
Web Development

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Programming language

Compiled or Interpreted

 Compiled
 To machine code

 No run-time needed, fast
 Good for IoT devices with limited resources

 To bytecode
 Requires run-time VM environment to execute

 Longer development cycle
 Inability to patch quickly

 Must recompile entire app (Apache Struts bug and Equifax)
 Dev and Ops involved to fix security flaws (versus just Ops)

 Interpreted
 Scripting languages
 Requires interpreter and all packages application depends upon to be

present
 Slow, but some languages with good support for JIT

 Python (PyPy), Javascript (v8, NodeJS)
 Performance closer to compiled – often single threaded

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Static vs. Dynamic types

 Static
 Types checked at compile-time
 Type errors caught at compilation *before* deployment

 Debug then deploy

 Good for mission (and business) critical applications
 Dynamic

 Types checked at run-time
var variable = 3;

variable = foo(0);

typeof(variable); // ?

 Type errors caught at run-time via crashes (Python, JavaScript)
 Or not caught at all via generation of nonsensical results with type coercion

(PHP)

 Overhead
 Type checking must be done for each use (compared to static typing that does not

require checks)

 Deploy then debug, good for rapid prototyping
Portland State University CS 430P/530 Internet, Web & Cloud Systems

function foo(somenum) {

if (somenum == 3)

return '0';

else

return 0;

}

Strongly vs. Weakly typed

 Strongly typed
 Requires explicit type conversion

$ python -c "print '5' + 8"

Traceback (most recent call last):

File "<string>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects

 Weakly typed
 Implicit type conversion & casting

 Type coercion that automatically changes a value from one type to

another
 PHP

$ cat math.php

<?php print('5' + 8); ?>

$ php math.php

13

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 C coercion

 What does this output?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

#include <stdio.h>

int main() {

char c=0x80;

printf("%x\n",c);

}

mashimaro <~> 1:24PM % ./a.out

ffffff80

But only on x86/Linux since char is unsigned for C on ARM

 Javascript coercion
'5' – '2' ==

'5' + '2' ==

5 – '2' ==

5 + '2' ==

'5' – 2 ==

'5' + 2 ==

Portland State University CS 430P/530 Internet, Web & Cloud Systems

// 3

// '52'

// 3

// '52'

// 3

// '52'

 Example (along with arcane rules for Javascript coercion with ==)

 True.

o If x is Number and y is String, return x == ToNumber(y)

 True

o If x is String or Number and y is Object, return x == ToPrimitive(y)
• where ToPrimitive coerces to String, Number or Boolean

o Empty array is an object. Objects are first coerced via .toString()

o Returns an empty string.

o Then, empty string coerced via ToNumber() for comparison, returns 0

 False. Leads to hilarious memes

o https://www.destroyallsoftware.com/talks/wat

o https://www.freecodecamp.org/news/explaining-the-best-javascript-

meme-i-have-ever-seen/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

0 == "0"

"0" == []

0 == []

https://www.destroyallsoftware.com/talks/wat
https://www.freecodecamp.org/news/explaining-the-best-javascript-meme-i-have-ever-seen/

Type inferencing

 Automatic detection of types so programmer doesn't have to

declare it
 Good for language conciseness
let x = 3; <= x inferred to be a number

 Kotlin vs. Java
// Type is ArrayList

val a = arrayListOf("Kotlin", "Scala", "Groovy")

 Local variable type inferencing added to Java 10 (3/2018)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Programming paradigms supported

 Languages can support multiple styles

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Functional programming support

 Helps manage complexity while reducing errors
 CS 457/557

 Web frameworks moving to paradigm to manage complexity
 React, Angular, Redux, Elm…

 Similar goal as object-oriented programming
 “Object-oriented programming makes code understandable by

encapsulating moving parts. Functional programming makes code

understandable by minimizing moving parts.” Michael Feathers

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Computation as evaluation of mathematical functions
 Functions define what to do rather than perform an action

 Stateless (only depend on data passed as arguments)
 Avoid changing state and any mutable data

 Rather than modify a list, create new copy with modifications instead
 First-class functions where functions treated as objects
 Laziness (only compute things on-demand)
 Pattern applied heavily in web development and data science

 https://towardsdatascience.com/elements-of-functional-programming-in-python-
1b295ea5bbe0

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://towardsdatascience.com/elements-of-functional-programming-in-python-1b295ea5bbe0

Asynchronous support

 Optimizing single-threaded operation for performance
 Event-driven programming and non-blocking operations

 Blocking calls automatically yield to other parts of code

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Asynchronous support

 Example: Callbacks
 Register a function to be executed upon completion of another
 Example

 Synchronous file writing
fileObject = open(file) // blocks until file opened

fileObject.write("We are writing to the file.") // finally can write

// do the other, totally unrelated things our program does

 Asynchronous file writing
// open asynchronously and register writeToFile callback function

fileObject = open(file, writeToFile)

// execution continues immediately

// do the other totally unrelated things that our program does

// writeToFile executed once open finishes

 Other common mechanisms
 Promises (see skipped slides)
 async, await (Python > 3.5, Javascript ES8) (see CS 495/595)
 Key for implementing complex web front-end UIs and progressive web

applications with service workers

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/@_bengarrison/javascript-es8-introducing-async-await-functions-7a471ec7de8a

Concurrency support

 Ability to leverage multi-core processors

 Support for parallel execution

 Memory consistency model

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Ease of development

 Programming ease

 Testing ease

 Library and package management support (maturity of ecosystem)
 e.g. how much code you *don’t* have to write

 Developer base (for hiring and for answering questions)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Migrating from development to production infrastructure (e.g.

reproducibility of execution environment)

 Updating and patching software in packages
 Can web app be patched in-place or does it require recompilation?

Ease of deployment

Web programming languages

Java, C#

 Prevalent in e-commerce, bank web sites
 Pre-date most web frameworks that popularized scripting languages

 Compiled+Interpreted (bytecode with JIT)

 Statically and strongly typed
 Preferred for large sites and for critical applications

 Managed memory (garbage collected)

 Asynchronous support in both (Event interface, async/await)

 Huge developer base, mature class support, adding conciseness

 But, with deployment
 Recompilation of apps when security patches to libraries occur

 Vendor lock-in
 Rely on Oracle/Microsoft to keep platform libraries secure and deploy features

 Must buy Microsoft (e.g. Azure) to run full-blown ASP.NET applications or rely

on Microsoft to keep updating .NET core for Linux

Portland State University CS 430P/530 Internet, Web & Cloud Systems

JavaScript/ECMAScript (ES)

 Designed for web browsers by Brendan Eich
 Based on Java (syntax, OOP)
 Scheme in a browser (functional programming)
 Interpreted, but with fast JIT (v8)
 Dynamically typed (type checking at run-time)
 Weakly typed (type coercion)
 Managed memory (garbage collected)
 Asynchronous from the beginning for single-threaded, event-based

operation (callbacks, promises, closures, async/await etc.)
 Ease of development (400k packages for Node.js, front-end and back-end

share same language)
 Ease of deployment (npm package management)

 Ideal for smaller web applications requiring quick development iterations
and rapid results (IMO)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 But, type coercion and weak typing leads to "loose" equality after

coercion rules applied with "=="
 Makes "==" practically useless

var num = 0;

var obj = new String('0');

var str = '0';

console.log(num == obj); // true

console.log(num == str); // true

console.log(obj == str); // true

 How do you *really* check for equality?
 === (equality without coercion – "strict")

 Object.is() (same-value equality)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Cheatsheet

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Also, Security issues: supply-chain attacks on NodeJS npm packages
 Sites using packages that are abandoned (no security updates)

 Sites relying on packages taken over by malicious developer

 Steal credit card numbers (2018)

 Steal passwords (2019)

Portland State University CS 495/595 Web and Cloud Security

https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5

 What if your code relied on these packages?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/

TypeScript

 Weak, dynamic typing leads to software engineering problems

 TypeScript (Microsoft)
 Typed superset of JavaScript that transpiles to JavaScript

 Statically typed objects

 Strongly typed objects (explicit casting)

 Checked at compile-time

 From 1/21/2019

 Similar approach: PureScript

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/paypal-engineering/why-every-new-web-app-at-paypal-starts-with-typescript-9d1acc07c839

 Mechanisms
 Scoped variable declarations via let

 Immutable constant declarations via const

 Names of variables followed by a : and the variable type

 Function declarations include parameter types and return types with

similar syntax

 Compiler checks to ensure type safeness

 Try at http://www.typescriptlang.org/play

Portland State University CS 430P/530 Internet, Web & Cloud Systems

// {variable name}: {variable type} = {variable value}
// const = immutable
// let = mutable
const myString: string = 'Hello World';
let myArray1: Array<number> = [1, 2, 3];
let myArray2: number[] = [4, 5, 6]
function square(x: number): number {
return x*x;

}

http://www.typescriptlang.org/play

Go (2009)

 Want the best of C/C++
 Low-level systems programming

 Bare-metal performance

 Want the best of Java, Python, Ruby, JavaScript
 Managed, garbage-collected memory

 Rich package/module support

 Want the best of JavaScript
 First-class support for asynchrony/concurrency

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Go language design

 Designed for simplicity and readability
 "Simplicity is Complicated" (Rob Pike)

 https://www.youtube.com/watch?v=rFejpH_tAHM

 Features fixed (not trying to be like other languages)
 Can fit language spec in your head (25 keywords)

 One canonical way of doing things (unlike Perl or recently Python)

 Easy to reason about code

 Multi-developer coding easier

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=rFejpH_tAHM

Features

 Strongly and statically typed (e.g. Java)
 Eliminates run-time type errors and type coercion errors

 Rich built-in types (maps, slices, first-class functions, multiple return

values, iterators)

 Type-inferencing to support concise syntax

 Memory safety via managed memory that is garbage collected
 Use Rust if this bothers you!

 Rich, built-in module support instead of includes

 Standardized code formatter gofmt
 No more spaces versus tabs, no style guides needed

 Readability built-in!

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Asynchrony and concurrency
 Non-blocking, concurrent operation with goroutines

 Each goroutine mapped onto an underlying OS thread

 True parallel execution (no global interpreter lock)

 Concise syntax

 Shared memory disallowed to support memory-safety
 Based on research in Communicating Sequential Processes as organizing principle

in parallel applications (see CS 415/515)

 Communication done via channels (explicit IPC)

 Can reduce the use of semaphores/mutexes which are prohibitively expensive on

modern multi-core CPUs (see CS 533)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Example

Portland State University CS 430P/530 Internet, Web & Cloud Systems

func HeavyComputation(ch chan int32) {

…

ch <- result

}

ch := make(chan int32)

// Create a new goroutine with the same address space

// and use it to run the function. No need to create

// thread, call library to start thread.

go HeavyComputation(ch)

result := <-ch // Blocks if not ready

 Static, efficient compilation to bare-metal
 Performance close to C, C++

 "Built-in" make to avoid 45 minute compile times

 Easy to deploy
 Emits a single portable binary with all dependencies and environment

included

 No versioning issues in deployment

 Obviates one of the main reasons for a container

 Used to build the world's smallest Docker container
 https://www.youtube.com/watch?v=zu8NSrNFZ4M

 Being used to build Internet-scale applications
 Docker, Kubernetes

 High-performance web APIs to support modern frameworks
 Django, Rails, NodeJS hard to scale

 Companies switching over…Google, Microsoft

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=zu8NSrNFZ4M

Python

 Interpreted, can be compiled to bytecode (.pyc)

 Dynamically typed (type errors caught at run-time)

 Strongly typed (type conversion must be explicit)

 Managed memory (garbage collected)

 async support in Python 3.6

 Not built with concurrency in mind
 Global interpreter lock

 Prevents Python programs from running on multiple cores

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Extensive packages, conciseness, and huge developer base

 Gets you this https://xkcd.com/353/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://xkcd.com/353/

 But, also this https://xkcd.com/1987/

 Deployment requires tools for package (pip) and virtual
environment management

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://xkcd.com/1987/

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Web frameworks

Web frameworks

 Library support for building complex web applications

 Tied to a programming language

 Supports
 Basic routing of URLs to code

 Often implements an "opinion" on how web application should be

structured

Portland State University CS 430P/530 Internet, Web & Cloud Systems

MVC (Model-View-Controller) architecture

 Developed in 1970s (Smalltalk), adapted everywhere

 First used in web applications in late 1990s via Struts

 Model
 Code that encapsulates backend application data

 Data representation and storage

 View
 Code for rendering that generates HTML output and presents functionality to user

(UI)

 Controller
 Code connecting model and view

 Takes in user requests to update model

 Pulls in model data to supply the view

 Separation of concerns
 Simplifies swapping out database backend or the UI frontend

 Examples of each in repository (cs410c-src)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Model-View-Presenter (MVP)

 MVC
 Controller determines which views to pass back based on user actions

 MVP
 User actions directly bind to specific "presenters"

 Presenter handles specific interaction between a view and the model

 "Function"-based decomposition better suited for unit testing

Portland State University CS 430P/530 Internet, Web & Cloud Systems

State Action Model (SAM)

 SAM pattern also removes controller (similar to what React does)
 https://www.infoq.com/articles/no-more-mvc-frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.infoq.com/articles/no-more-mvc-frameworks

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Template system

Template engines

 Web app uses one language (e.g. JavaScript, Python, Java, Go) to

produce another language (e.g. HTML)

 Initially, programming language generates entire HTML string
 Java servlets

 Then, tree-building libraries to construct DOM used to produce the

HTML string
 Repetitive, manual construction of pages

 Then, templating
 Template language for specifying base page that is filled in dynamically

by web application

 Template engine generates eventual HTML

 Examples: JSP (Java Server Pages), Jinja2, Mustache

 Separates presentation (view) from the logic (controller)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Example: Jinja2 syntax

 Extensible HTML
 {{ arg }} corresponds to template arguments in HTML file

 Pass arg=val to our template to render HTML with data being passed

 {% %} encompasses control statements (if, for, block, etc)
 Can use data being passed to drive conditionals in templating system

 e.g. {% if arg %}

<h1>arg included</h1>

{% endif %}

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Jinja2 example

 CTF interface for CyberPDX crypto site

https://crypto.cyberpdx.org

 "Solve" page consisting of
 Form containing challenges yet to be solved in a drop-down

 Scoreboard containing shaded challenges already solved

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://crypto.cyberpdx.org/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Controller logic for generating lists "solved", "notsolved", "challenges"

Passes to view via render_template

View implemented in templating engine for drop-down form submission using notsolved

solve.html Jinja2 template

Portland State University CS 430P/530 Internet, Web & Cloud Systems

..scoreboard table in template

using challenges & solved

solve.html Jinja2 template

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Form does a POST when submitted with data named "challenge" and "guess"

Controller logic for processing solves pulls out "challenge" and "guess" in form

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Templating issues

 Now 3 programming languages to learn and debug together!
 HTML, web app, template

 Program logic split between template language and web application

language

 Why was the "green" condition parsed in Jinja2 and not Python?

 Where should the conditional rendering of content go?
 All in the template (e.g. view)?

 All in the controller?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Templating via DSLs

 Internal domain-specific languages
 Templating language integrated with the host language

 Examples
 JSX (native XML support for JavaScript) (React)

 Kotlin (JetBrains)
 Statically typed (i.e. type-safe) HTML builder for JavaScript or Java

 Elm, Hyperscript, Groovy, Flutter, etc.

 But, need to be careful
 Want separation of concerns

 Control logic must be separated from UI logic within language

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/@daveford/80-of-my-coding-is-doing-this-or-why-templates-are-dead-

b640fc149e22

https://medium.com/@daveford/80-of-my-coding-is-doing-this-or-why-templates-are-dead-b640fc149e22

Summary survey

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Language Framework Template

Java Java servlets (minimal)

Spring, Apache Struts (MVC)

Java server pages

Javascript/NodeJS Express (minimal)

Sails, AngularJS (MVC)

Mustache, Handlebars

Python Flask (minimal)

Django (MVT)

Jinja2, Django templates

C# ASP.NET routing (minimal)

ASP.NET MVC

Razor

Ruby Sinatra (minimal)

Rails (MVC)

Slim, HAML

Go Echo (minimal)

Martini, Beego (MVC)

Amber, Mustache

PHP Fat-free, Slim (minimal)

Laravel, Symfony (MVC)

Blade, Mustache

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Rendering approaches

Rendering

 Two rendering steps
 Web application renders server data into HTML/CSS for web browser
 Web browser renders HTML/CSS for user

 Initially, MVC and MVP all running on the server
 Your app for this class
 (Figures used from K. Balasubramanian, "Isomorphic Go")

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #1: Repetitive server rendering

 Dynamic-ish content
 What if articles on a web application only change once a day?

 Example: WordPress blog updated daily
 Executes web application logic and hits backend database to generate HTML, even

though results are the same all day long!

 Server does much more work than necessary

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Pre-rendered pages

 General approach of handling "dynamic" content that does not

change
 Server pre-renders dynamic page into static HTML

 Static page can be forward deployed (via CDN) and cached for

performance

 Can be returned to search engines and easily crawled for indexing

 More secure! (Clients interact with static content)

 Supported now in most frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #2: Interactivity

 User navigation hits web application running on the server each time
 Poor interactivity, page reload on every action

 Motivates a push towards client-side rendering and client-side

control of web application rendering

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Client-side rendering

 Allow client to retrieve and update HTML/DOM elements
 First instance: AJAX (Asyncrhonous JavaScript and XML)

 JavaScript library code for reducing server-side rendering of content
 Update DOM in place via HTTP request from JavaScript running on page

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Eventually leads to more voperations placed into browser
 jQuery, Bootstrap, Meteor, etc.

 Benefits
 Client-side operations more responsive (reduce page reloads)

 Can have just the changed portions of page downloaded

 Fewer connections and decreased load on server

 Can one render and ship the entire application and push it to the

client?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Single-page applications

 Ship entire web application to client in a single package
 Controller, View, and page rendering all on client
 Typically, a single index.html file, a CSS bundle, and a JavaScript

bundle
 Examples: GMail, Google Maps, Facebook, Github
 Backend only supplies model via an API

 e.g via REST/gRPC or GraphQL (React)

 Web app view directly interacts with API
 Controller removed

 Angular (Google) "MVW (model-view-whatever)"
 Vue "MVVM (model-viewmodel-view) similar to MVP"

 Advantages
 Essential static content delivered ahead of time with no need to refresh

(helped by HTTP/2 server push)
 Faster UI since network calls minimized

 Disadvantages
 Initial load time for heavy client frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Drawbacks
 Not good for search-engine optimization (SEO)

 Web scapers typically do not run JS engine

 Complexity at the client
 Package management, bundling, minification, component libraries, cache busting,

bundle splitting, automated testing/building

 CS 465P/565

 Can we render a version for search-engines to index that is

identical to what a client uses?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Isomorphic web pages

 Latency an issue with single-page applications
 Hybrid approach

 Serve initial page via traditional server rendering or via pre-rendered
version

 Ship full client-side SPA in the background that supports isomorphic
pages
 Pages that render the same at either client or server

 Seamlessly switch over once SPA downloaded
 Benefits

 Fast initial load
 Good with SEO
 Eventual responsiveness that SPA provides

 Example: Angular Universal
 https://blog.angular-university.io/why-a-single-page-application-what-are-the-

benefits-what-is-a-spa/
 https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-

web-apps-10882b7a2ebc

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://blog.angular-university.io/why-a-single-page-application-what-are-the-benefits-what-is-a-spa/
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc

 Rendering on both sides

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Isomorphic web applications

 Collaborative multi-user applications
 State shared amongst servers and multiple clients

 Examples:

 Want a shared real-time database with isomorphic rendering done with

minimal overhead

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Limits to updates and rendering via REST/JSON
 https://www.oreilly.com/library/view/building-isomorphic-javascript

 Real-time clients with bidirectional synchronization
 Synchronize models to each other via alternate means (e.g. WebSocket)

 Meteor.js "Database Everywhere"

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.oreilly.com/library/view/building-isomorphic-javascript

Issue #3: Disconnected operation

 Web app done as an SPA close to a native application

 But, want to provide a Microsoft Word experience to something like

a Google Doc
 Want web app (Google Doc) to seamlessly support disconnected

operation and act more like a native desktop (or mobile) app

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Progressive web applications (PWA)

 Web applications doubling as native desktop/mobile applications
 Seamlessly handle off-line, disconnected operation
 Sync state upon reconnection

 Key abstraction: Service workers
 Sit between web applications and the browser
 Intercept network requests and take appropriate action based on whether the

network is available
 Receive notification when updated assets reside on the server

 Makes heavy use of JavaScript Promises
 Promise represents the eventual completion (or failure) of an asynchronous

operation, and its resulting value

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #4: Too many frameworks

 Developers re-inventing wheels
 Modules in React, Angular, Vue, … provide similar functions but are

incompatible

 Goal: Implement a component model for modularity and reusability
 Turn web application a collection of type-checked re-usable components

 Standardized via Web Components in W3C
 Wrap client UI widgets in a standard way

 Example: specify a COTS component that gets an input, and after some internal

behavior / computing, returns a rendered UI template (a sign in / sign out area or a

to-do list item) as output

 https://codewithhugo.com/how-components-won-the-framework-wars/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://codewithhugo.com/how-components-won-the-framework-wars/

Preparing for Homework #2

