
Web Development

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Programming language

Compiled or Interpreted

 Compiled
 To machine code

 No run-time needed, fast
 Good for IoT devices with limited resources

 To bytecode
 Requires run-time VM environment to execute

 Longer development cycle
 Inability to patch quickly

 Must recompile entire app (Apache Struts bug and Equifax)
 Dev and Ops involved to fix security flaws (versus just Ops)

 Interpreted
 Scripting languages
 Requires interpreter and all packages application depends upon to be

present
 Slow, but some languages with good support for JIT

 Python (PyPy), Javascript (v8, NodeJS)
 Performance closer to compiled – often single threaded

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Static vs. Dynamic types

 Static
 Types checked at compile-time
 Type errors caught at compilation *before* deployment

 Debug then deploy

 Good for mission (and business) critical applications
 Dynamic

 Types checked at run-time
var variable = 3;

variable = foo(0);

typeof(variable); // ?

 Type errors caught at run-time via crashes (Python, JavaScript)
 Or not caught at all via generation of nonsensical results with type coercion

(PHP)

 Overhead
 Type checking must be done for each use (compared to static typing that does not

require checks)

 Deploy then debug, good for rapid prototyping
Portland State University CS 430P/530 Internet, Web & Cloud Systems

function foo(somenum) {

if (somenum == 3)

return '0';

else

return 0;

}

Strongly vs. Weakly typed

 Strongly typed
 Requires explicit type conversion

$ python -c "print '5' + 8"

Traceback (most recent call last):

File "<string>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects

 Weakly typed
 Implicit type conversion & casting

 Type coercion that automatically changes a value from one type to

another
 PHP

$ cat math.php

<?php print('5' + 8); ?>

$ php math.php

13

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 C coercion

 What does this output?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

#include <stdio.h>

int main() {

char c=0x80;

printf("%x\n",c);

}

mashimaro <~> 1:24PM % ./a.out

ffffff80

But only on x86/Linux since char is unsigned for C on ARM

 Javascript coercion
'5' – '2' ==

'5' + '2' ==

5 – '2' ==

5 + '2' ==

'5' – 2 ==

'5' + 2 ==

Portland State University CS 430P/530 Internet, Web & Cloud Systems

// 3

// '52'

// 3

// '52'

// 3

// '52'

 Example (along with arcane rules for Javascript coercion with ==)

 True.

o If x is Number and y is String, return x == ToNumber(y)

 True

o If x is String or Number and y is Object, return x == ToPrimitive(y)
• where ToPrimitive coerces to String, Number or Boolean

o Empty array is an object. Objects are first coerced via .toString()

o Returns an empty string.

o Then, empty string coerced via ToNumber() for comparison, returns 0

 False. Leads to hilarious memes

o https://www.destroyallsoftware.com/talks/wat

o https://www.freecodecamp.org/news/explaining-the-best-javascript-

meme-i-have-ever-seen/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

0 == "0"

"0" == []

0 == []

https://www.destroyallsoftware.com/talks/wat
https://www.freecodecamp.org/news/explaining-the-best-javascript-meme-i-have-ever-seen/

Type inferencing

 Automatic detection of types so programmer doesn't have to

declare it
 Good for language conciseness
let x = 3; <= x inferred to be a number

 Kotlin vs. Java
// Type is ArrayList

val a = arrayListOf("Kotlin", "Scala", "Groovy")

 Local variable type inferencing added to Java 10 (3/2018)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Programming paradigms supported

 Languages can support multiple styles

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Functional programming support

 Helps manage complexity while reducing errors
 CS 457/557

 Web frameworks moving to paradigm to manage complexity
 React, Angular, Redux, Elm…

 Similar goal as object-oriented programming
 “Object-oriented programming makes code understandable by

encapsulating moving parts. Functional programming makes code

understandable by minimizing moving parts.” Michael Feathers

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Computation as evaluation of mathematical functions
 Functions define what to do rather than perform an action

 Stateless (only depend on data passed as arguments)
 Avoid changing state and any mutable data

 Rather than modify a list, create new copy with modifications instead
 First-class functions where functions treated as objects
 Laziness (only compute things on-demand)
 Pattern applied heavily in web development and data science

 https://towardsdatascience.com/elements-of-functional-programming-in-python-
1b295ea5bbe0

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://towardsdatascience.com/elements-of-functional-programming-in-python-1b295ea5bbe0

Asynchronous support

 Optimizing single-threaded operation for performance
 Event-driven programming and non-blocking operations

 Blocking calls automatically yield to other parts of code

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Asynchronous support

 Example: Callbacks
 Register a function to be executed upon completion of another
 Example

 Synchronous file writing
fileObject = open(file) // blocks until file opened

fileObject.write("We are writing to the file.") // finally can write

// do the other, totally unrelated things our program does

 Asynchronous file writing
// open asynchronously and register writeToFile callback function

fileObject = open(file, writeToFile)

// execution continues immediately

// do the other totally unrelated things that our program does

// writeToFile executed once open finishes

 Other common mechanisms
 Promises (see skipped slides)
 async, await (Python > 3.5, Javascript ES8) (see CS 495/595)
 Key for implementing complex web front-end UIs and progressive web

applications with service workers

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/@_bengarrison/javascript-es8-introducing-async-await-functions-7a471ec7de8a

Concurrency support

 Ability to leverage multi-core processors

 Support for parallel execution

 Memory consistency model

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Ease of development

 Programming ease

 Testing ease

 Library and package management support (maturity of ecosystem)
 e.g. how much code you *don’t* have to write

 Developer base (for hiring and for answering questions)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Migrating from development to production infrastructure (e.g.

reproducibility of execution environment)

 Updating and patching software in packages
 Can web app be patched in-place or does it require recompilation?

Ease of deployment

Web programming languages

Java, C#

 Prevalent in e-commerce, bank web sites
 Pre-date most web frameworks that popularized scripting languages

 Compiled+Interpreted (bytecode with JIT)

 Statically and strongly typed
 Preferred for large sites and for critical applications

 Managed memory (garbage collected)

 Asynchronous support in both (Event interface, async/await)

 Huge developer base, mature class support, adding conciseness

 But, with deployment
 Recompilation of apps when security patches to libraries occur

 Vendor lock-in
 Rely on Oracle/Microsoft to keep platform libraries secure and deploy features

 Must buy Microsoft (e.g. Azure) to run full-blown ASP.NET applications or rely

on Microsoft to keep updating .NET core for Linux

Portland State University CS 430P/530 Internet, Web & Cloud Systems

JavaScript/ECMAScript (ES)

 Designed for web browsers by Brendan Eich
 Based on Java (syntax, OOP)
 Scheme in a browser (functional programming)
 Interpreted, but with fast JIT (v8)
 Dynamically typed (type checking at run-time)
 Weakly typed (type coercion)
 Managed memory (garbage collected)
 Asynchronous from the beginning for single-threaded, event-based

operation (callbacks, promises, closures, async/await etc.)
 Ease of development (400k packages for Node.js, front-end and back-end

share same language)
 Ease of deployment (npm package management)

 Ideal for smaller web applications requiring quick development iterations
and rapid results (IMO)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 But, type coercion and weak typing leads to "loose" equality after

coercion rules applied with "=="
 Makes "==" practically useless

var num = 0;

var obj = new String('0');

var str = '0';

console.log(num == obj); // true

console.log(num == str); // true

console.log(obj == str); // true

 How do you *really* check for equality?
 === (equality without coercion – "strict")

 Object.is() (same-value equality)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Cheatsheet

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Also, Security issues: supply-chain attacks on NodeJS npm packages
 Sites using packages that are abandoned (no security updates)

 Sites relying on packages taken over by malicious developer

 Steal credit card numbers (2018)

 Steal passwords (2019)

Portland State University CS 495/595 Web and Cloud Security

https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5

 What if your code relied on these packages?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/

TypeScript

 Weak, dynamic typing leads to software engineering problems

 TypeScript (Microsoft)
 Typed superset of JavaScript that transpiles to JavaScript

 Statically typed objects

 Strongly typed objects (explicit casting)

 Checked at compile-time

 From 1/21/2019

 Similar approach: PureScript

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/paypal-engineering/why-every-new-web-app-at-paypal-starts-with-typescript-9d1acc07c839

 Mechanisms
 Scoped variable declarations via let

 Immutable constant declarations via const

 Names of variables followed by a : and the variable type

 Function declarations include parameter types and return types with

similar syntax

 Compiler checks to ensure type safeness

 Try at http://www.typescriptlang.org/play

Portland State University CS 430P/530 Internet, Web & Cloud Systems

// {variable name}: {variable type} = {variable value}
// const = immutable
// let = mutable
const myString: string = 'Hello World';
let myArray1: Array<number> = [1, 2, 3];
let myArray2: number[] = [4, 5, 6]
function square(x: number): number {
return x*x;

}

http://www.typescriptlang.org/play

Go (2009)

 Want the best of C/C++
 Low-level systems programming

 Bare-metal performance

 Want the best of Java, Python, Ruby, JavaScript
 Managed, garbage-collected memory

 Rich package/module support

 Want the best of JavaScript
 First-class support for asynchrony/concurrency

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Go language design

 Designed for simplicity and readability
 "Simplicity is Complicated" (Rob Pike)

 https://www.youtube.com/watch?v=rFejpH_tAHM

 Features fixed (not trying to be like other languages)
 Can fit language spec in your head (25 keywords)

 One canonical way of doing things (unlike Perl or recently Python)

 Easy to reason about code

 Multi-developer coding easier

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=rFejpH_tAHM

Features

 Strongly and statically typed (e.g. Java)
 Eliminates run-time type errors and type coercion errors

 Rich built-in types (maps, slices, first-class functions, multiple return

values, iterators)

 Type-inferencing to support concise syntax

 Memory safety via managed memory that is garbage collected
 Use Rust if this bothers you!

 Rich, built-in module support instead of includes

 Standardized code formatter gofmt
 No more spaces versus tabs, no style guides needed

 Readability built-in!

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Asynchrony and concurrency
 Non-blocking, concurrent operation with goroutines

 Each goroutine mapped onto an underlying OS thread

 True parallel execution (no global interpreter lock)

 Concise syntax

 Shared memory disallowed to support memory-safety
 Based on research in Communicating Sequential Processes as organizing principle

in parallel applications (see CS 415/515)

 Communication done via channels (explicit IPC)

 Can reduce the use of semaphores/mutexes which are prohibitively expensive on

modern multi-core CPUs (see CS 533)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Example

Portland State University CS 430P/530 Internet, Web & Cloud Systems

func HeavyComputation(ch chan int32) {

…

ch <- result

}

ch := make(chan int32)

// Create a new goroutine with the same address space

// and use it to run the function. No need to create

// thread, call library to start thread.

go HeavyComputation(ch)

result := <-ch // Blocks if not ready

 Static, efficient compilation to bare-metal
 Performance close to C, C++

 "Built-in" make to avoid 45 minute compile times

 Easy to deploy
 Emits a single portable binary with all dependencies and environment

included

 No versioning issues in deployment

 Obviates one of the main reasons for a container

 Used to build the world's smallest Docker container
 https://www.youtube.com/watch?v=zu8NSrNFZ4M

 Being used to build Internet-scale applications
 Docker, Kubernetes

 High-performance web APIs to support modern frameworks
 Django, Rails, NodeJS hard to scale

 Companies switching over…Google, Microsoft

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.youtube.com/watch?v=zu8NSrNFZ4M

Python

 Interpreted, can be compiled to bytecode (.pyc)

 Dynamically typed (type errors caught at run-time)

 Strongly typed (type conversion must be explicit)

 Managed memory (garbage collected)

 async support in Python 3.6

 Not built with concurrency in mind
 Global interpreter lock

 Prevents Python programs from running on multiple cores

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Extensive packages, conciseness, and huge developer base

 Gets you this https://xkcd.com/353/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://xkcd.com/353/

 But, also this https://xkcd.com/1987/

 Deployment requires tools for package (pip) and virtual
environment management

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://xkcd.com/1987/

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Web frameworks

Web frameworks

 Library support for building complex web applications

 Tied to a programming language

 Supports
 Basic routing of URLs to code

 Often implements an "opinion" on how web application should be

structured

Portland State University CS 430P/530 Internet, Web & Cloud Systems

MVC (Model-View-Controller) architecture

 Developed in 1970s (Smalltalk), adapted everywhere

 First used in web applications in late 1990s via Struts

 Model
 Code that encapsulates backend application data

 Data representation and storage

 View
 Code for rendering that generates HTML output and presents functionality to user

(UI)

 Controller
 Code connecting model and view

 Takes in user requests to update model

 Pulls in model data to supply the view

 Separation of concerns
 Simplifies swapping out database backend or the UI frontend

 Examples of each in repository (cs410c-src)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Model-View-Presenter (MVP)

 MVC
 Controller determines which views to pass back based on user actions

 MVP
 User actions directly bind to specific "presenters"

 Presenter handles specific interaction between a view and the model

 "Function"-based decomposition better suited for unit testing

Portland State University CS 430P/530 Internet, Web & Cloud Systems

State Action Model (SAM)

 SAM pattern also removes controller (similar to what React does)
 https://www.infoq.com/articles/no-more-mvc-frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.infoq.com/articles/no-more-mvc-frameworks

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Template system

Template engines

 Web app uses one language (e.g. JavaScript, Python, Java, Go) to

produce another language (e.g. HTML)

 Initially, programming language generates entire HTML string
 Java servlets

 Then, tree-building libraries to construct DOM used to produce the

HTML string
 Repetitive, manual construction of pages

 Then, templating
 Template language for specifying base page that is filled in dynamically

by web application

 Template engine generates eventual HTML

 Examples: JSP (Java Server Pages), Jinja2, Mustache

 Separates presentation (view) from the logic (controller)

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Example: Jinja2 syntax

 Extensible HTML
 {{ arg }} corresponds to template arguments in HTML file

 Pass arg=val to our template to render HTML with data being passed

 {% %} encompasses control statements (if, for, block, etc)
 Can use data being passed to drive conditionals in templating system

 e.g. {% if arg %}

<h1>arg included</h1>

{% endif %}

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Jinja2 example

 CTF interface for CyberPDX crypto site

https://crypto.cyberpdx.org

 "Solve" page consisting of
 Form containing challenges yet to be solved in a drop-down

 Scoreboard containing shaded challenges already solved

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://crypto.cyberpdx.org/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Controller logic for generating lists "solved", "notsolved", "challenges"

Passes to view via render_template

View implemented in templating engine for drop-down form submission using notsolved

solve.html Jinja2 template

Portland State University CS 430P/530 Internet, Web & Cloud Systems

..scoreboard table in template

using challenges & solved

solve.html Jinja2 template

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Form does a POST when submitted with data named "challenge" and "guess"

Controller logic for processing solves pulls out "challenge" and "guess" in form

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Templating issues

 Now 3 programming languages to learn and debug together!
 HTML, web app, template

 Program logic split between template language and web application

language

 Why was the "green" condition parsed in Jinja2 and not Python?

 Where should the conditional rendering of content go?
 All in the template (e.g. view)?

 All in the controller?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Templating via DSLs

 Internal domain-specific languages
 Templating language integrated with the host language

 Examples
 JSX (native XML support for JavaScript) (React)

 Kotlin (JetBrains)
 Statically typed (i.e. type-safe) HTML builder for JavaScript or Java

 Elm, Hyperscript, Groovy, Flutter, etc.

 But, need to be careful
 Want separation of concerns

 Control logic must be separated from UI logic within language

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://medium.com/@daveford/80-of-my-coding-is-doing-this-or-why-templates-are-dead-

b640fc149e22

https://medium.com/@daveford/80-of-my-coding-is-doing-this-or-why-templates-are-dead-b640fc149e22

Summary survey

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Language Framework Template

Java Java servlets (minimal)

Spring, Apache Struts (MVC)

Java server pages

Javascript/NodeJS Express (minimal)

Sails, AngularJS (MVC)

Mustache, Handlebars

Python Flask (minimal)

Django (MVT)

Jinja2, Django templates

C# ASP.NET routing (minimal)

ASP.NET MVC

Razor

Ruby Sinatra (minimal)

Rails (MVC)

Slim, HAML

Go Echo (minimal)

Martini, Beego (MVC)

Amber, Mustache

PHP Fat-free, Slim (minimal)

Laravel, Symfony (MVC)

Blade, Mustache

Web development (at a 10k level)

 Typical web application components
 Programming language

 Framework

 Template system

 Rendering approaches

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Rendering approaches

Rendering

 Two rendering steps
 Web application renders server data into HTML/CSS for web browser
 Web browser renders HTML/CSS for user

 Initially, MVC and MVP all running on the server
 Your app for this class
 (Figures used from K. Balasubramanian, "Isomorphic Go")

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #1: Repetitive server rendering

 Dynamic-ish content
 What if articles on a web application only change once a day?

 Example: WordPress blog updated daily
 Executes web application logic and hits backend database to generate HTML, even

though results are the same all day long!

 Server does much more work than necessary

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Pre-rendered pages

 General approach of handling "dynamic" content that does not

change
 Server pre-renders dynamic page into static HTML

 Static page can be forward deployed (via CDN) and cached for

performance

 Can be returned to search engines and easily crawled for indexing

 More secure! (Clients interact with static content)

 Supported now in most frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #2: Interactivity

 User navigation hits web application running on the server each time
 Poor interactivity, page reload on every action

 Motivates a push towards client-side rendering and client-side

control of web application rendering

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Client-side rendering

 Allow client to retrieve and update HTML/DOM elements
 First instance: AJAX (Asyncrhonous JavaScript and XML)

 JavaScript library code for reducing server-side rendering of content
 Update DOM in place via HTTP request from JavaScript running on page

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Eventually leads to more voperations placed into browser
 jQuery, Bootstrap, Meteor, etc.

 Benefits
 Client-side operations more responsive (reduce page reloads)

 Can have just the changed portions of page downloaded

 Fewer connections and decreased load on server

 Can one render and ship the entire application and push it to the

client?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Single-page applications

 Ship entire web application to client in a single package
 Controller, View, and page rendering all on client
 Typically, a single index.html file, a CSS bundle, and a JavaScript

bundle
 Examples: GMail, Google Maps, Facebook, Github
 Backend only supplies model via an API

 e.g via REST/gRPC or GraphQL (React)

 Web app view directly interacts with API
 Controller removed

 Angular (Google) "MVW (model-view-whatever)"
 Vue "MVVM (model-viewmodel-view) similar to MVP"

 Advantages
 Essential static content delivered ahead of time with no need to refresh

(helped by HTTP/2 server push)
 Faster UI since network calls minimized

 Disadvantages
 Initial load time for heavy client frameworks

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Drawbacks
 Not good for search-engine optimization (SEO)

 Web scapers typically do not run JS engine

 Complexity at the client
 Package management, bundling, minification, component libraries, cache busting,

bundle splitting, automated testing/building

 CS 465P/565

 Can we render a version for search-engines to index that is

identical to what a client uses?

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Isomorphic web pages

 Latency an issue with single-page applications
 Hybrid approach

 Serve initial page via traditional server rendering or via pre-rendered
version

 Ship full client-side SPA in the background that supports isomorphic
pages
 Pages that render the same at either client or server

 Seamlessly switch over once SPA downloaded
 Benefits

 Fast initial load
 Good with SEO
 Eventual responsiveness that SPA provides

 Example: Angular Universal
 https://blog.angular-university.io/why-a-single-page-application-what-are-the-

benefits-what-is-a-spa/
 https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-

web-apps-10882b7a2ebc

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://blog.angular-university.io/why-a-single-page-application-what-are-the-benefits-what-is-a-spa/
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-apps-10882b7a2ebc

 Rendering on both sides

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Isomorphic web applications

 Collaborative multi-user applications
 State shared amongst servers and multiple clients

 Examples:

 Want a shared real-time database with isomorphic rendering done with

minimal overhead

Portland State University CS 430P/530 Internet, Web & Cloud Systems

 Limits to updates and rendering via REST/JSON
 https://www.oreilly.com/library/view/building-isomorphic-javascript

 Real-time clients with bidirectional synchronization
 Synchronize models to each other via alternate means (e.g. WebSocket)

 Meteor.js "Database Everywhere"

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://www.oreilly.com/library/view/building-isomorphic-javascript

Issue #3: Disconnected operation

 Web app done as an SPA close to a native application

 But, want to provide a Microsoft Word experience to something like

a Google Doc
 Want web app (Google Doc) to seamlessly support disconnected

operation and act more like a native desktop (or mobile) app

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Progressive web applications (PWA)

 Web applications doubling as native desktop/mobile applications
 Seamlessly handle off-line, disconnected operation
 Sync state upon reconnection

 Key abstraction: Service workers
 Sit between web applications and the browser
 Intercept network requests and take appropriate action based on whether the

network is available
 Receive notification when updated assets reside on the server

 Makes heavy use of JavaScript Promises
 Promise represents the eventual completion (or failure) of an asynchronous

operation, and its resulting value

Portland State University CS 430P/530 Internet, Web & Cloud Systems

Issue #4: Too many frameworks

 Developers re-inventing wheels
 Modules in React, Angular, Vue, … provide similar functions but are

incompatible

 Goal: Implement a component model for modularity and reusability
 Turn web application a collection of type-checked re-usable components

 Standardized via Web Components in W3C
 Wrap client UI widgets in a standard way

 Example: specify a COTS component that gets an input, and after some internal

behavior / computing, returns a rendered UI template (a sign in / sign out area or a

to-do list item) as output

 https://codewithhugo.com/how-components-won-the-framework-wars/

Portland State University CS 430P/530 Internet, Web & Cloud Systems

https://codewithhugo.com/how-components-won-the-framework-wars/

Preparing for Homework #2

