mProDy

Protein Dynamics & Sequence Analysis

Elastic Network Models
Release 1.5.1

Ahmet Bakan

December 24, 2013



CONTENTS

Introduction 1
1.1 Required Programs. . . . . . ... .. .. . e 1
1.2 Recommended Programs . . . .. . ... ... ... .. ... 1
1.3 Getting Started . . . .. ... 1
Gaussian Network Model (GNM) 3
2.1 Parsestructure . . . . . . . . . . e e e e e e e e e e 3
2.2 Build Kirchoff matrix . . . . . . . . . . e e e 4
2.3 Parameters . . . . . . .. e e e e e e e e 4
24  Calculatenormalmodes . . . . . . . . .. e e e e e 4
25 Normalmodedata . . . . . . . . . . e e e e e 4
2.6 Individualmodes. . . . . . . . . L e e e e 5
2.7 Plotresults . . . . . . . e e e 6
Anisotropic Network Model (ANM) 8
3.1 Parsestructure . . . . . . . . . . e e e e e e e e e e e 8
32 BuildHessian . . . . . . . . . e e e 9
3.3 Parameters . . . . . . e e e e e e e e e e e 9
3.4 Calculatenormalmodes . . . . . . . . . . e e e e 9
3.5 Normalmodesdata . . . . . . . . . . . . . e e e e 10
3.6 Individualmodes. . . . . . . . . e e e e e e 10
3.7 Write NMDile . . . . . . . . e e e 10
3.8 Viewmodesin VMD . . . . . . . .. e e 11
Using an External Matrix 12
4.1 ParseHessian . . . . . . . . . e e e e e e e e e e e e 12
42 ANMcalculations . . . . . . . . . e e e 12
4.3 Parse Kirchhoff . . . . . . . . . . e e e 13
44 GNMcalculations . . . . . . . . e e e e e e 13
Custom Gamma Functions 14
5.1 Parsestructure . . . . . . . . . . e e e e e e 14
5.2 Force Constant Function . . . . . . . . . . . . . e e e e 14
53 ANMcalculations . . . . . . . . e e e e e 15
Editing a Model 17
6.1 ANMcalculations . . . . . . . . . e e e e e 17
6.2 Slicingamodel . .. ... ... ... 18
6.3 Reducingamodel . ... ... ... 20
6.4 Comparereduced and slicedmodels . . . ... .. .. ... .. .. ... .. .. ... .. .. 22




7 Extend a coarse-grained model
71 Extrapolation . . .. .. .. ... e
72 Write NMDffile . . . . . . .. e
73 Sampleconformers . . . . ... ...
74 Write PDBfile . . . . . . . oL
8 Normal Mode Algebra
81 ANMC alculations . . . . . ... ... . e
82 Calculateoverlap . . . . . . . . e
8.3 Linearcombination . ... ... ... ... e
8.4 Approximate a deformationvector. . . . . ... ... Lo L L

9 Deformation Analysis

9.1 Parsestructures. . ... ..
9.2 Matchchains ... ... ..
9.3 RMSD and superpose . . .
9.4 Deformation vector . . . .

9.5 Compare with ANM modes

Bibliography

23
23
24
24
24

25
25
26
27
27

28
28
28
29
29
30

31




CHAPTER
ONE

INTRODUCTION

This tutorial describes how to use elastic network models, in particular Gaussian Network Model (GNM)
(page 3) and Anisotropic Network Model (ANM) (page 8), for studying protein dynamics.

1.1 Required Programs

Latest version of ProDy! and Matplotlib® required.

1.2 Recommended Programs

[Python® is highly recommended for interactive usage.

1.3 Getting Started

To follow this tutorial, you will need the following files:

792 oanm_eigvals.txt
3.3M oanm_hes.txt
215K oanm_slwevs.txt
94K ognm_kirchhoff.txt

We recommend that you will follow this tutorial by typing commands in an IPython session, e.g.:

$ ipython

or with pylab environment:

$ ipython —--pylab

First, we will make necessary imports from ProDy and Matplotlib packages.

In [1]: from prody import =«

In [2]: from pylab import =«

http:/ /prody.csb.pitt.edu
Zhttp:/ /matplotlib.org
Shttp:/ /ipython.org



http://prody.csb.pitt.edu
http://matplotlib.org
http://ipython.org

Elastic Network Models, Release 1.5.1

In [3]: dion()

We have included these imports in every part of the tutorial, so that code copied from the online pages is
complete. You do not need to repeat imports in the same Python session.

1.3. Getting Started 2



CHAPTER
TWO

GAUSSIAN NETWORK MODEL (GNM)

This example shows how to perform GNM calculations using an X-ray structure of ubiquitin. A GNM in-
stance that stores the Kirchhoff matrix and normal mode data describing the intrinsic dynamics of the pro-
tein structure will be obtained. GNM instances and individual normal modes (Mode) can be used as input to
functions in prody . dynamics! module.

See [Bahar97] (page 31) and [Haliloglu97] (page 31) for more information on the theory of GNM.

2.1 Parse structure

We start by importing everything from the ProDy package:

In [1]: from prody import =«
In [2]: from matplotlib.pylab import =«
In [3]: ion() # turn interactive mode on

First we parse a PDB file by passing its identifier to parsePDB () function. Note that if file is not found in
the current working directory, it will be downloaded.

In [4]: ubi = parsePDB(’laar’)

In [5]: ubi
Out [5]: <AtomGroup: laar (1218 atoms)>

This file contains 2 chains, and a flexible C-terminal (residues 71-76). We only want to use Cc atoms of first
70 residues from chain A, so we select them:

In [6]: calphas = ubi.select(’calpha and chain A and resnum < 71")

In [7]: calphas
Out[7]: <Selection: ’'calpha and chai...and resnum < 71’ from laar (70 atoms)>

”ou

See definition of “calpha”, “chain”, and other selection keywords in Atom Selections?.

Note that, flexible design of classes allows users to select atoms other than alpha carbons to be used in
GNM calculations.

Thttp:/ /prody.csb.pitt.edu/manual/ reference/dynamics /index.html#prody.dynamics
Zhttp:/ /prody.csb.pitt.edu/manual/reference/atomic/select.html#selections



http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#prody.dynamics
http://prody.csb.pitt.edu/manual/reference/atomic/select.html#selections

Elastic Network Models, Release 1.5.1

2.2 Build Kirchoff matrix

Instantiate a GNM instance:

In [8]: gnm = GNM(’'Ubiquitin’)

We can build Kirchhoff matrix using selected atoms and GNM.buildKirchhoff () method:

In [9]: gnm.buildKirchhoff (calphas)

We can get a copy of the Kirchhoff matrix using GNM. getKirchhoff () method:

In [10]: gnm.getKirchhoff ()

Out [10]:

array ([[ 11., -1., -1., ..., 0., 0., 0.1,
[ -1., 15., -1., ..., 0., 0., 0.7,
[ -1., -1., 20., ..., 0., 0., 0.1,
R
[ 0., 0., 0., ..., 20., -1., -1.1,
[ 0., 0., 0., ..., -1., 21., -1.1,
[ 0., 0., 0., ..., -=1., =1., 12.11)

2.3 Parameters

We didn’t pass any parameters, but GNM.buildKirchhoff () method accepts two of them, which by de-
faultare cutoff=10.0 and gamma=1.0,i.e. buildKirchhoff (calphas, cutoff=10., gamma=1.)

In [11]: gnm.getCutoff ()
Out[11]: 10.0

In [12]: gnm.getGamma ()
Out[12]: 1.0

Note that it is also possible to use an externally calculated Kirchhoff matrix. Just pass it to the GNM instance
using GNM. setKirchhoff () method.

2.4 Calculate normal modes

We now calculate normal modes from the Kirchhoff matrix.

In [13]: gnm.calcModes ()

Note that by default 20 non-zero (or non-trivial) modes and 1 trivial mode are calculated. Trivial
modes are not retained. To calculate different numbers of non-zero modes or to keep zero modes, try
gnm.calcModes (50, zeros=True).

2.5 Normal mode data

Get eigenvalues and eigenvectors:

2.2. Build Kirchoff matrix 4



Elastic Network Models, Release 1.5.1

In [14]: gnm.getEigvals () .round(3)
Out[14]:
array ([ 2.502, 2.812, 4.366, 5.05 , 7.184, 7.65 , 7.8717,
9.08 , 9.713, 10.132, 10.502, 10.644, 10.888, 11.157,
11.285, 11.632, 11.78 , 11.936, 12.006, 12.218])

In [15]: gnm.getEigvecs () .round(3)

Out [15]:

array ([[-0.064, -0.131, -0.245, ..., -0.256, 0.538, -0. 1,
[-0.073, -0.085, -0.19 , ..., 0.006, -0.069, 0.032],
[-0.076, -0.043, -0.135, ..., 0.017, -0.047, 0.018],
[-0.092, 0.064, 0.105, ..., 0.032, -0.042, 0.0067],
[-0.07 , 0.099, 0.054, ..., 0.031, 0.024, -0.014],
[-0.081, 0.135, 0.124, ..., 0.013, -0.04 , -0.01811)

Get covariance matrix:

In [16]: gnm.getCovariance () .round(2)

Oout[1l6]:

array([([ ©0.08, ©0.02, ©0.01, ..., -0.01, -0.01, -0.0171,
[ o0.02, o0.02, 0.0, ..., -O. , -0. , =0.017,
[ o0.01, o0.01, 0.01, ..., O. , -0. , =-0. 1,
[-0.01, -0. , O. , ..., 0.01, 0.01, 0.017,
[-0.01, -0. , -0. , ..., 0.01, 0.01, 0.027,
[-0.01, -0.01, -0. , ..., 0.01, 0.02, 0.0511)

Note that covariance matrices are calculated using the available modes in the model, which is the slowest 20
modes in this case. If the user calculates M modes, these M modes will be used in calculating the covariance
matrix.

2.6 Individual modes

Normal mode indices start from 0, so slowest mode has index 0.

In [17]: slowest_mode = gnm[0]

In [18]: slowest_mode.getEigval () .round(3)
Out[18]: 2.5019999999999998

In [19]: slowest_mode.getEigvec () .round(3)
Out[19]:
array([-0.064, -0.073, -0.076, -0.112, -0.092, -0.143, -0.164, -0.205,
-0.24 , -0.313, -0.192, -0.152, -0.066, -0.07 , -0.025, -0.031,
0.001, -0.006, -0.015, 0.027, 0.042, 0.055, 0.063, 0.09 ,
0.09, 0.069, 0.132, 0.175, 0.145, 0.121, 0.195, 0.218,
0.158, 0.217, 0.245, 0.214, 0.225, 0.171, 0.2 , 0.151,
0.102, 0.043, -0.029, -0.064, -0.072, -0.086, -0.09 , -0.078,
0.057, -0.011, 0.016, 0.061, 0.058, 0.043, 0.029, 0.013,
0.004, 0.011, -0.013, -0.037, -0.05, -0.059, -0.07 , -0.094,
0

.094, -0.099, -0.097, -0.092, -0.07 , -0.081])

By default, modes with 0 eigenvalue are excluded. If they were retained, slowest non-trivial mode would
have index 6.

2.6. Individual modes 5



Elastic Network Models, Release 1.5.1

2.7 Plot results

ProDy plotting functions are prefixed with show. Let’s use some of them to plot data:

2.7.1

Contact Map

In [20]: showContactMap (gnm) ;

2.7.2

Ubiquitin contact map
0 10 20 30 40 50 60

10+

20+

w
o
T

Residue index

60 &

Residue index

Cross-correlations

In [21]: showCrossCorr (gnm) ;

Indices

Cross-correlations for GNM Ubiquitin

b/

70

30

| a —
10 20 30 40 50 60 70
Indices

1.0

0.8

0.6

0.4

2.7. Plot results



Elastic Network Models, Release 1.5.1

2.7.3 Slow mode shape

In [22]: showMode (gnm[0]);

In [23]: plt.grid();

0.3

-0.4

Mode 1 from GNM Ubiquitin

Indices

2.7.4 Square fluctuations

In [24]: showSgFlucts (gnm[0]);

0.040

0.035

0.030

o
o
]
W

o
o
it
w

Square fluctuations
(=]
o
N
=]

0.010

0.005

0.000
0

Mode 1 from GNM Ubiquitin

10 20 30 40 50 60 70
Indices

2.7. Plot results



CHAPTER
THREE

ANISOTROPIC NETWORK MODEL
(ANM)

This example shows how to perform ANM calculations, and retrieve normal mode data. An ANM instance
that stores Hessian matrix (and also Kirchhoff matrix) and normal mode data describing the intrinsic dy-
namics of the protein structure will be obtained. ANM instances and individual normal modes (Mode) can
be used as input to functions in dynamics module.

See [Doruker00] (page 31) and [Atilgan01] (page 31) for more information on the theory of ANM.

3.1 Parse structure

We start by importing everything from the ProDy package:
In [1]: from prody import =

In [2]: from pylab import =*

In [3]: ion()

We start with parsing a PDB file by passing an identifier. Note that if a file is not found in the current
working directory, it will be downloaded.

In [4]: p38 = parsePDB(’'1p38")

In [5]: p38
Out [5]: <AtomGroup: 1p38 (2962 atoms)>

We want to use only Ca atoms, so we select them:

In [6]: calphas = p38.select ('protein and name CA’)

In [7]: calphas
Out[7]: <Selection: ’'protein and name CA’ from 1p38 (351 atoms)>

We can also make the same selection like this:

In [8]: calphas2 = p38.select (’calpha’)

In [9]: calphas2
Out[9]: <Selection: ’'calpha’ from 1p38 (351 atoms)>




Elastic Network Models, Release 1.5.1

To check whether the selections are the same, we can try:

In [10]: calphas == calphas2
Out[10]: True

Note that, ProDy atom selector gives the flexibility to select any set of atoms to be used in ANM calculations.

3.2 Build Hessian

We instantiate an ANM instance:

In [11]: anm = ANM('p38 ANM analysis’)

Then, build the Hessian matrix by passing selected atoms (351 Ca’s) to ANM.buildHessian () method:

In [12]: anm.buildHessian (calphas)

We can get a copy of the Hessian matrix using ANM. getHessian () method:

In [13]: anm.getHessian () .round(3)

Out[13]:

array ([[ 9.959, -3.788, 0.624, ..., O. , 0. , 0. 1,
[-3.788, 7.581, 1.051, ..., O. , 0. , 0. 1,
[ 0.624, 1.051, 5.46 , ..., O. , 0. , 0. 1,
ey
[ O. , 0. , 0. ; .., 1.002, -0.282, 0.607],
[ O. , 0. , 0. ; ..., —0.282, 3.785, -2.5047,
[ O , 0. , 0. ; «.., 0.607, -2.504, 4.21411)

3.3 Parameters

We didn’t pass any parameters to ANM.buildHessian () method, but it accepts cutoff and gamma param-
eters, for which default values are cutoff=15.0 and gamma=1. 0.

In [14]: anm.getCutoff ()
Out[14]: 15.0

In [15]: anm.getGamma ()
Out[15]: 1.0

Note that it is also possible to use an externally calculated Hessian matrix. Just pass it to the ANM instance
using ANM. setHessian () method.

3.4 Calculate normal modes

Calculate modes using ANM. calcModes () method:
In [16]: anm.calcModes ()
Note that by default 20 non-zero (or non-trivial) and 6 trivial modes are calculated. Trivial modes

are not retained. To calculate a different number of non-zero modes or to keep zero modes, try
anm.calcModes (50, zeros=True).

3.2. Build Hessian 9



Elastic Network Models, Release 1.5.1

3.5 Normal modes data

In [17]: anm.getEigvals () .round(3)

Oout[17]:

array ([ 0.179, 0.334, 0.346, 0.791, 0.942, 1.012, 1.188, 1.304,
1.469, 1.546, 1.608, 1.811, 1.925, 1.983, 2.14 , 2.298,
2.33 , 2.364, 2.69 , 2.794])

In [18]: anm.getEigvecs () .round(3)

Oout[18]:

array([[ 0.039, -0.045, 0.007, ..., 0.105, 0.032, -0.038],
[ 0.009, -0.096, -0.044, ..., 0.091, 0.036, -0.037],
[ 0.058, -0.009, 0.08 , ..., -0.188, -0.08 , -0.0637,
[ 0.046, -0.093, -0.131, ..., 0.018, -0.008, 0.006],
[ 0.042, -0.018, -0.023, ..., 0.014, -0.043, 0.037],
[ 0.08 , -0.002, -0.023, ..., 0.024, -0.023, -0.00911)

You can get the covariance matrix as follows:

In [19]: anm.getCovariance () .round(2)

Oout[19]:

array([([ 0.03, ©0.03, -0. , ..., 0. , 0. , 0.017,
[ 0.03, ©0.06, -0.03, ..., 0.01, -0. , 0.017,
[(-. , -0.03, 0.09, ..., -0.01, -0. , 0.017,
r o. , 0.0, -0.01, ..., 1.2, o0. , -0.17],
ro. , -0. , -0. , ..., 0. , 0.41, 0.3871,
[ 0.0, 0.0, o0.01, ..., -0.17, 0.38, 0.4 11)

Covariance matrices are calculated using the available modes (slowest 20 modes in this case). If the user
calculates M slowest modes, only they will be used in the calculation of covariances.

3.6 Individual modes

Normal mode indices in Python start from 0, so the slowest mode has index 0. By default, modes with zero
eigenvalues are excluded. If they were retained, the slowest non-trivial mode would have index 6.

Get the slowest mode by indexing ANM instance as follows:

In [20]: slowest_mode = anm[0]

In [21]: slowest_mode.getEigval () .round(3)
Out[21]: 0.17899999999999999

In [22]: slowest_mode.getEigvec () .round(3)
Out[22]: array([ 0.039, 0.009, 0.058, ..., 0.046, 0.042, 0.08 1)

3.7 Write NMD file

ANM results in NMD format can be visualized using Normal Mode Wizard! VMD? plugin. The following
statement writes the slowest 3 ANM modes into an NMD file:

1http: / /prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
thtp: / /www.ks.uiuc.edu/Research/vmd

3.5. Normal modes data 10


http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://www.ks.uiuc.edu/Research/vmd

Elastic Network Models, Release 1.5.1

In [23]: writeNMD (’'p38_anm modes.nmd’, anm[:3], calphas)
Out [23]: 'p38_anm_modes.nmd’

Note that slicing an ANM objects returns a list of modes. In this case, slowest 3 ANM modes were written
into NMD file.

3.8 View modes in VMD

First make sure that the VMD path is correct

In [24]: pathVMD ()
Oout[24]: ' /usr/local/bin/vmd’

# if this is incorrect use setVMDpath to correct it
In [25]: viewNMDinVMD (' p38_anm_modes.nmd’)

This will show the slowest 3 modes in VMD using NMWiz. This concludes the ANM example. Many of
the methods demonstrated here apply to other NMA models, such as GNM and EDA.

3.8. View modes in VMD 11



CHAPTER
FOUR

USING AN EXTERNAL MATRIX

This example shows how to use matrices from external software in ANM or GNM analysis of protein dynamics.

4.1 Parse Hessian

We start by importing everything from the ProDy package:

In [1]: from prody import =
In [2]: from matplotlib.pylab import =
In [3]: ion() # turn interactive mode on

The input file that contains the Hessian matrix has the following format (oanm_hes . txt):

9.958948135375977e+00
-3.788214445114136e+00
6.236155629158020e-01
-7.820609807968140e-01
.050322428345680e-01
-3.992616236209869e-01
—7.818332314491272e-01
-1.989762037992477e-01
-3.619094789028168e-01
-5.224789977073669e-01

I = T = T S U S SR Y
O W wJdo U WN R
=

=

parseSparseMatrix () canbe used for parsing the above file:

In [4]: hessian = parseSparseMatrix (’oanm_hes.txt’, symmetric=True)

In [5]: hessian.shape
Out[5]: (1053, 1053)

4.2 ANM calculations

Rest of the calculations can be performed as follows:

In [6]: anm = ANM(’Using external Hessian’)

In [7]: anm.setHessian (hessian)

12



Elastic Network Models, Release 1.5.1

In [8]: anm.calcModes ()

In [9]: anm
Out [9]: <ANM: Using external Hessian (20 modes; 351 nodes)>

For more information, see Anisotropic Network Model (ANM) (page 8).

4.3 Parse Kirchhoff

The input file that contains the Kirchhoff matrix has the following format (ognm_kirchhoff.txt):

3316

5.00
-1.00
-1.00
-1.00
-1.00
-1.00
10.00
-1.00
-1.00

IS}
BwWw D wE W

S R N =
w

In [10]: kirchhoff = parseSparseMatrix(’ognm_kirchhoff.txt’,
el symmetric=True, skiprows=1)

In [11]: kirchhoff.shape
Out[11l]: (351, 351)

4.4 GNM calculations

Rest of the GNM calculations can be performed as follows:

In [12]: gnm = GNM(’Using external Kirchhoff’)
In [13]: gnm.setKirchhoff (kirchhoff)
In [14]: gnm.calcModes ()

In [15]: gnm
Out [15]: <GNM: Using external Kirchhoff (20 modes; 351 nodes)>

For more information, see Gaussian Network Model (GNM) (page 3).

4.3. Parse Kirchhoff 13



CHAPTER
FIVE

CUSTOM GAMMA FUNCTIONS

This example shows how to develop custom force constant functions for ANM (or GNM) calculations.

We will use the relation shown in the figure below. For Ca atoms that are 10 to 15 A apart from each other,
we use a unit force constant. For those that are 4 to 10 A apart, we use a 2 times stronger force constant. For
those that are within 4 A of each other (i.e. those from connected residue pairs), we use a 10 times stronger

force constant.

We will obtain an ANM instance that stores Hessian and Kirchhoff matrices and normal mode data describing
the intrinsic dynamics of the protein structure. ANM instances and individual normal modes (Mode) can be

used as input to functions in prody . dynamics' module.

5.1 Parse structure

We start by importing everything from ProDy, Numpy, and Matplotlib packages:

In [1]: from prody import =«
In [2]: from matplotlib.pylab import =
In [3]: ion() # turn interactive mode on

We start with parsing a PDB file by passing an identifier.

In [4]: p38 = parsePDB(’'1p38’)

In [5]: p38
Out [5]: <AtomGroup: 1p38 (2962 atoms)>

We want to use only Ca atoms, so we select them:

In [6]: calphas = p38.select ('protein and name CA’)

In [7]: calphas
Out [7]: <Selection: ’'protein and name CA’ from 1p38 (351 atoms)>

5.2 Force Constant Function

We define the aformentioned function as follows:

Thttp:/ /prody.csb.pitt.edu/manual/ reference/dynamics /index.html#prody.dynamics

14


http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#prody.dynamics

Elastic Network Models, Release 1.5.1

In [8]: def gammaDistanceDependent (dist2, =*args):
: """Return a force constant based on the given square distance."""
if dist2 <= 16:
return 10
elif dist2 <= 100:
return 2
elif dist2 <= 225:
return 1
else:
return 0

Note that the input to this function from ANM or GNM is the square of the distance. In addition, node (atom
or residue) indices are passed to this function, that’s why we used *args in the function definition.

Let’s test how it works:

In [9]: dist = arange(0, 20, 0.1)

In [10]: gamma = map (gammaDistanceDependent, dist xx 2)
In [11]: plot(dist, gamma, lw=4);

In [12]: axis ([0, 20, 0, 121);

In [13]: xlabel(’Distance (A)'");

In [14]: ylabel ('Force constant’);

In [15]: grid();

12 T T

10 ]

Force constant
[=)]
T
i

o ; ‘
0 5 10 15 20
Distance (A)

5.3 ANM calculations

We use selected atoms (351 Ca’s) and gammaDistanceDependent function for ANM calculations as fol-
lows:

5.3. ANM calculations 15



Elastic Network Models, Release 1.5.1

In [16]: anm = ANM(’1p38")
In [17]: anm.buildHessian (calphas, cutoff=15, gamma=gammaDistanceDependent)
In [18]: anm.calcModes ()

For more detailed examples see Anisotropic Network Model (ANM) (page 8) or Gaussian Network Model (GNM)
(page 3).

5.3. ANM calculations 16



CHAPTER
SIX

EDITING A MODEL

This example shows how to analyze the normal modes corresponding to a system of interest. In this ex-
ample, ANM calculations will be performed for HIV-1 reverse transcriptase (RT) subunits p66 and p51.
Analysis will be made for subunit p66. Output is a reduced/sliced model that can be used as input to
analysis and plotting functions.

6.1 ANM calculations

We start by importing everything from the ProDy package:

In [1]: from prody import =«
In [2]: from matplotlib.pylab import =
In [3]: ion()

We start with parsing the Ca atoms of the RT structure 1DLO and performing ANM calculations for them:

In [4]: rt = parsePDB(’1dlo’, subset="ca")
In [5]: anm, sel = calcANM(rt)

In [6]: anm
Out[6]: <ANM: 1dlo_ca (20 modes; 971 nodes)>

In [7]: saveModel (anm, 'rt_anm’)
Out[7]: ’"rt_anm.anm.npz’

In [8]: anm[:5].getEigvals () .round(3)
Out[8]: array([ 0.039, 0.063, 0.126, 0.181, 0.221])

In [9]: (anm[0].getArray() *=* 2).sum() =% 0.5
Out[9]: 1.0000000000000002

6.1.1 Analysis

We can plot the cross-correlations and square fluctuations for the full model as follows:

17



Elastic Network Models, Release 1.5.1

Cross-correlations

In [10]: showCrossCorr (anm) ;

Square fluctuations

Indices

In [11]: showSgFlucts (anm[0]);

1.0

0.8

0.6

0.25

0.20+

o

—

%
T

o

-

=)
T

Square fluctuations

0.05+

Mode 1 from ANM 1dlo_ca

0.00 !
0 200

400 600
Indices

6.2 Slicing a model

800

Slicing a model is analogous to slicing a list, i.e.:

In [12]: numbers =

list (range (10))

1000

6.2. Slicing a model

18



Elastic Network Models, Release 1.5.1

In [13]: numbers
Out[13]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [14]: slice_first_half = numbers[:10]

In [15]: slice_first_half
Out[15]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In this case, we want to slice normal modes, so that we will handle mode data corresponding to subunit
p66, which is chain A in the structure. We use s1iceModel () function:

In [16]: anm_slc_p66, sel_p66 = sliceModel (anm, rt, ’‘chain A’)

In [17]: anm_slc_p66
OQut [17]: <ANM: 1ldlo_ca slice chain A (20 modes; 556 nodes)>

You see that now the sliced model contains 556 nodes out of the 971 nodes in the original model.

In [18]: saveModel (anm_slc_p66, ’'rt_anm_sliced’)
Out[18]: 'rt_anm_sliced.anm.npz’

In [19]: anm_slc_p66[:5].getEigvals () .round(3)
Out[19]: array([ 0.039, 0.063, 0.126, 0.181, 0.221])

In [20]: 7’ " % (anm_slc_p66[0] .getArray () = 2).sum() »*» 0.5
Out [20]: 70.8957

Note that slicing does not change anything in the model apart from taking parts of the modes matching the

selection. The sliced model contains fewer nodes, has the same eigenvalues, and modes in the model are
not normalized.

6.2.1 Analysis

We plot the cross-correlations and square fluctuations for the sliced model in the same way. Note that the
plots contain the selected part of the model without any change:

Cross-correlations

In [21]: showCrossCorr (anm_slc_p66);

In [22]: title(’Cross-correlations for ANM slice’);

6.2. Slicing a model 19



Elastic Network Models, Release 1.5.1

1.0

0.8

0.6

Indices

0 100 200 300 400 500
Indices

Square fluctuations

In [23]: showSgFlucts (anm_slc_p66[0]);

Mode 1 from ANM 1dlo_ca slice chain A

o
—
%

o
-
=)

Square fluctuations

300 400 500 600
Indices

0 100 200

6.3 Reducing a model

We reduce the ANM model to subunit p66 using reduceModel () function. This function implements the

method described in 2000 paper of Hinsen et al. [KH0O0]

In [24]: anm_red_p66, sel_p66 = reduceModel (anm, rt,
In [25]: anm_red_p66.calcModes ()

In [26]: anm_red_p66

’chain A')

6.3. Reducing a model

20



Elastic Network Models, Release 1.5.1

Out [26]: <ANM: 1dlo_ca reduced (20 modes; 556 nodes)>

In [27]: saveModel (anm_red_p66, ’'rt_anm_reduced’)
Out[27]: "rt_anm_reduced.anm.npz’

In [28]: anm_red_p66[:5].getEigvals () .round(3)
Out[28]: array([ 0.05 , 0.098, 0.214, 0.289, 0.423])

In [29]: "%.37" % (anm_red_p66[0].getArray () *»* 2).sum() ** 0.5
Oout[29]: 71.000"

6.3.1 Analysis

We plot the cross-correlations and square fluctuations for the reduced model in the same way. Note that in
this case the plots are not identical to the full model:

Cross-correlations

In [30]: showCrossCorr (anm_red_p66);

1.0
500 H 0.8
oo " 0.6

400 PR 1
: § W 0.4
§ 300 I 0.2
- - ; 0.0

200 il 5

-0.2
-0.4
100
-0.6
0 100 200 300 400 500

Indices

Square fluctuations

In [31]: showSgFlucts (anm_red_p66([0]);

6.3. Reducing a model 21



Elastic Network Models, Release 1.5.1

025 Mode 1 from ANM 1dlo_ca reduced

0.20

o
—
%

o
—
=)

Square fluctuations

0.05

0.00

300
Indices

0 100 200 400

500 600

6.4 Compare reduced and sliced models

We can compare the sliced and reduced models by plotting the overlap table between modes:

In [32]: showOverlapTable (anm_slc_p66,

=
=S

2o e

HMNWRWLO 0 WO =N W

ANM 1dlo_ca reduced

anm_red_p66) ;

1.0
0.9

0.8

12345678 91011121314151617181920
ANM 1dlo_ca slice chain A

The sliced and reduced models are not the same. While the purpose of slicing is simply enabling easy
plotting /analysis of properties of a part of the system, reducing has other uses as in [WZ05] (page 31).

6.4. Compare reduced and sliced models

22



CHAPTER
SEVEN

EXTEND A COARSE-GRAINED MODEL

This example shows how to extend normal modes calculated for a coarse-grained model to a larger set of
atoms. Extended model can be used to generate alternate conformers that can be saves in PDB format.

We start by importing everything from the ProDy package:

In [1]: from prody import =
In [2]: from matplotlib.pylab import x
In [3]: ion{()

Conformers can be generated along any set of normal modes. In this example, we will calculate normal
modes for the unbound structure of p38 MAP kinase and generate backbone trace conformations.

In [4]: p38 = parsePDB(’'1p38")

In [5]: p38_ca = p38.select('calpha’)
In [6]: anm = ANM(’ 1p38")

In [7]: anm.buildHessian (p38_ca)

In [8]: anm.calcModes ()

7.1 Extrapolation

ANM modes are extended using the extendModel () function:

In [9]: bb_anm, bb_atoms = extendModel (anm, p38_ca, p38.select ('backbone’))

In [10]: bb_anm
Out [10]: <NMA: Extended ANM 1p38 (20 modes; 1404 atoms)>

In [11]: bb_atoms
Out[1ll]: <AtomMap: Selection ’'backbone’ from 1p38 (1404 atoms)>

Note that GNM, PCA, and NMA instances can also be used as input to this function.

23



Elastic Network Models, Release 1.5.1

7.2 Write NMD file

Extended modes can be visualized in VMD using Normal Mode Wizard" using an NMD file:

In [12]: writeNMD (’p38_anm_backbone.nmd’, bb_anm, bb_atoms)
Out[12]: '"p38_anm_backbone.nmd’

7.3 Sample conformers

We can use the extended model to sample backbone conformers:

In [13]: ensemble = sampleModes (bb_anm[:3], bb_atoms, n_confs=40, rmsd=0.8)

In [14]: ensemble
Out[14]: <Ensemble: Conformations along 3 modes from NMA Extended ANM 1p38 (40 conformations; 1404 at

Note that we made use of ANM modes to generate full atomic conformers. These conformers would need
geometry optimization before they can be used for modeling.

7.4 Write PDB file

Generated conformers can be written in PDB format as follows:

In [15]: backbone = bb_atoms.copy ()
In [16]: backbone.addCoordset (ensemble)

In [17]: writePDB (' p38_backbone_ensemble.pdb’, backbone)
Out[17]: '"p38_backbone_ensemble.pdb’

1http: / /prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz

7.2. Write NMD file 24


http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz

CHAPTER
EIGHT

NORMAL MODE ALGEBRA

This part shows how to use some handy features of Mode objects.

8.1 ANM Calculations

We will compare modes from two ANMs for the same protein, but everything applies to comparison of
ANMSs and PCAs (as long as they contain same number of atoms).

Let’s get started by getting ANM models for two related protein structures:

In [1]: from prody import =
In [2]: strl = parsePDB(’1p38’)
In [3]: str2 = parsePDB(’'1r39")

Find and align matching chains

In [4]: matches = matchChains(strl, str2)
In [5]: match = matches[0]

In [6]: chl = match[0]

In [7]: ch2 = match[1]

Minimize RMSD by superposing ch2 onto ch1:

In [8]: ch2, t = superpose(ch2, chl) # t 1s transformation, already applied to ch2

In [9]: calcRMSD (chl, ch2)
Out[9]: 0.89840163398680684

Get ANM models for each chain

In [10]: anml, chl = calcANM(chl)
In [11]: anm2, ch2 = calcANM(ch2)

In [12]: anml[O0]
Out[12]: <Mode: 1 from ANM 1p38>

Let’s rename these ANM instances, so that they print short:

25



Elastic Network Models, Release 1.5.1

In [13]: anml.setTitle ('’ 1p38_anm’)
In [14]: anm2.setTitle (' 1r39_anm’)

This is how they print now:

In [15]: anml[O0]
Out[15]: <Mode: 1 from ANM 1p38_anm>

In [16]: anm2[0]
Out[1l6]: <Mode: 1 from ANM 1r39_ anm>

8.2 Calculate overlap

We need Numpy in this part:

In [17]: from numpy import =

Multiplication of two Mode instances returns dot product of their eigenvectors. This dot product is the
overlap or cosine correlation between modes.

Let’s calculate overlap for slowest modes:

In [18]: overlap = anml[0] * anm2[0]

In [19]: overlap
Out[19]: -0.98402119545045141

This shows that the overlap between these two modes is 0.98, which is not surprising since ANM modes
come from structures of the same protein.

To compare multiple modes, convert a list of modes to a numpy . array () :

In [20]: array(list(anml[:3])) % array(list (anm2[:3]))
Out[20]: array([-0.98402119545045141, -0.98158348544972518, -0.99135781183188298], dtype=object)

This shows that slowest three modes are almost identical.

We could also generate a matrix of overlaps using numpy . outer ()%

In [21]: outer_product = outer(array(list(anml[:3])), array(list(anm2[:3])))

In [22]: outer_product

out[22]:

array ([[-0.98402119545045141, -0.14494461667586134, -0.0021711558324487876],
[0.14836678827912717, -0.98158348544972518, 0.080773610952805816],
[0.01043287216282008, -0.08407811447295388, -0.99135781183188298]], dtype=object)

This could also be printed in a pretty table format using printOverlapTable ():

In [23]: printOverlapTable(anml[:3], anm2[:3])
Overlap Table
ANM 1r39_anm
#1 #2 #3
ANM 1p38_anm #1 -0.98 -0.14 0.00

Thttp:/ /docs.scipy.org/doc/numpy /reference/generated /numpy.array.html#numpy.array
Zhttp:/ /docs.scipy.org/doc/numpy /reference/ generated /numpy.outerhtml#numpy.outer

8.2. Calculate overlap 26


http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer

Elastic Network Models, Release 1.5.1

ANM 1p38_anm #2 +0.15 -0.98 +0.08
ANM 1p38_anm #3 +0.01 -0.08 -0.99

Scaling
Mode instances can be scaled, but after this operation they will become Vector instances:

In [24]: anml[0] * 10
Out [24]: <Vector: (Mode 1 from ANM 1p38_anm)*10>

8.3 Linear combination

It is also possible to linearly combine normal modes:

In [25]: anml[0] %= 3 + anml[1l] + anml[2] = 2

Out [25]: <Vector: (((Mode 1 from ANM 1p38_anm)=*3) + (Mode 2 from ANM 1p38_anm)) + ((Mode 3 from ANM !
Or, we could use eigenvalues for linear combination:

In [26]: lincomb = anml[0] » anml[0].getEigval() + anml[l] * anml[l].getEigval ()

It is the name of the Vector instance that keeps track of operations.

In [27]: lincomb.getTitle()
Oout[27]: " ((Mode 1 from ANM 1p38_anm)x0.148971269751) + ((Mode 2 from ANM 1lp38_anm)*0.24904210757)"

8.4 Approximate a deformation vector

Let’s get the deformation vector between chl and ch2:

In [28]: defvec = calcDeformVector (chl, ch2)

In [29]: abs (defvec)
Oout[29]: 16.687069727870341

Let’s see how deformation projects onto ANM modes:

In [30]: array(list(anml[:3])) »* defvec
Out [30]: array([-5.6086059478387353, 2.1539336595931999, -3.1370160919866956], dtype=obiect)

We can use these numbers to combine ANM modes:

In [31]: approximate_defvec = sum((array(list (anml[:3])) = defvec) =
et array (list (anml[:3])))

In [32]: approximate_defvec
Out[32]: <Vector: ((-5.60860594784% (Mode 1 from ANM 1p38_anm)) + (2.15393365959x (Mode 2 from ANM 1lp3{

Let’s deform 1r39 chain along this approximate deformation vector and see how RMSD changes:

In [33]: ch2.setCoords(ch2.getCoords () - approximate_defvec.getArrayNx3())

In [34]: calcRMSD(chl, ch2)
Out[34]: 0.82096008703377332

RMSD decreases from 0.89 A to 0.82 A.

8.3. Linear combination 27



CHAPTER
NINE

DEFORMATION ANALYSIS

This example shows how to calculate the deformation vector describing the change between two structures
of a protein. Two structures of the same protein in PDB format will be used. A Vector instance that
contains the deformation vector describing the change in protein structure will be calculated. This object
will be compared to ANM modes.

9.1 Parse structures

We start by importing everything from the ProDy package:

In [1]: from prody import =«
In [2]: from matplotlib.pylab import =
In [3]: dion()

Let’s parse two p38 MAP Kinase structures: 1p38 and 1zz2

In [4]: reference = parsePDB(’1p38")

In [5]: mobile = parsePDB(’'1zz2") # this is the one we want to superimpose

9.2 Match chains

ProDy offers the function matchChains () to find matching chains in two structures easily. We use it to
find the chains for which we will calculate the deformation vector:

In [6]: matches = matchChains (reference, mobile)

matchChains () function returns a list. If there are no matching chains, list is empty, else the list contains
a tuple for each pair of matching chains.

In [7]: len(matches)
Oout[7]: 1

In [8]: match = matches[0]

There is only one match in this case. First item is a subset of atoms from the first structure (reference). Second
item is a subset of atoms from the second structure (mobile).

28



Elastic Network Models, Release 1.5.1

In [9]: ref_chain = match[0]

In [10]: mob_chain = match[1]

Matched atoms are returned in At omMap instances. We can get information on matched subset of atoms by
entering the variable name:

In [11]: ref_chain
Out[11]: <AtomMap: Chain A from 1p38 -> Chain A from 1zz2 from 1p38 (337 atoms)>

In [12]: mob_chain
Out[12]: <AtomMap: Chain A from 1zz2 -> Chain A from 1p38 from 1zz2 (337 atoms)>

Both At omMap instances refer to same number of atoms, and their name suggests how they were retrieved.

In addition, we can find out the sequence identity that the matched atoms (residues) share (third item in
the tuple):

In [13]: match[2]
Out[13]: 99.40652818991099

The fourth item in the tuple shows the coverage of the matching:

In [14]: match[3]
Out[14]: 96

This is the percentage of matched residues with respect to the longer chain. 1p38 chain A contains 351
resiudes, 96% of it is 337 residues, which is the number of atoms in the returned atom maps.

9.3 RMSD and superpose

We calculate the RMSD using calcRMSD () function:

In [15]: calcRMSD (ref_chain, mob_chain) .round(2)
Out[15]: 72.930000000000007

Let’s find the transformation that minimizes RMSD between these chains using calcTransformation ()
function:

In [16]: t = calcTransformation (mob_chain, ref_chain)

We apply this transformation to mobile structure (not to mob_chain, to preserve structures integrity).

In [17]: t.apply(mobile)
Out[17]: <AtomGroup: 1lzz2 (2872 atoms)>

In [18]: calcRMSD (ref_chain, mob_chain) .round(2)
Out[18]: 1.8600000000000001

9.4 Deformation vector

Once matching chains are identified it is straightforward to calculate the deformation vector using
calcDeformVector ()

9.3. RMSD and superpose 29



Elastic Network Models, Release 1.5.1

In [19]: defvec = calcDeformVector (ref_chain, mob_chain)

In [20]: abs(defvec) .round(3)
Out [20]: 34.195999999999998

To show how RMSD and deformation vector are related, we can calculate RMSD from the magnitude of the
deformation vector:

In [21]: (abs(defvec)**2 / len(ref_chain)) % 0.5
Out[21]: 1.86280149086955

Array of numbers for this deformation can be obtained as follows

In [22]: arr = defvec.getArray() # arr is a NumPy array

In [23]: arr.round(2)
Out[23]: array([-1.11, -0.52, -1.89, ..., 0.85, -0.18, 0.54])

Following yields the normalized deformation vector

In [24]: defvecnormed = defvec.getNormed ()

In [25]: abs (defvecnormed)
Out[25]: 1.0000000000000004

9.5 Compare with ANM modes

Let’s get ANM model for the reference chain using calcANM () (a shorthand function for ANM calcula-
tions):

In [26]: anm = calcANM(ref_chain) [0]

Calculate overlap between slowest ANM mode and the deformation vector

In [27]: (anm[0] * defvecnormed) .round(2) # used normalized deformation vector
Oout[27]: -0.41999999999999998

We can do this for a set of ANM modes (slowest 6) as follows

In [28]: (array(list(anm[:6])) * defvecnormed) .astype (float64) .round(2)
Out[28]: array([-0.42, -0.14, 0.49, 0.03, -0.17, -0.1 1)

Acknowledgments

Continued development of Protein Dynamics Software ProDy is supported by NIH through R01 GM099738
award. Development of this tutorial is supported by NIH funded Biomedical Technology and Research
Center (BTRC) on High Performance Computing for Multiscale Modeling of Biological Systems (MMBios') (P41
GM103712).

1http: //mmbios.org/

9.5. Compare with ANM modes 30


http://mmbios.org/

BIBLIOGRAPHY

[Bahar97] Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in protein using a single
g p g g
parameter harmonic potential. Folding & Design 1997 2:173-181.

[Haliloglu97] Haliloglu T, Bahar I, Erman B. Gaussian dynamics of folded proteins. Phys. Rev. Lett. 1997
79:3090-3093.

[Doruker00] Doruker P, Atilgan AR, Bahar I. Dynamics of proteins predicted by molecular dynamics sim-
ulations and analytical approaches: Application to a-amylase inhibitor. Proteins 2000 40:512-524.

[Atilgan01] Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. Anisotropy of fluctuation
dynamics of proteins with an elastic network model. Biophys. J. 2001 80:505-515.

[WZ05] Zheng W, Brooks BR. Probing the Local Dynamics of Nucleotide-Binding Pocket Coupled to the
Global Dynamics: Myosin versus Kinesin. Biophysical Journal 2005 89:167-178.

31



	Introduction
	Required Programs
	Recommended Programs
	Getting Started

	Gaussian Network Model (GNM)
	Parse structure
	Build Kirchoff matrix
	Parameters
	Calculate normal modes
	Normal mode data
	Individual modes
	Plot results

	Anisotropic Network Model (ANM)
	Parse structure
	Build Hessian
	Parameters
	Calculate normal modes
	Normal modes data
	Individual modes
	Write NMD file
	View modes in VMD

	Using an External Matrix
	Parse Hessian
	ANM calculations
	Parse Kirchhoff
	GNM calculations

	Custom Gamma Functions
	Parse structure
	Force Constant Function
	ANM calculations

	Editing a Model
	ANM calculations
	Slicing a model
	Reducing a model
	Compare reduced and sliced models

	Extend a coarse-grained model
	Extrapolation
	Write NMD file
	Sample conformers
	Write PDB file

	Normal Mode Algebra
	ANM Calculations
	Calculate overlap
	Linear combination
	Approximate a deformation vector

	Deformation Analysis
	Parse structures
	Match chains
	RMSD and superpose
	Deformation vector
	Compare with ANM modes

	Bibliography

