.pdb.org/pdb/explore/explore.do?structureId=2W5I

Evol Tutorial, Release 1.5.1

In [8]: pdb = parsePDB(’2W5I’, chain='B")
In [9]: chB_ca = pdb.select ('protein and name CA and resid 1 to 121")

We perform GNM as follows:

In [10]: gnm = GNM(’'2W5I")
In [11]: gnm.buildKirchhoff (chB_ca)
In [12]: gnm.calcModes (n_modes=None) # calculate all modes

Now, let’s obtain residue mobility using slowest mode, slowest 8§ modes, and all modes:

In [13]: mobility_1 = calcSgFlucts(gnm[0])
In [14]: mobility_1lto8 = calcSgFlucts(gnm[:8])
In [15]: mobility_all = calcSgFlucts(gnm[:])

See Gaussian Network Model (GNM)* for details.

5.3 Comparison of mobility and conservation

We use the above data to compare structural mobility and degree of conservation. We can calculate a
correlation coefficient between the two quantities:

In [16]: result = corrcoef (mobility_all, entropy)

In [17]: result.round(3) [0,1]
Out[17]: 0.39800000000000002

We can plot the two curves simultaneously to visualize the correlation. We have to scale the values of

mobility to display them in the same plot.

5.3.1 Plotting

In [18]: indices = range(1l,122)

In [19]: bar(indices, entropy, width=1.2, color=’'grey’, hold=’True’);

In [20]: xlim(min(indices) -1, max(indices)+1);

In [21]: plot(indices, mobility_allx (max (entropy) /mean (mobility_all)), color='b’,

....: linewidth=2);

4http:/ /prody.csb.pitt.edu/tutorials/enm_analysis/gnm.html#gnm

5.3. Comparison of mobility and conservation 16

http://prody.csb.pitt.edu/tutorials/enm_analysis/gnm.html#gnm

Evol Tutorial, Release 1.5.1

5.4 Writing PDB files

We can also write PDB with b-factor column replaced by entropy and mobility values respectively. We
can then load the PDB structure in VMD or PyMol to see the distribution of entropy and mobility on the
structure.

In [22]: selprot = pdb.select (’protein and resid 1 to 121")
In [23]: resindex = selprot.getResindices/()
In [24]: index = unique (resindex)

In [25]: count = 0

In [26]: entropy_prot = []
In [27]: mobility_prot = []

In [28]: for ind in index:
e while (count < len(resindex)):
e if (ind == resindex[count]) :
et entropy_prot.append (entropy[ind])
e mobility_prot.append (mobility_all[ind]*100)
et count = count + 1

In [29]: selprot.setBetas (entropy_prot)

In [30]: writePDB(’'2W5I_entropy.pdb’, selprot)
Out [30]: '"2W5I_entropy.pdb’

In [31]: selprot.setBetas (mobility_prot)

In [32]: writePDB(’/2W5I _mobility.pdb’, selprot)
Out[32]: "2W5I_mobility.pdb’

5.4. Writing PDB files 17

CHAPTER
SIX

EVOL APPLICATION

Evol Applications have similar fuctionality as the python API. We can search Pfam, fetch from Pfam and
also refine MSA, merge two or more MSA and calculate conservation and coevolution properties
and also rankorder results from mutual information to get top-ranking pairs.

All evol functions and their options can be obtained using the -h option. We should be in /prody/scripts
directory to run the following commands:

python evol -h

python evol search -h
python evol search 2W5IB
python evol fetch PF00074

Using the above we can search and fetch MSA. Next we can refine the MSA:

python evol refine -h
python evol refine PF00074_full.slx -1 RNAS1_BOVIN -s 0.98 -r 0.8

Next we can calculate conservation using shannon entropy and coevolution using mutual information with
correction and also save the plots.:

python evol conserv PF00074_full refined.slx -S
python evol coevol PF00074_full_refined.slx -S -F png -c apc —-cmin 0.0

We can rank order the residues with highest covariance and apply filters like reporting only those pairs that
are at a separation of at least 5 residues sequentially or are 15 Ang apart in structure. The residues may be
numbered based on PDB:

python evol rankorder -h

python evol rankorder PF00074_full_refined mutinfo_corr_apc.txt -g 5 -p
2W5IBI_1-121.pdb

python evol rankorder PF00074_full_refined_mutinfo_corr_apc.txt -u -t 15 -p 2W5IB_1-121

Acknowledgments

Continued development of Protein Dynamics Software ProDy is supported by NIH through R01 GM099738
award. Development of this tutorial is supported by NIH funded Biomedical Technology and Research
Center (BTRC) on High Performance Computing for Multiscale Modeling of Biological Systems (MMBios') (P41
GM103712).

1http: //mmbios.org/

18

.pdb

http://mmbios.org/

BIBLIOGRAPHY

[Martin05] Martin LC, Gloor GB, Dunn SD, Wahl LM. Using information theory to search for co-evolving
residues in proteins. Bioinformatics 2005 21(22):4116-4124.

[Dunn08] Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or en-
tropy dramatically improves residue contact prediction. Bioinformatics 2008 24(3):333-340.

19

	Introduction
	Required Programs
	Recommended Programs
	Getting Started

	Pfam Access
	Search Pfam
	Retrieve MSA files

	MSA Files
	Parsing MSA files
	Filtering and Slicing
	MSA objects
	Merging MSAs
	Writing MSAs

	Evolution Analysis
	Get MSA data
	Refine MSA
	Occupancy calculation
	Entropy Calculation
	Mutual Information
	Output Results
	Rank-ordering

	Sequence-Structure Comparison
	Entropy Calculation
	Mobility Calculation
	Comparison of mobility and conservation
	Writing PDB files

	Evol Application
	Bibliography

