Web Development

Portland State
& Computer Science /

g
Web development (at a 10k level)

® Typical web application components
® Programming language
* Framework

* Template system

® Rendering approaches

Programming language

e
Compiled or Interpreted

* Compiled
To machine code

No run-time needed, fast
Good for IoT devices with limited resources

To bytecode

Requires run-time VM environment to execute

Longer development cycle

Inability to patch quickly
Must recompile entire app (Apache Struts bug and Equifax)
Dev and Ops involved to fix security flaws (versus just Ops)

® Interpreted

Scripting languages

Requires interpreter and all packages application depends upon to be

present

Slow, but some languages with good support for JIT
Python (PyPy), Javascript (v8, Node]S)

Performance closer to compiled — often single threaded

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Static vs. Dynamic types

® Static
Types checked at compile-time

Type errors caught at compilation *before* deployment
Debug then deploy

Good for mission (and business) critical applications
® Dynamic

Types checked at run-time function foo (somenum) {
var varlable = 3; if (somenum == 3)
variable = foo (0); return '0';

typeof (variable); // 2 else

return 0;
}

Type errors caught at run-time via crashes (Python, JavaScript)
Or not caught at all via generation of nonsensical results with type coercion
(PHP)

Overhead

Type checking must be done for each use (compared to static typing that does not
require checks)

N Deploy then debug, good for rapid prototyping

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Strongly vs. Weakly typed

° Strongly typed
Requires explicit type conversion
$ python -c "print '5' + 8"
Traceback (most recent call last):

File "<string>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

° Weakly typed
Implicit type conversion & casting
Type coercion that automatically changes a value from one type to

another
PHP
S cat math.php
<?php print('5' + 8); 2>
S php math.php
13

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

/ C coercion
o VVhatdoesthm(nnput?

#include <stdio.h>
int main() {
char c¢=0x80;
printf ("$x\n",c);
}

mashimaro <~> 1:24PM % ./a.out
fEf£f£££80

I

But only on x86/Linux since char is unsigned for C on ARM

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Javascript coercion

5 1o // 3
5T 4 1o —— // '52!
5 - '2' = // 3
5+ '2' == // '52"
'5' - 2 == // 3
'S' 4+ 2 == // '52

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

™~

Example (along with arcane rules for Javascript coercion with ==)
0 == "0O"
® True.
o If x is Number and y is String, return x == ToNumber(y)
0 == T[]
® True
o If x is String or Number and y is Object, return x == ToPrimitive(y)
* where ToPrimitive coerces to String, Number or Boolean
o Empty array is an object. Objects are first coerced via .toString()
0 Returns an empty string.
o Then, empty string coerced via ToNumber() for comparison, returns 0
"o == []

e False. Leads to hilarious memes

then surely e

o https://www.destroyallsoftware.com/talks/wat

o) https: / / WWW. freecodecarnp.org/ news/ explaining—the—best—j avascript-

meme-i-have-ever-seen/ /

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.destroyallsoftware.com/talks/wat
https://www.freecodecamp.org/news/explaining-the-best-javascript-meme-i-have-ever-seen/

e

Type inferencing

® Automatic detection of types so programmer doesn't have to

declare it

Good for language conciseness
let x = 3; <= x inferred to be a number

Kotlin vs. Java

// Type is ArrayList
val a = arrayListOf ("Kotlin", "Scala", "Groovy")

Local variable type inferencing added to Java 10 (3/2018)

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

Programming paradigms supported

* Languages can support multiple styles

Imperative

Procedural
':1'll|.|.l*-\. nstructions into

procedures,

object-oriented
:.:I":':.]F:". Instructions
together w th the part of

the state they operate o

Programming
Paradigms

Declarative

Functional
Desired result is declared
as the value of a series of

function applications

Logic
Desired result is declared
asthe answerto a
question about a system

of facts and rules

Mathematical
Desired result is declared
as the solution of an

optimization |II::'|:.|"|-'

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Functional programming support

® Helps manage complexity while reducing errors
CS457/557

® Web frameworks moving to paradigm to manage complexity
React, Angular, Redux, Elm. ..

® Similar goal as object-oriented programming
“Object-oriented programming makes code understandable by
encapsulating moving parts. Functional programming makes code

understandable by minimizing moving parts ” Michael Feathers

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

/ * Computation as evaluation of mathematical functions
* Functions define what to do rather than perform an action
* Stateless (only depend on data passed as arguments)
® Avoid changing state and any mutable data
* Rather than modify a list, create new copy with modifications instead
First-class functions where functions treated as objects
Laziness (only compute things on-demand)
® Pattern applied heavily in web development and data science
* https://towardsdatascience.com/elements-of-functional-programming-in-python-

1b295ea5bbe0

First Class Functions

Pure / \ 4 Q No Side
Functions | | Effects
-, il

Functional
Programming

Lazy

Immutable (B)
f Evaluation

data _

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://towardsdatascience.com/elements-of-functional-programming-in-python-1b295ea5bbe0

e
Asynchronous support

* Optimizing single—threaded operation for performance
Event-driven programming and non—blocking operations

Blocking calls automatically yield to other parts of code

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

Asynchronous support

* Example: Callbacks

Register a function to be executed upon completion of another

Example

Synchronous file writing

fileObject = open(file) // blocks until file opened
fileObject.write ("We are writing to the file.") // finally can write

// do the other, totally unrelated things our program does

Asynchronous file writing

// open asynchronously and register writeToFile callback function
fileObject = open(file, writeToFile)

// execution continues immediately
// do the other totally unrelated things that our program does

// writeToFile executed once open finishes

® Other common mechanisms

Promises (see skipped slides)
async, await (Python > 3.5, Javascript ES8) (see CS 495/595)

Key for implementing complex web front-end Uls and progressive web

applications with service workers

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://medium.com/@_bengarrison/javascript-es8-introducing-async-await-functions-7a471ec7de8a

e
Concurrency support

® Ability to leverage multi-core processors
® Support for parallel execution

® Memory consistency model

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Ease of development

® Programming ease

® Testing ease

¢ Library and package management support (maturity of ecosystem)
e.g. how much code you *don’t* have to write

® Developer base (for hiring and for answering questions)

Ease of deployment

® Migrating from development to production infrastructure (e.g.
reproducibility of execution environment)

° Updating and patching software in packages

Can web app be patched in-place or does it require recompilation?

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Web programming languages

e
Java, C# ‘:{—g)

i
—

Java

® Prevalent in e-commerce, bank web sites
Pre-date most web frameworks that popularized scripting languages
* Compiled+Interpreted (bytecode with JIT)
* Statically and strongly typed
Preferred for large sites and for critical applications
® Managed memory (garbage collected)
* Asynchronous support in both (Event interface, async/await)
* Huge developer base, mature class support, adding conciseness
* But, with deployment
Recompilation of apps when security patches to libraries occur

Vendor lock-in
Rely on Oracle/Microsoft to keep platform libraries secure and deploy features
Must buy Microsoft (e.g. Azure) to run full-blown ASP.NET applications or rely
on Microsoft to keep updating .NET core for Linux

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
JavaScript/ECMAScript (ES)

Designed for web browsers by Brendan Eich J S

Based on Java (syntax, OOP)

Scheme in a browser (functional programming)

Interpreted, but with fast JIT (v8)

Dynamically typed (type checking at run-time)

Weakly typed (type coercion)

Managed memory (garbage collected)

Asynchronous from the beginning for single-threaded, event-based
operation (callbacks, promises, closures, async/await etc.)

Ease of development (400k packages for Node.js, front-end and back-end
share same language)

Ease of deployment (npm package management)

Ideal for smaller web applications requiring quick development iterations
and rapid results (IMO)

/

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

® But, type coercion and weak typing leads to "loose" equality after

coercion rules applied with "'=="

Makes "==" practically useless

var num = 0;

var obj = new String('0');

var str = '0"';

console.log(num == obj); // true

console
console

.log(num == str); // true
.log(obj == str); // true

How do you *really* check for equality?

(equality without coercion — "strict")

e Object.is () (same-value equality)

™~

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Sameness Comparisons

® Cheatsheet X y - - Object. is
T undefined S e twe tue
i nll B
brue true S e twe twe
et false S e twe tue
i “foo" St twe tue
R S e twe twe
9 0 St tue tue
i -0 S e e [false
0 false C e [false | false
0 © e [false | false
o 0 C e [false | false
2 v C e [false | false
[1,2] L2 © e [false | false

new String(“foo") "foo"

null undefined
null false
undefined false

{ foo: "bar" } { foo: "bar” }

new String(“foo") new String(“foo™)

@ null
@ MaN
“foo" MaM

K NaN MaN

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

4 N

* Also, Security issues: supply-chain attacks on Node]S npm packages
Sites using packages that are abandoned (no security updates)
Sites relying on packages taken over by malicious developer
Steal credit card numbers (2018)

SN A E il iaie= e

I'm harvesting credit card numbers and
passwords from your site. Here's how.

Lucky for me, we live in an age where people install npm packages like

they’re popping pain Kkillers.
Your innocence warms my heart.

But I'm afraid it’s perfectly possible to ship one version of your code to

GitHub and a different version to npm.

Steal passwords (2019)

npm Pulls Malicious Package that Stole Login Passwords

By lonut llascu August 27, 2019

Portland State University CS 495 /595 Web and Cloud Security

https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5

e

What if your code relied on these packages?

Software

How one developer just broke Node,
Babel and thousands of projects in 11
lines of JavaScript

Code pulled from NPM — which everyone was using

By Chris Williams, Editor in Chief 23 Mar 2016 at 01:24 167, SHARE Y

Another one-line nhpm package breaks the
JavaScript ecosystem

An update to tiny "is-promise" library impacted millions of
JavaScript projects.

@ By Catalin Cimpanu | April 26, 2020

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/

e
TypeScript

\

® Weak, dynamic typing leads to software engineering problems
* TypeScript (Microsott)
Typed superset of JavaScript that transpiles to JavaScript
Statically typed objects
Strongly typed objects (explicit casting)
Checked at compile-time
From 1/21/2019

Why every new web app at PayPal
starts with TypeScript

e Kent C. Dodds [Follow |
Jan 21 - 9 min read

® Similar approach: PureScript

- /

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://medium.com/paypal-engineering/why-every-new-web-app-at-paypal-starts-with-typescript-9d1acc07c839

e

e Mechanisms

Scoped variable declarations via 1 et
Immutable constant declarations via const
Names of variables followed by a : and the variable type

Function declarations include parameter types and return types with

similar syntax
° Compiler checks to ensure type safeness

// {variable name}: {variable type} = {variable value}
// const = immutable
// Llet = mutable
const myString: string = 'Hello World';
Let myArrayl: Array<number> = [1, 2, 3];
Let myArray2: number|]| = [4, 5, 6]
function square(x: number): number {
return x*x;

}

® Tryat http: / / WWW. typescriptlang. org/ play

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

http://www.typescriptlang.org/play

e
Go (2009)

® Want the best of C/C++
Low-level systems programming
Bare-metal performance
® Want the best of Java, Python, Ruby, JavaScript
Managed, garbage-collected memory
Rich package/module support
® Want the best of JavaScript

First-class support for asynchrony/ concurrency

¢’ O

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

4 N
Go language design

° Designed for simplicity and readability
"Simplicity is Complicated" (Rob Pike)
https: / / WWW. youtube.com/ Watch?V:rFeij tAHM

Features fixed (not trying to be like other languages)
Can fit language spec in your head (25 keywords)
One canonical way of doing things (unlike Perl or recently Python)

Easy to reason about code

Multi-developer coding easier

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=rFejpH_tAHM

e
Features

* Strongly and statically typed (e.g. Java)
Eliminates run-time type errors and type coercion errors
Rich built-in types (maps, slices, first-class functions, multiple return
values, iterators)
° Type—inferencing to support concise syntax
® Memory safety via managed memory that is garbage collected
Use Rust if this bothers you!
* Rich, built-in module support instead of includes
® Standardized code formatter gofmt

No more spaces versus tabs, no style guides needed
Readability built-in!

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

o Asynchrony and concurrency

Non-blocking, concurrent operation with goroutines
Each goroutine mapped onto an underlying OS thread

True parallel execution (no global interpreter lock)

Concise syntax

Shared memory disallowed to support memory—safety

Based on research in Communicating Sequential Processes as organizing principle
in parallel applications (see CS 415/515)

Communication done via channels (explicit IPC)

Can reduce the use of semaphores/mutexes which are prohibitively expensive on
modern multi-core CPUs (see CS 533)

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

Example

func HeavyComputation(ch chan int32) {

ch <- result

ch := make(chan int32)

// Create a new goroutine with the same address space
// and use it to run the function. No need to create
// thread, call library to start thread.

go HeavyComputation (ch)

result := <-ch // Blocks if not ready

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

® Static, efficient compilation to bare-metal
Performance close to C, C+-+
"Built-in" make to avoid 45 minute compile times
* Easy to deploy
Emits a single portable binary with all dependencies and environment
included
No versioning issues in deployment
Obviates one of the main reasons for a container

Used to build the world's smallest Docker container
https: / / WWW., youtube.com/ watch?v=zu8NSrNFZ4M ;

® Being used to build Internet-scale applications

Docker, Kubernetes

High—performance web APIs to support modern frameworks
Django, Rails, Node]S hard to scale

Companies switching over...Google, Microsoft

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=zu8NSrNFZ4M

e
Python

® Interpreted, can be compiled to bytecode (.pyc)

® Dynamically typed (type errors caught at run-time)
* Strongly typed (type conversion must be explicit)

® Managed memory (garbage collected)

® async support in Python 3.6

® Not built with concurrency in mind
Global interpreter lock

Prevents Python programs from running on multiple cores

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

* Extensive packages, conciseness, and huge developer base

* Gets you this https://xked.com/353/

NRhaAnnnhnhnhhhess RN
et N R NN
‘ S 3 \\‘ Ly

3

b
S x‘% R
o e E e
RS
i 8 kS
3
o %2 E

"
A .
5 e, T * . =
B % : . N
w . . o, S ey A - =
e, & s Gl \\\\Q
r b = T
W, 5 .
oy - < W,
‘:‘ - gy o

T DUNNO... /
DYNAMIC TYPING? T JUST TYPED
MHITEGERCE? import m‘d‘:‘gmvﬁt‘-j
/ COME TOIN US! THATS IT? (
MMING
T LEARNED IT LAST PROGRA ... T AL50 SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN! EVERYTHING IN THE
IS SO SIMPLE! ITS A WHOLE MEDICINE CABINET
[NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JusT . UP HERE! |’
print "Hello, world!" BUT HOW ARE BUT T THINK THIS
YOU FLYING? IS THE PYTHON.

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://xkcd.com/353/

/' But, also this https://xked.com/1987/

EASY_INSTALL) <— ?— $PYTHONPATH

@ L)\
= w

smrél_‘_

\% /

2225 oy /N
/(AN/
Just/local /Cellar -
~|_[/usr/local/lib/ python3.6
(luscllocal/opt ~——/usr/local/lib/ Python2
/(A BUNCH OF PATHS WITH “FRAMEWIORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED
THAT My LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

® Deployment requires tools for package (pip) and virtual
environment management

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://xkcd.com/1987/

g
Web development (at a 10k level)

® Typical web application components
® Programming language
® Framework

* Template system

® Rendering approaches

Web frameworks

e

Web frameworks

® Library support for building complex web applications
® Tied to a programming language
® Supports
Basic routing of URLs to code
Often implements an "opinion" on how web application should be

structured

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

/MVC (Model-View-Controller) architecture

® Developed in 1970s (Smalltalk), adapted everywhere

e First used in web applications in late 1990s via Struts

e Model
Code that encapsulates backend application data

Data representation and storage

® View
Code for rendering that generates HTML output and presents functionality to user
(ul)

e Controller

Code connecting model and view
Takes in user requests to update model

Pulls in model data to supply the view
® Separation of concerns
Simplifies swapping out database backend or the Ul frontend

Examples of each in repository (cs410c-src)

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

The MVC Pattern

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Model-View-Presenter (MVP)

e MVC

Controller determines which views to pass back based on user actions
e MVP

User actions directly bind to specific "presenters"

Presenter handles specific interaction between a view and the model

"Function"-based decomposition better suited for unit testing

View View View
View Interface View Interface View Interface
Presenter Presenter Presenter
N ———

Model Model

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
State Action Model (SAM)

® SAM pattern also removes controller (similar to what React does)

° https: / / WWW. infoq .com/articles/no-more-mvc-frameworks

The SAM Pattern

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.infoq.com/articles/no-more-mvc-frameworks

g
Web development (at a 10k level)

® Typical web application components
® Programming language
* Framework

* Template system

® Rendering approaches

Template system

Template engines

® Web app uses one language (e.g. JavaScript, Python, Java, Go) to
produce another language (e.g. HTML)
® Initially, programming language generates entire HTML string
Java servlets
® Then, tree-building libraries to construct DOM used to produce the
HTML string
Repetitive, manual construction of pages
® Then, templating
Template language for specifying base page that is filled in dynamically
by web application
Template engine generates eventual HTML
Examples: JSP (Java Server Pages), Jinja2, Mustache

® Separates presentation (view) from the logic (controller)

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

Example: Jinja2 syntax

® [xtensible HTML

{{ arg }} corresponds to template arguments in HTML file
Pass arg=val to our template to render HTML with data being passed

{% 5 } encompasses control statements (L £, for,block, etc)
Can use data being passed to drive conditionals in templating system
e.g {% 1f arg %}
<hl>arg included</hl>
{% endif %}

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Jinja2 example

e CTF interface for CyberPDX crypto site
https: / / crypto. cyberpdx. org

e "Solve" page consisting of
* Form containing challenges yet to be solved in a drop-down

® Scoreboard containing shaded challenges already solved

Solve a challenge

1 | [answer

Solved challenges

01 |02 |03 |04 |05 |06 |07 |08 (09 |10 {11 |12 (13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://crypto.cyberpdx.org/

def

sols = ' in solved.keys ()]
nsol f in notsolved.keys ()]
=

return nder template (
solved= (sols),
notsolved= (nsol),

challenges= (challenge

1

Controller logic for generating lists "solved", "notsolved", "challenges"

Passes to view via render_template

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Solve a challenge</h2
form action="{{url for('solve')}}"” method
select name
for n in notsolved %)
option value="{{n}}

endfor %}
option
select
input type e maxlength
input type
form

VmwhnﬂmnanﬁhnUmqmﬁmgagkmﬂwdnm«bwnﬂxnnmhnﬁ@xnmmgnotsolved

solve.html [inja2 template

Solve a challenge

1 | [answer o

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Solved challenges

01 |02 |03 |04 |05 |06 |07 |08 |09 |10 |11 {12 |13 |14 |15 |16 |17 {18 |19 |20 |21 |22 |23 |24

<h2>50lved challenges</h2>
<table class= >
clrs
{% for c
<td width=
{% endfor %}

solve.html [inja2 template

<ftr=>
..scoreboard table in template - S <tr>
using challenges & solved {% for c in challenges !
{% if c in solved %

<td class= > </td>
{% else %}
<td> </fta=
{% endif %}
{% endfor %}
<ftr=>

\\\ <ftable=>

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

- _ _ _ __
h2>5olve a challenge</h2

form action="{{url for('solve')}}" method

select name

[%$ for n 1in notsolved %}

option value="{{n}} [in}}

[% endfor %}

option

select
input type name maxlength
input type value

form

Form does a POST when submitted with data named "challenge" and "guess"
Controller logic for processing solves pulls out "challenge" and "guess" in form

@login_required
def post(self):

ﬂéérname = flask.session[
challenge = flask.request.form[
guess = flask.request.form[

éﬁ;wer:challenges[challenge]
if answer==guess:
flask.flash(+ challenge)

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

4 L
Templating issues

® Now 3 programming languages to learn and debug together!
HTML, web app, template
Program logic split between template language and web application
language
Why was the "green" condition parsed in Jinja2 and not Python?

Where should the conditional rendering of content go?

All'in the template (e.g. view)?
All in the controller?

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Templating via DSLs

® Internal dornain—specific languages

Templating language integrated with the host language
* Examples

JSX (native XML support for JavaScript) (React)
Kotlin (JetBrains)

Statically typed (i.e. type-safe) HTML builder for JavaScript or Java
Elm, Hyperscript, Groovy, Flutter, etc.

® But, need to be careful
Want separation of concerns

Control logic must be separated from Ul logic within language

https://medium.com/ (@daveford/ 80—of—rnv—coding—is—doing—this—or—th—ternplates—are—cleacl—
b640fc149e22

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://medium.com/@daveford/80-of-my-coding-is-doing-this-or-why-templates-are-dead-b640fc149e22

e

Summary survey

™~

Java
Javascript/Node]S
Python

C#

Ruby

Go

PHP

Java servlets (minimal)

Spring, Apache Struts (MVC)

Express (minimal)

Sails, Angular]S (MVC)

Flask (minimal)
Django (MVT)
ASP.NET routing (minimal)
ASPNET MVC

Sinatra (minimal)

Rails (MVC)

Echo (minimal)
Martini, Beego (MVC)

Fat-free, Slim (minimal)
Laravel, Symfony (MVC)

Java server pages
Mustache, Handlebars
Jinja2, Django templates
Razor

Slim, HAML

Amber, Mustache

Blade, Mustache

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

g
Web development (at a 10k level)

® Typical web application components
® Programming language
* Framework

* Template system

© Rendering approaches

Rendering approaches

e

Rendering

-

* Two rendering steps
Web application renders server data into HTML/ CSS for web browser
Web browser renders HTML/ CSS for user
® Initially, MVC and MVP all running on the server
Your app for this class
(Figures used from K. Balasubramanian, "Isomorphic Go")

v

Request over HTTP Business Logic

Template Renderer

A

Response over HTTP: Router
HTML web page response
which may include CSS
and JavaScript

User Interface

JavaScript Server Side Language

Client (Web Browser) Web Server

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Issue #1: Repetitive server rendering

© Dynamic—ish content
® What if articles on a web application only change once a day?

* Example: WordPress blog updated daily
Executes web application logic and hits backend database to generate HTML, even
though results are the same all day long!

® Server does much more work than necessary

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Pre-rendered pages

® General approach of handling "dynamic" content that does not

change
Server pre-renders dynamic page into static HTML
Static page can be forward deployed (via CDN) and cached for
performance
Can be returned to search engines and easily crawled for indexing

More secure! (Clients interact with static content)

° Supported now in most frameworks

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Issue #2: Interactivity

* User navigation hits web application running on the server each time
Poor interactivity, page reload on every action
® Motivates a push towards client-side rendering and client-side

control of web application rendering

™~

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Client-side rendering

* Allow client to retrieve and update HTML/DOM elements
* First instance: AJAX (Asyncrhonous JavaScript and XML)

JavaScript library code for reducing server-side rendering of content
Update DOM in place via HTTP request from JavaScript running on page

A J

Initial request over HTTP

< Business Logic
Initial response over HTTP:
HTML web page response

which may include CSS and

JavaScript Template Renderer
> Router
User Interface XHR Request
Response: JSON, XML, Plain
JavaScript Text or HTML Fragment Server Side Language
Client (Web Browser) Web Server

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

* Eventually leads to more voperations placed into browser
jQuery, Bootstrap, Meteor, etc.

® Benefits
Client-side operations more responsive (reduce page reloads)
Can have just the changed portions of page downloaded
Fewer connections and decreased load on server
® Can one render and ship the entire application and push it to the

client?

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

N L
Single-page applications

® Ship entire web application to client in a single package
Controller, View, and page rendering all on client
Typically, a single index.html file, a CSS bundle, and a JavaScript
bundle

Examples: GMail, Google Maps, Facebook, Github

Backend only supplies model via an API
e.g via REST/gRPC or GraphQL (React)

Web app view directly interacts with API

Controller removed
* Angular (Google) "MVW (model-view-whatever)"
® Vue "MVVM (model-viewmodel-view) similar to MVP"

* Advantages
Essential static content delivered ahead of time with no need to refresh
(helped by HTTP/2 server push)
Faster Ul since network calls minimized
* Disadvantages
Initial load time for heavy client frameworks
o

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

Business Logic

Template Renderer

Router

User Interface

Initial request over HTTP

<

Initial response over HTTP:
HTML web page response
which includes a JavaScript
payload and templates

JavaScript

Client (Web Browser)

XHR Request

Response: JSON

Business Logic

Router

Rest API

Server Side Language

Web Server

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

® Drawbacks
Not good for search-engine optimization (SEO)
Web scapers typically do not run JS engine
Complexity at the client

Package management, bundling, minification, component libraries, cache busting,

bundle splitting, automated testing/building
CS 465P/565

® Can we render a version for search—engines to index that is

identical to what a client uses?

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e

Isomorphic web pages

* Latency an issue with single—page applications

* Hybrid approach

Serve initial page via traditional server rendering or via pre-rendered
version
Ship tull client-side SPA in the background that supports isomorphic
pages

Pages that render the same at either client or server
Seamlessly switch over once SPA downloaded

Benefits
Fast initial load
Good with SEO
Eventual responsiveness that SPA provides
Example: Angular Universal
https://blog.angular-university.io/why-a-single-page-application-what-are-the-

benefits—what—is—a—spa/

https: / /medium.com/ airbnb—engineering/ isornorphic—j avascript—the—future—of—

Web—apps— 10882b7a2ebc

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://blog.angular-university.io/why-a-single-page-application-what-are-the-benefits-what-is-a-spa/
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc

e

° Rendering on both sides

Business Logic

Y

Initial request over HTTP

Template Renderer

Router

User Interface

Client (Web Browser)

Business Logic

Initial response over HTTP:

HTML web page response
which may include CSS and Template Renderer

JavaScript
XHR Request L
Response: JSON
Rest API
Web Server

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

4 . L.
Isomorphic web applications

e (Collaborative multi-user applications

® State shared amongst servers and multiple clients

=18

o Examples:

;A 2> A E [Present ~ é Share Q

A

R Lt o

® Want a shared real-time database with isomorphic rendering done with

minimal overhead

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

® Limits to updates and rendering via REST/JSON

https: / / WWW. oreilly. com/ library/ view / building—isomorphic—j avascript

Client Server

Controller

Controller REST

A 4

Template JSON

® Real-time clients with bidirectional synchronization
Synchronize models to each other via alternate means (e.g. WebSocket)

Meteor.js "Database Everywhere"

Client Server Client

))
(X e e

react
Controller Controller
Sync Sync

Template db.update(...)

Controller

Template db.update(...)

™~

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://www.oreilly.com/library/view/building-isomorphic-javascript

e
Issue #3: Disconnected operation

® Web app done as an SPA close to a native application
* But, want to provide a Microsoft Word experience to something like

a Google Doc
Want web app (Google Doc) to seamlessly support disconnected

operation and act more like a native desktop (or mobile) app

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

e
Progressive web applications (PWA)

® Web applications doubling as native desktop/mobile applications
Seamlessly handle off-line, disconnected operation
Sync state upon reconnection

Traditional websites:

domme % QI
i

—

Web server
Progressive web applications:

T3k &

¥ — 3.

Service worker Web server

* Key abstraction: Service workers
Sit between web applications and the browser
Intercept network requests and take appropriate action based on whether the
network is available
Receive notification when updated assets reside on the server

® Makes heavy use of JavaScript Promises
Promise represents the eventual completion (or failure) of an asynchronous
operation, and its resulting value

-

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

4 N
Issue #4: Too many frameworks

® Developers re-inventing wheels
Modules in React, Angular, Vue, ... provide similar functions but are
incompatible

® Goal: Implement a component model for modularity and reusability
Turn web application a collection of type-checked re-usable components

Standardized via Web Components in W3C
Wrap client Ul widgets in a standard way
Example: specify a COTS component that gets an input, and after some internal
behavior / computing, returns a rendered Ul template (a sign in / sign out area or a

to-do list item) as output

https: // codewithhugo. com/ how-components—won—the—framework-wars/

Portland State University CS 430P/ 530 Internet, Web & Cloud Systems

https://codewithhugo.com/how-components-won-the-framework-wars/

Preparing for Homework #2

