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ABSTRACT

An ensemble of parity check codes of arbi-
trary block length, n 1s considered in which
each digit of each code is checked by a small
fixed number, J, of parity check equations, and
each parity check set contalns a small, fixed num-
ber, k, of digits. The typical minimum distance
of codes 1in such an ensemble increases linearly
with n for constant j and k if J 2 3.

The probability of decoding error for this
ensemble of codes on a memoryless symmetric chan-
~— nel with a binary input alphabet and an arbitrary
output alphabet 1s analyzed. Using maximum like-
lihood decoding on a sufficiently quiet channel,
the probability of error 1s shown to be exponen-
tially decreasing with n; this exponent is rela-
tively close to the theoretical optimum exponent.

A simple decoding scheme that directly uses
the channel a posteriori probabilities 1s des-
cribed in which the decodlng computation per dig-
it appears to be constant, or at most, logarithm-
ically increasing with the code length. The
probability of decoding error i1s shown by a weak
bound to approach zero with increasing block
length when *his non-optimum decoding scheme 1s used
on a Binary Symmetric Channel of sufficlently high
capacity.

Although no tight bounde have been found for
the probablility of decoding error using this sim-
ple decoding scheme, both some experimental re-
sults and the form of the weak bound indicate the
potentiality of the decoding scheme.

Thesls Supervisor: A Peter Ellas
Title: Professor of Electrical Englneering
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CHAPTER 1

INTRODUCTION

Coding for Digital Data Transmission

Coding for error correctlon is one of the many tools
available for achleving reliable data transmission in commun-
ication systems. For a wide variety of channels, the Nolsy
Channel Coding Theorem(,/)of Information Theory indlcates
what can be achieved through coding. This remarkable theorem
proves that if properly coded information is transmitted at a
rate below channel capacity, then the probability of decoding
error can be made to approach zero exponentially with the
code length. The theorem does not, however, relate the code
length to the cost in storage, computation, and equipment
necessary to achieve this low error probabillty. Ideally,
one wants an inexpensive coding and decoding scheme that 1s
applicable to a wide variety of channels and that achleves
the low error probability possible with long codes. The cod-
ing and decoding scheme involving low denslty parity check
codes to be described in this paper is one of a number of
recent schemes attempting to approach this ldeal. A rough
comparison of these schemes will be glven in a later sectlon.

In order to mathematically prove some results about

4""'"“"‘-



low density parity check codes, we will assume that the codes
are to be used on a somewhat restricted and 1deallzed class
of channels. It 1is obvious that results using such channel
models can only be applied to channels that are good approx-
imations of the model. However, when the probabillty of de-
coding error for a code on an idealized channel 1s 10-20, it
18 difficult to determine what constitutes a "good" approxi-
mation. The analysis of a code on an idealized channel often
provides insight about the effect of various approximations,
but such insight should be used with caution.

The channel model to be ascumed here 1s a binary in-
put channel that 1s memoryless and symmetric at the Iinput.
Binary input means that the channel has a transmitter that
accepts a signal from a binary alphabet once each unit of
time and transmits a waveform corresponding to that input
over the channel. The results in this paper may be extended
to multi-input channels also, but this will be done else-
where . Memoryless means that given the input over a unit of
time, the output over the corresponding unit of time 1ls sta-
tistically indevendent of the inputs and outputs at all other
times. A symmetric input channel will be defined preclsely
later, but loosely, it 1s a channel in whlich the noise affects
both input symbols in a symmetric fashion. The Blnary Sym-
metric Channel, abreviated BSC, 1s a member of this class of
channels in which there are only two output symbols, one cor-

responding to each input. The BSC can be entirely specified



by the probability of a cross-over from one input to the
other output.

If a binary symmetric input memorylesc channel were
to be used without coding, a sequence of binary diszits would
be transmitted through the channel and the receiver would
guess the transmitted symbocls one at a time from the recelved
symbols. If coding were to be used, however, the coder would
first take sequences of binary digits carrying the informa-
tion from the source and map these sequences into longer re-
dundant sequences called code words for transmisslion over
the channel. wWe define the rate, K, of such codes to be the
ratio of the length of the information sequence to the length
of the code word sequence. If the code words are of length

nR possible sequences from the source

n, then there are 2
that are mapped into n-length code words. Thus only a frac-
tion 2-n(1-R) of the 2P different n-length sequences can
be used as code words.

At the receiver, the decoder, with its knowledge of
which sequences are code words, can separate the transmitted
n-length code word from the channel noise. Thus the code
word 1s mapped back into the nR informations digits. lMany
decoding schemesg find the transmitted code word by first
making a decision on each received diglt and then using a
knowledge of the code words to correct the errors. Thle in-
termediate decision, however, destroys a considerable amount

of information about the transmitted message, as dlscussed

in detail for several channels in ref. (/). The decoding




echeme to be described here avoids thie intermedlate declsion
by using the probability that a transmitted diglt 1s a 1l
conditional on the received symbol 1n the decoding process.

A parity check code * is a code in which the code
words are those sequences satisfying a set of llnear homo-
geneous modulo 2 equations called parity check equations.
This set of equations can be represented by a parity check
matrix, as in Fig. 1-1, in which each row represents a par-
ity check equation. A parity check set 1s defined as the
set of positions in which a row contains ones, or, in other
words, as the set of dizits checked by a parity check equation.
In matrix terminology, the set of code words 1s simply the

null space of the parity check matrix over the modulo 2 field.

n
xleX3x4x5x6x7
11101 0O

x5:xl+x2+x3
x6 X1+x2+X4

x.7:x1+x3+x4

n(l-R)) 1L 1 0 1 0 1 O
1 0 1 1 0 0 1

Figure 1-1
EXAMPLE OF PARITY CHECK MATRIX

# For a more detailed discusslon of parity check codes
see Slevian (/3) or Peterson( 7).
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Restricting our attentlon to parity check codes is
not serious as far as the probability of decoding error 1is
concerned. ElfLaLs(3 )has shown that for a B3C, a randonly
chosen parity check code of long block length and rate
reasonable close to channel capacity will have essentlally
the same probability of decoding error as could be achieved
with any code.

The mapping from information sequences into code
words for parity chzck codes can be simply accomplished in

several ways. One way is to diagonallize ths parity check

matrix, which can be done without changlng the set of code
worde. Then information digits can be used for the non-
diagonalized digits and the diagonallized diglts can be com-
puted as the modulo 2 sum of the informatlon digits. The
decodinz problem, that of separating the noise from the code

word, is the difficult problem. h

Low Density Parity Check Codes

| In order to find a simple decoding scheme, a speclal
class of parity check codes will be defined. Low density
parity check codes are codes gpecified by a parity check
matrix containing mostly zeros and only a small number cf
ones. In particular, an (n,),k) low density parity check
code 1s defined as a code of block length n in which each
column of the parity check matrix contains J ones and each
row contains k ones. These codes are not optimum in the

gomewhat artificial sense of minimizing probabllity of
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decoding error for a given block length, and 1t will be
shown in Chapter III that the rate at which these codes can
be used is bounded below channel capacity. FHowever, a very
gimple decoding scheme existe for these codes that compen-

sates for their lack of optimality.

Summary of Results

An ensemble of (n,},k) codes will be found in Chapter
II and this ensemble will be used to analyze the dlstance
properties of (n,j,k) cocdes. The distance between two words
in a code is simply the number of digits in which they aif-
ter. Clearly an important parameter in a code 1s the set of
distances separzting one code word frcm all the other code
words. In a parity check code, all code words have the same
set of distances to the other code words since the code words
form a group. Thus the distance properties for the ensemble
can be summarized by the tyrical number of code words at
each distance from the all zero code word. It is found that
the ﬁypical (n,},k) code for J 2 3 has a minimum distance
that increases linearly with the block length for and k
constant. Fig. 2-4 plots the ratio of minimum distance to
block length for several valves of J and k and compares 1t
with the typical minimum distance of an ordinary parity check
code. (n,J,k) codes with J = 2 exhibit markedly different
behavior and it 1s shown that the minimum distance of an
(n,),k) code can increase at most logarithmically with the

block length.



In Chapter III, the distance properties derived in
Chapter II are first used to bound the probability of de-
coding error for an (n,j,k) code on a BSC assuning maximum
likelihood decoding. The maximum likelihood assumptlon per-
mits an evaluation of the codes themselves that is indepen-
dent of the particuler decoding scheme. It is shown that
for reasonably large channel crose-over probabilitles, the
probability of decoding error for a typical (n,J,k) code has
the same behavior a2z that of optimum parity check codes of
slightly higher rate. Fig. 3-1 illustrates this loss of rate
associated with (n,],k) ccdes.

Next t-e probability of decoding error for (m,},k)
codes on a general binary symmetric input memoryless channel
is derived. It ies shown that the probability of decoding
error decrezses exponentizlly with block length, but the ex-
ponent 1s given as the solution of three simultaneous tran- -
scendental equations. A relatively simple numerical proce=~
dure is gilven to find the exponent for eny particular chan-
nel. The techniques of Chapter III are zlso applicable to
any parity check code or ensemble of parity check codes for
which the distance properties are known.

In Chapter IV, two decoding schemes are described.
In the first, which is particularly simple, the decoder first

makes a decision on each digit, then computes the parity

checke and changes any digit that is contained in more than
some fixed number of unsatisfied parity check equatlions.

The process 1s repeated, each time using the changed digits,
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until the sequence is decoded. The other decoding scheme 1is
based on a procedure for computing the probability that a
transmitted digit i1s a one conditional on all the receiveé
symbols that are 1ln any of the parlty check sets containing
the digit in question. Once again, the procedure 1is iter-
ated untlil the sequence is decoded. The computation per
diglt per 1lteration in each scheme is independent of code
length. The probabilistic scheme entails slightly more com-
putation than the flrst scheme, but decodes much better.

A mathemstical analysis of the probablllity of decod-
ing error using probabilistic decoding is dif:icult because
of statistical dependencies. However, for a BSC with suf-
flclently small cross-over probabilities and for codes with
J 2 4, & very weak upper bound to the probability of error is
derived that decreases exponentlally with a root of the code
length. Fig. 3-1 plots cross-over probabilities for which
the probability of decoding error is guaranteed to approach
O with increasing code length. It is hypothesized that the
probablility of decoding error actually decreases exponentially
with bloek length, while the number of iterations necessary
to deccde increases logarithmically. .

Chapter V presents some experimental results that in-
dicate that the descoding scheme 1s much better than would be
expected from the bound in Chapter IV. All the experimental
results are for very noisy channels on which the probability

of decoding error is high; many more data are needed for less

noisy channels.,
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Comparison With Other Schemes
The two other coding and decodling schemes that appear

most capable of achleving the low error probabilities assoc=-
lcted with long codes at a reasonable cost are convolutional

3
codes( ) with Wozencraft's (74) Sequential Decoding Scheme

and the Bose-Chaudhuri Codeé:tzth Petersen's( 7 decoding
scheme. Both these schemes and the low density scheme pre-
sented here are still in a stage of development and it is
difficult to predict the potentialities of any of them.

Sequential decoding for the BSC is hypothesized to
have, first, a probability of decoding error that decreases
exponentially with the constraint length, n, at the random-
coding exponent, and second, an average number of computa-
tions per digit that increases as n® where B 18 a constant
less than 1. 1In order to rigorously prove this bound to
probability of decoding error, however, one must allow a
number of computations growing as n2+23.(/0) The experi-
mental évidence“&ndicates that the actual computation re-
quired is below the hypothetical n8 bound.

The principal drawback of sequential decoding 1s
that the amount of computation necessary to decode varies
considerably with the noise. The flexibility of the decod-
ing scheme allows thie variation to be cut down in many
reasonable ways so that the problem might not be serious in
practice. However, more experimental data are needed to get
a close relationship between the peaks of computation re;

quired and the probability of error.
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Sequential decoding can also be applied to a wide

variety of memoryless channels, as shown by Reiffen(/o).

In particular, sequential decoding is capable of making

full use of the a posteriori probabilities at the outputs of
the channels consldered here.

The computation per digit associzted with the Bose-
Chaudhurl codes on the BSC increases roughly as the cube of
the block length, but does not fluctuate widely. The decod-
ing scheme guarantees correction of all combinationse of up to
some flxed number of errors and corrects nothing beyond.
For moderately long block lengths, the number of errors cor-
rectable is roughly half the number correctable by the equiv=-
alent sequential decoding scheme. No way 1s known to make
use of the a posteriori probabilities at the output of more
general binary input channels. This inability to make use
of a posterlori probabilities appears to be a characteristic
limitation of algebraic as opposed to probablility decoding
techniques.

The computation per digit associated with low den-
8lty parity check codes appears to increase at most loga~
rithmically with block length and not to fluctuate widely
with the noise. The probability of decoding error is un-
known, but is believed to decrease exponentially with block
length at a reasonable rate. Thus low density codes require
less computation than either of the other schemes for long

block length, but the asscciated probability of error is

still open to question.
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For many channels with memory, retaining the a pos-
teriorl probabilities from the channel makes it practically
unnecessary to take agccount of the memory in any other way.
For instance, on a fading channel when the fade rersists for
several baud lengths, the a posteriori probabilities will in-
dicate the presence of a fade. If this channel were used as
a BSC, however, it would be necessary for the decoder to take
account of the fact that bursts of errors are more probable
than 1solated errors. Then, using a posteriori probabilities
gives low density decoding and sequential decoding a great
flexibility in handling channels with dependent noise. For
channels 1n which the noise 1s rigidly constrained to occur
in short, severe bursts, on the other hand, there is a par-
ticularly simple procedure for decoding the Bose-Chaudhuri
Codes.(q )

When transmitting over channels subject to long fades
or long nolise bursts, it is often impractical to correct
errors in these noisy periods. In such cases it 1s advan-
tageous to use a combination of error correction and error
detection with feedback and retransmiasiong r),08) All
three of the coding and decoding schemes being considered
here fit naturally into such a system, but in cases when
little or no error correction is attempted, low density codes
appear at a disadvantage.

The conclusion one can draw from this is that all

three schemes are sufficiently promising to merit further in-

vestigation.
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CHAPTER II
DISTANCE PROPERTIES

emble of al)l Parit ck. Code

The analysis of the distances between code words in
a code 1s usually difficult because of the immense number of
code words involved. Often it is simpler to analyze a whole
ensemble of codes becasuse the statlisticse of an ensemble per-
mit one to average over quantities that are not tractable in
individual codes. From the ensemble behavior, one can make
statistical statements about the properties of the member
codes.

This chapter will be principally concerned with the
distance propertles of low density codes, but for comparison
some distance properties of an ensemble of all group codes
will be derived first. BSince a parity check code is com-
vletely specifiad by a parity check matrix, an ensemble of
parity check codes may be defined in terme of an ensemble of
parity check matrices. Consider the ensemble of n(1-R) by n
matrices of binary digits in which each element is zeroc or
one with probability % and all elements are statlstically
independent. This will be called the ensemble of all parity
check codes of length n and rate R and 1s essentially the -
(3)

same as that considered by Elias. Note that some codes in
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the ensemble may have a rate greater than R since the rows
of a matrix in this ensemble are not necessarily linearly
independent over the modulo 2 field. Over this ensemble,
the minimum distance, D, of a code 1s a random variable, and
its distribution function may be bounded by the following

theorem:

Theorem 1:
Over the ensemble of all parity check codes of

length n and rate R, the minimum distance distribution tunc-

tion is bounded by both

| . o
repsin] < Lo [TL ew nfH@) - 1-RIng  (2.1)

and
Prt?< d}g < 1
where

H(d) = = finf - (1-d)1n(1-4)

Proof:

let P(L) be the probability of the set of codes for
which some particular sequence of welght L 1s a code word.
Stated differently, P(L) is the probability that a particu=
lar sequence of weight L will be a code word in a code chos-
en at random from the ensemble. Since the all zero sequence

is & code word in any parity check code, P(L) = 1 for L = O,
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For L # 0, a particular parity check will check with proba=-
bility % on the last position in which the L weight se-
quence has & one. This makes the probability % that the
parity check is satisfied regardless of whether the first
L-1 ones were checked an even or an odd number of times. A
sequence will be a code word if and only if it satisfles all

the n(l-R) parity checks, so that
p(L) = 2-B(1rR) (pop 1, #0)

The minimum distance of a parity check code is less than or
equal to nd if and only if the code contalns a code word of
welght between 1 and nd . Since there are (E) sequences of
welght L, and since the probability of a union of events 1s
less than or egual to the sum of probabilitiees of the indl-

vidual events,

: ' n) -n(1-R)
Pr(Dsnd ) £ g(g) P(L) = g(L)e (2.2)

For J< %‘-, this can be bounded by a geometric series to give

1-28/ \n

Pr(D<€ nd ) < (—1-’—{)(35) 2'n(1'R) (2.3)
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Using the Sterling approximation to a factorial,

L n"expl-n+ 2 - igl < n! < pE= nexpn + i
Vet 12n ~ 360n°| €7 = fFwn 12n
one can show after some manipulation that

1 4
== = exp |nH(4) - 1-2—51?'-(—]7:3] < (nn‘)<lm%%ﬁ§77 expnH({)

(2.4)

where

H({) = - d1nd - (1-3)1n(1-§)

Substituting this in Eq.(2.3), we get Eq.(2.1), proving the

theoren.
Q. E. D.

As n gets larger this bound to Pr(Dsnd) as a func-
tion of J approaches a step function with the step at that
o < ,]2-. for which H(J,) = (1-R)1n2. d, 18 plotted as &
function of rate in Fig. 2-4. This result is closely relat-
ed to the Gilbert bound on minimum distance. (5) The asymp-
totic form of the Gilbert bound for large n states that
there exists a code for which D2 nd,. Theorem 1 states
that for any € > O, the probability of the set of parity
check codee that has D < n(Jo - € ) approaches O exponentially

with n.
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Distance Properties of low Densi d

In this section an ensemble of low density parity
check codes will be defined and a theorem similar to Theo-
rem 1 will be proved. Then & new ensemble will be formed by
expurgating those codes that have small minimum distances.
This modified ensemble will be used in the next chapter to
derive bounds on probability of decoding error for various
channels.

Define an (n, j,k) parity check matrix as a matrix of
n columne that has. J ones in each column, k ones in each row,
and zeros elsewhere. It follows from this definition that
an (n,J},k) parity check matrix has il rows and thus a rate
R21 - %. In order to construct an ensemble of (n,J,k)

matrices, consider firat the special (n,},k) matrix in

Fig. 2-1 for which n = 24, k = 6, and J = 3.

111111000000000000000000
000000111111000000000000
0 00000000000112111000000
00000000000000000011111 l‘
111111000000000000000000
000000111111000000000000
000000000000111111000000
0 00 % 000000000000001111311
1 1l 000000 000000000
000000111111000000000000
0 00000000000111111000000
0 00 000000000000000111111

J

BASE MATRIX FOR AN (n,J,k) ENSEMBLE
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Thie matrix is divided into } blocks of 3 rows each and

the 1'th row of each block contains ones in positions

(1-1)k + 1 to ik. Using this as a "base" matrix we can form
new (n,J),k) matrices by separately taking each block of 3
rows and permuting the columns within that block. Note that

thie type of permutation preserves the k ones in each row

i

and the single one per column for each of the ] blocks of
rows.

Finally, define an (n,j,k) ensemble of matrices to
be the set of all such multiple permutations of the "base"
matrix, assigning equal probability to each permutation.
Thus the ensemble contains all (n,),k) matrices for which
each of the J blocks of f rows contains a asingle one in
each column. The ensemble of (n,j,k) codes is defined by
this ensemble of (n,Jj,k) parity check matrices. This defi-
nitlon 1s somewhat arbitrary, but will be justified by its
analytical simplicity. Before finding the minimum distance
distribution funetion for thlis ensemble of codes, we will

need the following theorem:

Theorem 2:

For each code in an (n,},k) ensemble, the number,
NEL], of. sequences of weight L that satisfy any one of the }
blocks of % parity checks is bounded by

N [E,v'(sa < exp f,u(s) - 8p'(s) + (k-1)1n2] (2.5)
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where 8 1s an arbitrary parameter, (s) is defined by

H(s) = 1n 2'k[.(l+es)k + (1-95)§J,
and His) = Qalsﬂ_ﬂl

Discussion:
This theorem relates L and N(L) by expressing both

as functions of the parameter s. Figure 2-2 sketches L/n
and 1nnN L) ag functions of s.

Figure 2-2

PARAMETRIC REPRESENTATION OF L/n  AND l—-n—nl"iﬂ
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Proof:

For any code in the ensemble, and for any one of the
j blockse of % parity checks, the % parity check setg
within a block are mutually exclusive and exhaust all the
digits. Consider the set of all sequences of k bilnary dig-
its that contain an even number of ones, and construct an
ensemble from these sequences by assigning the same proba-~
bility to each. The total number of sequences 1in the ensem-
ble ie Qk-l and the probability of a sequence containing 1

k)2°k+l

ones (1 even) is (1 « The moment generating function

for the rnumber of ones in a sequence 1s thus

- k). -k+1 _81
g(e) = l};ven(i)z 1o (2.7)
or

g(s) = 2'k Bl-ﬁea)k + (l-ea)ﬂ (2.8)

To show that Egs.(2.7) and (2.8) are equivalent, use the bi-
nomial éxpaneion on Eq.(2.8) and observe that odd terms can-
cel.

For each of the 3’ parity check sets, independently
choose a sequence from the above ensemble and use that se-
quence as the digits in that parity check set. Thils proce-
dure defines an ensemble of equiprobable events in which the

n

events are the n-length sequences satisfying the v parity

checks. The number of ones in an n-length sequence 1is the



sum of the number of ones in the individual parity check

sets, and thus 18 the sum of 2 4independent random varia-

k
bles each having the moment generating function, g(e), in
Eq.(2.8). Consequently, the moment generating functlon for
the number of onees in an n-length sequence is [g(s-j E.
Thie 18 now used to bound the probability, Q(L), in this en-

semble, that a sequence has L ones. By definition,

N
Be] ® = I_exn(sria(r) (2.9)
L0
2 exp(sL)Q(L) (for any 8 and L) (2.10)

From Eq.(2.6) and Eq.(2.8), «(8) = 1in g(e), so that

QL) < exp[ﬁ;l(s) - aI]

Finally N(L) equals Q(L) times the number of sequences in

the ensembls. Since there are 2k"1

n
w(k=1)
length ensemble, there are 2

sequences In the k-

sequences in the n-length

ensemble, sc that
N(L) £ exp[%,u(s) + %(k-l)lﬂ-sl] (2.11)

Setting the derivative of the exponent in Eq.(2.11)
equal to 0, we get L = kg-/.o'(a), and substituting this value
of L in Eq.(2.11), Eg.(2.5) results, proving the theorem.
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It 1s shown in ref.( 4#) that setting L = E/A'(s)
actually minimizes the exponent, thereby yielding the best
bound, but the theorem 1g true regardless of the minimal
character of the exponent. Although not necessary here, 1t
can be shown, using "tilted" probabilities ( 6‘)a.nd a central

(6)
1imilt theoren, 6 that asymptotically for large n,

n f N 2 n - ! -
NE-{-,U (51 > ;7;. exp l{EA(S) s '"(8) + (k 1)1n2]

(2.12)

Theorem 2 can now be used to find the probability,
P(L), of the set of codes for which some particular seguence
of welght L is & code word. Since all permutations of a
code are equally likely, P(L) is clearly independent of the
particular L welght sequence chosen. If we choose an L
welght sequence at rendom, then for any code in the ensemble
the probability 1s Eékl that the L weight sequence chosen

L

will satisfy any particular block of E parity checks.
Since each of the J blocks of parity checke 1s chosen inde-

pendently,

(Z)

The minimum distance distribution functilon can now

P(L) = [MM s (2.13)

be derived in terms of P(L) in the same way as it was derived

for the ensemble of all parity check codes in Ey.(2.2). -
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prpsnd] < é(g)m) = é({)w[m)] : (2.14)

Note that in the low density ensemble only sequences of even

welght may be code words. Using Eqs(2.4) and (2.11), we get

(F)R(L) € c(x,nexp - nE(A) (2.15)

4]

where A L
n

E(N) = (J=1)H(N) - %Eu(s) + (k-1)1n 2] " jsé\;

1-1
c(A,n) = [Ztnh(l-li" exp 12:1;]('1 =)
n -

A (s) = N
k

Substituting Eq.(2.15) into Eq.(2.14), we get

Pr[p < n[] < g C¢(A,n)exp-nE(A) (2.16)
=2

As n increases, the summation in Eq.(2.16) 1s governed prin-
cipally by the behavior of E(A). E(A) also appears in the
bounds for probability of decoding error in the next chapter.

Unfortunately, it i1s not easy to analyze E(A) since it is
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given in terms of s, which is in turn an implicit function
of A. It is shown in Appendix A that for j-3, E(A) has the
behavior shown in Fig.2-3. It is O at A= O, rises with an
initial infinite slope, has & maximum, and then decreases,
crossing the axlis at some A= ‘{ik’ and remaining negatlve

for A 2 ij‘

.

E(A)

e . N - . B B
P S et mm‘-"‘.y.' AT B e e T T R S e R R e L S

/

Six

N

Figure 2-3
SKETCH OF THE FUNCTION E(?2)

e A s R AR v

It is clear that for any d > '{jk the summation in
Eq.(2.16) becomes unbounded, but the minimum distance dis-
tribution function is still bounded by 1. For d £ ij, the
biggest terms in the summation are for A close to O and A
close to ij. The following theorem, which is proved in
Appendix A, states this precisely.
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Theorem A2

For an (n,J,k) ensemble of codes, the minimum dis-

tance distribution function is bounded by both

Pr[D < nJ] < 5;%-_2 + O( lj_2> + nC(dn,n)exp-nE(f) (2.17)

and

Pr[D Snai] <1

where C and E are defined in Eq.(2.15) and 0(%2) is &
n -

function approaching O with n faster t.han(-l— ).

n

The first term in Eq.(2.17) comes from code words of
welght 2, the next term from words of small welghts greater
then 2, and the last term from words of large welght. As n
gets larger this bound to the minimum distance distrilibution
function tends toward a small gtep at_J/wz %, and a large
step at' d = dyg» With the amplitude of the small step de-
creasing as n~d* 2,
ij will be called the typical minimum distance
ratio of an (n,),k) ensemble. For large n, most codes in
the ensemble have a minimum distance either close to or
greater than nd&k, and since d;, 1s independent of block
length, the minimum distance typical of most codes in the
ensemble increases linearly with block length. Fig. 2=4
plots d as a function of rate for several values of j

Jk
and k and compares them with the. typical minimum distance.
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ratio of the ensembls of all codes., It can be seen that as
} and k increase, { jx for the (n,),k) codes quickly ap-
proaches [ o for the ensemble of all codes. This is proved
in Theorem A3 cf Appendix A.

Here one sees why a minimum distance distribution
function was derived before obtaining any results about prob-
abllity of decoding error. If two words in a group code dif-
fer only in two digite, then the probability of decoding er-
ror is lower bounded by the probability of recelving those
two digits incorrectly; this 1s independent of code length.
Thus, over the whole ensemble, the probability of decodlng
error as n- <o is proportional t.o(.;l. ), the prbbabillty of

codes of minimum distance 2. A very small fraction of poor
codes, consequently, dominates the probablility of decoding
error over the ensemble.

In order to. determine the probability of error be-
havior of typical (n,J,k) codes with minimum distances in
the order of laxjk, we will modify the {(n,3,k) ensemble.
Remove the half of the codes with smallest minimum distances
from an (n,}j,k) ensemble and double the probabllity of eath
code in the remaining half. The resulting ensemble. will be
called a modified (n,J,k) ensemble and will be used in the
next chapter to derive bounds on the probabllity of decoding

error for (n,j,k) codes.

Let X njk be the minimum distance of the modified

ensemble.,, ank is lower bounded by that value of d for
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which the right side of Eq.(2.17) 1s one half. With in-
creasing n, the bound of Eq.(2.17) approaches a step function

at ij, so that Anjk 1s asymptotically bounded by ij.
Before using this modified ensemble to derive bounds

to the probabillity of decoding error, we will consider the
special case of J = 2, which corresponds to ensembles 1n

which each digit is contained in exactly two parity check

sets.

Theorem 3:
Let a parity check code have block length n with

each digit contained in exactly two parity check sets and
let each parity check set contain k digits. Then the mini-

mum distance, D, of this code must be bounded by

2 1n 2 (2.18)
In(k-1)

o
IN
(¥

Proof:

The theorem will be proved by representling the code
in the form of a tree as in Fig. 2-5. Let the first diglt in
the code be represented by the node at the base of the tree.
This diglt is contalined in two parity check sets, which are
denoted by the two branches rising from the base node. The
other digits in these two parity check sets are represented
by the nodes in the first tler of the tree. In like manner,
each digit in the first tier is contained ir. another pagity

check set depicted by & branch rising from that digit.




Successive tlers in the tree may be similarly constructed
until, for some integer, m, & loop 1s formed at the m'th
tier. Such a loop may occur either if two branches rising
from the m'th tier contain a digit in common, as in Fig. 2-5,
or if a single branch rising from the m'th tier contains

more than one digit in the m'th tier.
We next bound m in terms of the block length, n.

The first tier of the tree contains 2(k-l) nodes, the second
contains 2(k’-1)2 nodes, and similarly the m'th contains
2(k-1)m nodes, since by assumption no loop occurs in branches
below the m'th tier. Since each node corresponds to a dis-

tinct digit,

2(k-1)" € n

m < lLL'_’.{_% (2.19)
1n(k~1)

-For a glven loop in the tree, consider the set of
nodes that comprise the intersections of the branches in the
loopes Such a set of nodes 1ie represented by asterisks in
Fige 2-5, Each branch in the loop must contain exactly two
of these nodes and no other branch in the tree contains any
of these nodes. Consequently, an ne-length sequence that
contains ones in positions corresponding to the nodes of
this set and zeros elsewhere must be a code word, since all
the parity check sets contain an even number of ones.

Finally, the welght, D, of the code word corresponding to




the first loop that occurs must be bounded by

D < 2m + 2

since the loop is formed by a slngle descent and ascent in

(2.20)

the tree.

statement

Combining Eqe.(2.19) and (2.20), we get the
of the theorem, Eg.(2.18).
Qo Eo Do

O —b

/

Jagighys

-

/
o

¥

\..
S~
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TIER 2

/ /
/ / /

-y S d

Figure 2-5
PARITY CHECK TREE
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CHAPTER III

PROBABILITY OF DECODING ERROR

Upper Bound on Rate

The major portion of thls chapter will analyze the
effectiveness of typical codes in an (n,},k) ensemble for
correcting errors on a memoryless symmetiric channel with a
binary input alphabet and arbitrary output alphabet. It
will be found that the probability of error behavior of the
typical (n,J,k) code is similhr to that of an ordinary ran-
dom parity check code of somewhat.higher rate. First, how=-
ever, a fundamental, but not serious, limitation on any
(n,j,k) code will be derived. This limitatlon will show
that not even the best (n,J,k) code can be used to transmlt
information reliable over a channel whose capacity 1s too
close to the code rate. The limitation will be proved only
for the BSC, but it can be shown to be applicable to any
chennel. The 1imit on capacity suggestes that even the best
(n,},k) code behaves similarly to the typlcal (n,3,k) code,
and that a search for (n,j,k) codes that are much better

than typical will be frultless.




36

Theorem 5,1:

et » B AR

let a parity check code on length n and rate R con-

taining k digits in each parity check set be used on a BSC
with cross-over probability p, and let the code words be
used with equal probability. Let

@ H(p) = -plnp - (1-p) 1ln (1-p)

: Py = 1 + (1-2p)

tY 2

(: Then,

| r > Hlegl- H (3.1)

H(py )

\\\\\‘ implies that for a fixed k, the probability of decoding

error is bounded away from O by an amount independent of n.

Discussion:

e P AL

The channel capacity of a BSC in bits per symbol is

1 - %%3%. Since H(p,) < 1n 2, this theorem states that the

gource rate must be bounded away from the channel capaclty

e i

for relisble transmission. Fig.(3-1) illustrates the amount
by which the source rate must exceed the capacity for several

values of J and k.

Proof:

Let u be a transmitted code word and let v be a
recelved sequence. The average mutual information in Dbitse

per symbol 1is
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L Iuiv) = -LTegptur + L Togp,Tu)
- -% Toep(v) * % Iogapulv) (3.2)

If the per digit equivocatlion satlisfies the equation

- + Togop (u) 2 € >0 (3.3)

for some € 1ndependent of n, then the probability of decod-
ing error must also remain bounded away from O. Eg.(3.3)

will be established by evaluating the other terms 1n

Eq.(3.2).

nR
Since there are 2 messages in the code set,
- 1 Togptu) =
a &P R (3.4)

Given the sequence u, each digit in the sequence v hag prob=-
ahility b of being different from the corresponding digit

In u, eo that

-H(p) (3.5)

Consider specifylng the received sequence v by first speci-
fying the parities of the n(l-R) parity checks and then
specifying the received digite in some set of nR linearly

independent positlons in the code. This specification 1s
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squivalent to v since specifying one will make it possible
to compute the other., The probablility that a parity check
is satisfled 1s the probability that an even number of

errors have occured within the parity check set, which 1s
k] 4 k-1 1+ (1.2p)k
(1)p (1-p) = 2 127eb (3.6)
1 even 2

To verify Eq.(3.6), rewrite the right side as

k
(l-p+p) + (1l-p- k

2

and expand in a binomial series.

The uncertainty assoclated with each parity check

1s thus H(Pg) Dbits where P = 1 + (1-2p)¥,  since the
1n 2 2

uncertalnty assocliated with each information digit is at
most 1 blt and dependencies can only reduce the overall

entropy, we have

weoetvy < (1-RMH(py) + R (3.7)
1n 2

¢
Bl

The substitution of Eqs.(3.4), (3.5), and (3.7) into Eq.

(3.2) produces

- 1 logpp (u) 2 %ﬁE% - (=R)H(p,) (3.8)

ln 2
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From the hypothesis of the theorem, there is an € > 0
that satisfies

R = H(pk) - H(p) + €1n 2 (3.9)
H(py)

Substituting Eq.(3.9) in Eq.(3.8), we obtain Eq.(3.3),

proving the theorem.
Q. E. D.

Ensemble Probability of Error for Binary Symmetric Channel

A bound is derived in this section concerning the
probablility of decoding error when (n,j},k) codes are used
on a binary symmetric channel with maximum likelihood decod-
ing. Glven a received sequence, v, & maximum likelihood de-
coder chooses the code word, u, that maximizes pu(v), the

probabllity of v conditional on u. Since

p,(u) = Py (V)p(u)
p(v)

it 1s easlly seen that 1f all code words are used with equal
probablility, then maximizing Pu(v) 18 equivalent to maximiz-
ing p,(u), which minimizes the probability of decoding error.

It 1s next shown that for any parity check code, the
probability of decoding error on the BSC using maximum like-
1ihood decoding is independent of the transmitted code word.

Let uy be the transmitted code word, let v be the received
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sequence, and let e, the error sequence, be the modulo 2

gum of uy and v. If e is as close to some non-zero code
word, u,, as it 1s to the zero sequence, then v will be as
close to uy @u2 as it 18 to Uy . Since the group property
of a parity check code implies that u; ® uo 18 a code
word, a decoding error will result. This result depends
only on the error sequence, which is independent of the
transmitted word. Thus the probabllity of error is Iindepen-
dent of the transmitted word.

Each code in the modified (n,J,k) ensemble has its
own probability of decoding error when used on a BSC, and we
shall next bound the average value over the ensemble of all
these probabilities. Given this average probability of de-~
coding error, it should be easy to find & code for which the
probability of error 1s not much greater than the average.

Since the probability of decoding error in any code
is independent of the tranamitted code word, the assumption
that the all zero sequence is transmitted can be used 1in
finding the ensemble average probabllity of decoding error,
Rather than first finding the probablility of error for each
code and then averaging over the codes, we shall first aver-
age over the codes given a particular received sequence, and
then average over the recelived sequences.

Assume a received sequence, v, that contains ¢ ones
and n-c zeros. The ensemble probablility of decoding error:

for this sequence is less than or equal to the probability
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of the set of codes that contain a code word differing from
v in ¢ or fewer places. Let M(L,c) be the number of se-
quences of welght L that differ from v in ¢ or fewer places.
An L welght sequence differs from v in ¢ or fewer places if
and only 1f the L welght sequence contains at least %’ ones
in pesitions where v contains ones. Since there are (g)
arrangements in which an L weight sequence has 1 ones in
poslitions where v has ones, and since there are (E:;)

arrangements of the other L-1 ones in positions where v has

zeros,

L

M(L,c) = ;(‘{) (%)
1=L/2

In the modified (n,j,k) ensemble as defined at the end of
Chapter II, no sequence of welght L<fn1hjk is a code word.
For L,ZnZan, the probablility that an L-welght sequence 1is

a code word is less than or equal to 2P(L), where P(L) 1is
given in Eq.(2.13). Since the probability of a union of
events 1s less than or equal to the sum of the probabilities
of the individual events, the probabllity that a gode word
of welght L differs from v in ¢ or fewer places is less than

or equal to

2P(L)M(Le) (for L-Znap,qy)

0 (for L(nank).
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Let P,(e) be the ensemble probabllity of decodlng error
given & received sequence of ¢ ones. It 1e the probabllity
that & code word of any weight differs from the recelved

sequence in c¢ or fewer places.

2c 20
Pole) € ) 2R(L)M(Le) = 2P(L) Z )(323)  (3.10)
IFnAan L”nlnjk 1:%

Eq.(3.10) can be simplified by noting that for ¢ < g

#*
the maximum term of the summation over 1 is at 1 = %.

Bounding the other terms by the terms of a geometrlc serles

we obtaln
L
T ) < BB () (8)
1=L/2
P.(e) < ‘_g'?- 2n-2¢-L ( 2) P(L)
c —_ >L__ “n-2¢  \L/ ( )
L=n2n3k

(3.11)

The bound in Eq.(3.11) increases with the number of
errors, ¢, until it becomes greater than l. It will now be
shown that the number of errors for which the bound equals 1
is asymptotically a fixed fraction, xhk’ of the block length.

# Only even values of L are considered since P(L)=0
for L odad.
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It follows from Eq.(2.4) that

(172) (?,7") < expE:H(eé)i- (n-c)H(-é-lz-‘ﬁ_c))] (3.12)

Applying Ege.(3.12), (2.11), (2.13), and (2.4) to Eg.(3.11),

we have
20
Pole) < E: A(X,¥)exp nB(A,Y) (3.13)
where
%- = % ’ Y = 1%
and
3
A(ALE) = 222 =2 [oqpain) — 3
M -2y [ " ] oxP 12 (1-A )
B(A, ¥) = ;'H%7 + (l-Y)H(E(&l-:;)) - JH(A) +

+%E‘(s) + (k-1)1n2] - Jsa

The parameter, s, 18 implicitly a function of A through the
1n 2-k[-(1-0»e:5)k + (1-98)15.

, B(A,¥) remains negative

relation w'(s) = Ak where u(s)

sle W

If, for a particular value of ¥ =




Wy

for all A then Pc(e) must approach O with inereasing n, but
if B(A,¥) is positive for some A., then the first bound in
Eq.(3.12) increases without 1imit as n increases. Thus Kjk
is that ¥ for which B(2,¥), maximized over A , 1is equal to
O xak 1s called the error correcting breakpoint of the
code since the bound to P.(e) as a function of ¥ approaches
a unit step at ¥ = ‘Sk as n» 00, Fig, 3-1 plote er
for several different values of j and k. For comparison,
the continuous 1line in Fig. 3-1 is the error correcting
breakpoint for the ensemble of all codes.

In order to evaluate the overesll probability'of de-
coding error, P,(e) will be bounded by Eg.(3.11) for e¢<n ﬁk
and by 1 for ¢ » n)3k. For a binary symmetric channel with
a cross-over probability p, the probability of ¢ cross-overs
is (g) p®(1-p)™"C, Averaging P,(e) over c, we obtain the

ensemnble average probability of decoding error,

Ple) < P, + Po (3.14)

where
n
Y (g)e°2-p)n-°
c=b
b-1 2
moe YY) L) (e m e

°=mn1k L'=n2njk
2

-
H

in whiech b 1s the smallest integer greater than or equal to
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XJkn.
Next it is shown that for any channel probability

P < aﬁk’ P(e) approaches O exponentially with increasing n.
Thus the error correcting breakpoint, Kjk' is also the maxi-
mum channel cross-over probability for which reliable de-
coding can be assured using an (n,j,k) code.

Py, in Eq.(3.14), can bes bounded by a geometric

series for p < Xjk’ obtaining

- b -
py < LRlbmy b pn-d
b-pn

Applying Eg.(2.4) to (g), and recalling that b 2 na’Jk,

Pl S (1‘p)ajk exp =-n El'p(ﬁjk) - H(Xjk—)]
(¥ 31-p)/2Mn &y (1- g )

(3.15)

where Tp(KJk) = -Xjkln p - (l-xjk)ln (1-p) 18 the tangent
at p to the binary entropy curve as shown in Fig. 3-2,

It 18 next demonstrated that P in Eq.(3.14) is
bounded in terms of the same exponent as that given for Py

in Eq.(3.15) if p is in the range

iy ~ A
Jk jkn
2 ¢ 2 ¢ Jx (3.16)

1-8.]1{ =N 1!§n l-p 1-031:
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GEOMETRIC INTERPRETATION OF P(e) EXPONENT

If Eq.(3.16) 1s eatisfied and if the order of sum-
mation in Po of Eq.(3.14) 1s interchanged, then for every
value of L in the sum, the sum over ¢ can be bounded by a

geometrlic series with a maximum term at ¢ = b-1.

2(b-1 ea ek
n- h;y} . _ _
2 S _m_.__-lfm))(\,-g) (2l (o) 2o e ™
1- % W/al\ P
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Using Eq.(3.13) and recalling that B(A,?)S0 for ¥ £ a’jk’

we have

2(b-1)

F, < E PL1- %y W2 AN ¥ ) (2-1) pP 1 (1-p)P*
P(l-l)-YJk+'4\/2

L=nAnjk (5.17)
Combining Eq.(3.15) with Eq.(3.17),
P(e) € D exp -n[Tp(erk) - H( Xjkﬂ (3.18)
D = 1 (1-p) + A(2%,¥%) (1-p) ¥ (1-%,- "K)
V%nggl- ) (¥, -p) (1= ) (P =P+ Anjc )

r 8

for

b K -Mkn
3k T < 2 < ¥
1=y - l-p 1- 7,
Jk " Tkn Jk
2

The exponent in Eq.(3.18) is the same as the expo-
nent in the probabllity of decoding error over the ensemble

of all parity check codes at a rate 1 - 31{__(_8_%5) bits per
n
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3
symbol(. ) It 18 also the exponent of the Hamming boundf 7)

which 1s a lower bound to the probability of decoding error
for any codes of rate 1 = ZZ';'H(XJK“ Thus, for the range of
channel cross-over probabilitles glven by Eq.(3.16), the low
denslty code ensemble has the same exponent 1n'the probabil-
ity of error as the ensemble of all codes at a slightly
higher rate. Flg. 3-1 1lluetrates the magnitude of this rate

lossg for several values of J and k.

For the rest of this sectlon, P(e) will be evaluated
when tlhie channel cross-over probability is too small to sate-
1sfy Eq.{(3.16). C(onceptually the problem is simple.
Zq.(3.15) 1s & valid bound to P1, and P, can be bounded by
finding the maximum term in the double summation of Eq.(3.13)
and multiplying by the number or terms. The solution to
this problem 1s invelved, however, because the maximum term

con appear z2ither on a boundary of the summation or within

the summation. The reader who is content with the statement
that the sxponent governing P(e) increases as the channel

cross-over probabllity decreases wlll lose nothing by omite.

~

ting the rest of this section,

First we substitute the equality

- 'wv'w-Y [ o

L/z( )() = ( )(CL/;()

into %Zg.(3.14), and apply Egs.(2.4) and (2.15) to obtain
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b-1 2¢

P, < } B=0=L/2 G(a,n) exp -nF(M¥)  (3.19)

=Akn Y
>

F(A,¥) = =Aln 2 - (l-l)H(%%g)w E(A) - ¥In p - (1-Y)1n(1-p)
(3.20)

where 7\=L/n, Y= ‘%, and C(A,n) and E(A) are defined in

Eq.(2.15). To find the minimum value of F(A,¥) we can re-

write Eq.(3.20) in the form

F(a,¥) = :%m 4p(l-p) + E(A)
o [l (e o - 1228 ]
= A=AN=RT P P m Ty R

18 now contained entirely within the square brackets. The

minimum value of this square bracket is O and occurs at

¥-A2 (3.21)
1-x P
Thus
Fu¥) gy, = 5 1n 4p(1-p) + E(N) (3.22)




5

FNI ¥min = _1ap ap(1-p) + 5'(R) (3.23)
da 2

The behavior of E(A) is discussed in Appendix A; and E'(X\)
18 sketched in Fig. 3-3.

E(a)
A /a
\
Flcure 3-3
1 - ae(x
SKETCH OF E'(A) = 5

From Fig. 3-3 and Eq.(3.23), it can be seen that for
P very small, QEKZZ!lrmin 1s always positive, and the min-
ax
lmum value of F in the double summation of Eq.(3.19) occurs

at L = n’njk' As p gets larger, dF(Z;f)Xmin eventually

becomes negative, and has 2 zeros, the second of which rep-

resents a local minimum of F(A,¥), Both the Az Aa,at
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which the minimum occurs and the ¥ satiefying Eq.(3.21)
increase with p. When this ¥ reaches Ujk’ then the min-
imum term is once again at Fﬁk and the exponent in Eq.(3.18)
holds. Summarizing, the exponent of the probabllity of
error 1s the exponent of Eq.(3.18) for p > 2"Jk'—lmi_x;;,( R

1-Anin
For p(z ~Amin/2 , the exponent 1s the minimum of
1-2nin

- ‘LEQ in[4 p(l-p)] 2nd 2._111.%-11 1n[4p(1-p)] + EAgin) .

Bina Symmetric Input Multi-GCutput Channe

Binary symyetric channels are sometimes approximated
in practice by communication systems in which binary signals
are sent over escentially memoryless physical channels with
a receilver at the output that chooses the most likely signal.
Such a receiver throws away information by making a decision
instead of retaining the a posteriori probabilitles. For-
tunately, the decoding scheme to be described 1n the next
chapter operates directly from the a posteriori probabllitles
as easily as from & binary decision. It would be folly to
use a decision-making receiver with such a decoding scheme.
Thus, in this section, a bound will be formulated for the
average probabiilty of decoding error over an (n,},k) ensem=-
ble of codes used on a chamnel with an arbitrary set of out-
puts. To make the problem tractable, however, only those
channels will be considered for which the nolse, 1n a sense

to be defined later, acts symmetrically on the two vossible

inputse.
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Consider a channel with an input alphabet of two
symbola, x = O and x = 1; an output alphabet (discrete or
continuous) of symbole y; and a set of channel transition

probabilities P,(y). Define

I(y) = 1n 2Hy) i I,(y) = 1n 2Ra(y)
© Py (y)+F1(y) * P, (y)+P, (y)

(3.24)
For equlprobable inputs, these are the mutual in-
formations associated with inputs of O and 1 respectively.
Let Fb(lo’ll) be the distribution function of Io(y) and
I,(y) when x = O 1s sent, and let Fl(Io,Il) be the dis-
tributlon function of I;(y) and I (y) when x = 1 1e sent.

Define a symmetric input channel as one satisfying
FO(IO’II) = Fl(Il,Io) (3525)

Thus, Fo(I,,I,) differs from Fy(I,,I;) only by an inter-
change of I, and I,.

If the input signals are properly chosen, both
channels with independent memoryless additive noise and fad-
ing channels with additive nolse ipewhich both the fade and
noilse are independent and memoryless are examples of binary
symmetric input channels.

As in the last section, assume a maximum likellhood

decoder. If v = yl y 2... y Dy received, the decoder




chooses the code word, u = x* x2... x that maximlzes

Pu(v) = TF Bei(y*).

L=

Iei(y*)

n . .
:E; 1n Ex(yt)
i= Poly*)+p(y*)

n

1 . .
i1n P,(v) -ézin 2 P (y*) + P(y*)

4

P
c
<
il
™.
M

The u for which P,(v) 1s maximized is also the u for which
I,(v) is maximized. Since the specification of Io(y) anc
I;(y) for each digit will allow the decoder to maximize
I,(v), the probability of decoding error for a code can be
determined from the distribution function Fo(Ip,I) and
F9(I,,I;) along with a knowledge of the code words. With

this we can prove the following theorem:

Theorem 3.2:

For any parity check code and any binary symmetric
input channel (1e., satisfying Eg.(3.25))the probability of
decodlng error using a maximum likelihood decoder 1s inde-
pendent of the transmitted code word.

Proof:
It 1s sufficlent to show that an arbitrary code word

has the same probability of decoding error as the all zero




sequence. Consider modulo 2 adding this arbitrary code word

to each code word in the code. From the group properties of
a parity check code,('s)this addition reproduces the same
set of code words, but the arbitrary code word has become
the all zero sequence. Alternatively, this may.be viewed as
redefining all ones to be zeros and vice versa in places in
which the arbitrary code word had ones. Along with this re-
definiticn, the distribution function of I, and I, must. also
be changed, so that FO(IO,II)-ﬁrFl(Il,IO) and
Fl(Il’Io)—é'Fo(Io,Il). But from Eq.(3.25), this change is
trivial. Thus the arbitrary code word is isomorphic to the
all zero code word, both with respsct to the othser code
words and with respect to the distribution function of I, (y).
But the probability of error is determined by these same
quantities, proving the theorem. Q. E. D.
The average probability of decoding error can now
be bounded for an (n,J,k) ensemble by bounding the probabil-

ity of error when the all zero sequence is transmitted.

Let

n

I(v) = gl Io(y*).

Io(v) 1s the sum of n independent random variables each with
the probability distribution Fo(Ip,I;). The probability of

error can be bounded by




P(e) € Pr[Io(v) s nIc'] + Pr[Io(v) 2 nl;; decgggggaerror]’

B T <
P 2 (3.26)

where I, 18 an arbitrary parameter to be determined later,
First, we shall determine a bound for Py,

Consider a code word, u, containing ones in the
first L positions and zeros elsewhere. An incorrect decod-
ing will result if I,(v) = Io(v)20. Ambiguities are re-
garded ae errors throughout. But since u and the zero sc=-

quence differ only in the first L places,

L
Ly(v) - I(v) = z I;(y*) - I (y*)

4=1

Pr[?o(v) Z nl,; decoding error
occurs to u

L ) .
sPr[xow) 2 nlgi 2 ) - Io(y‘)?.O] (3.27)

Since the channel makes no distinction between the first L
dlgits and any other L digits, every code word of weight L
must satisfy Eq.(3.27). Over the modified (n,J,k) ensemble
no sequence of welight Iw<nanjk is a code word, and for
LZanJk, the probability that an L-welght sequence is a
code word is less than or equal to 2P(L), with P(L) given in

Eq.(2.13).




Since there are (f) different sequences of welght L
end since the probability of a union of events is less than

or equal to the sum of the probabilities of the individual

events,
n L
P, < E (£)2P(L)Pr[§o(v) 2 nl,; E Il(yi)'- Io(y;) 20
LGank 4=1

(3.28)

The last factor in Eq.(3.28) will be evaluated by a double
12) “#

Chernov bound developed by Shannon( and Fano( ). The

only addition by the author is the summing of the two random

variables over unequal numbers of terms.

gorem J.3:

Let F(x,y) be the distribution function of the ran-
dom variables x and y, and assume that M(t,r) = 1n g(t,r)

where the moment generating function,
glt,r) =  fexp(tx+ry) ar(x,y)

exlsts for some region of t 20, r>0. Let x, and y, repre=-
sent the i'th sample of n independent samples of thesge vari-
ables, and let

n L
X = zl X; 3 Y = Z v, (L<£n)
= i=]

4




Then

Pr[x?a; Y!b] < exp[L[l(t,r) + (n=-L)M(L,0) - ta - rb]
(for any t >0, r >0 for which g(t,r) exlsts) (3.29)

Proof:

The Joint moment generating function of X, Y is

(3.30)

exp tX+rY ~ exp[ ﬁ (x;t+y;r) +_%l x;t‘]
FRYX J

&>/

This 1s the average of the product of n independent random

variables, which 1s equal to the product of the averages.

L n
exp(tX+rY) = T[] explx;t+y;r) JT exp x;t
(=1 A=L+1
L -L
= [att.r)] "[e(t,0)] (3.31)
where g(t,r) = exp(tx+ry) = [ exp(tx+ry) dF(x,v)

Next some bounding operations are performed on the left side

of Eq.(3.30). Let F,(X,Y) be the joint distribution func-

tion of X, Y.

exp(tX+rY) = [ [ exp(tX+rY)dF (X,Y) 2 f'éjﬁxp(tx+rY)an(X,Y)

XY X
For t20, r20, the minimum value of the integrand 1s at

X=2a, Y =b.

exp(tX+rY) 2 exp(ta+rbd) [ [ aF (X,Y)
Xa Y:b

Pr(X2a; Y2b) £ oxp(tX+rY) exp(-ta-rb) (3.32)
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Substituting Eq.(3.31) into Eq.(3.32) and using
M(t,r) = 1n (g(t,r)), the statement of the theorem is obtained.
Q. E. D,
Another convenient statement of the theorem 1is found
by minimizing the exponent in Eq.(3.29), and eipressing a

and b 4in terms of the parameters ¢t and r.
pr[X >Lp (t,2) + (n-LIp] (£,0); Y?L,u:_(t,rﬂfexp[Lf((t,r) R

+(n=L)U(t,0) = tLp (t,r) = t(n-L)M! (t,0) = rLp(t,r) ]

t
where M(t,r) 1is ;%._gz and M!(t,r) = 3,“‘():1') .

For a proof that this 1s actually a minimum, and for a more
complete discussi:n of the Chernov bound, see reference (4).
Eq.(3.29), however, 18 mcre convenient here. Using I, for x,

Iy - I, for y, nIl, for a, and O for b,

L
Pr[I,(v) 2 RloiEDy(y) = To(y) 20]
Sexp/Lp(t,r) + (n-L)M(t,0) - tnIc] (3.33)
where ’l(t,r) = 1n ffexp[t.lo + r(Il-IO)JdFO(IO,Il) (3.34)

Substituting Eqse.(3.33) and (2.15) into Eq.(3.28),

n

P5 S -;- 2C(An)exp + n[-E()\) +AM(t,r) + (l-A)/((t,o)-tIc-]
L:n?lnjk

(3.35)




The ubiquitous function E(A) is defined in Eq.(2.15) and is
discussed in detall in Appendix A.

Eq.(3.26) bounded P(e) in terms of the two quantities
P, and Pp. Eq.(3.35) bounds P, and we shall now use Eq.{3.29)

to bound P Iet L = O, and substitute -IO for x, -nl, for

10
a, and -w for t. Since the moment generating function of

'Io 13 8(‘t,o)’

P = Pr[—IO(v)?.-nIcJ < exp[n,{(w,o) - wnIc:] (for any w<O0O)

(3.36)
When thls bound 1s optimlzed over w, the usual Chernov bound
for the sum of n independent random variables in terms of

(4),(#)
the parameter w results;

Py = Prl+Iy(v) < np{,(w,oi’f exp n[}‘(w,o) - wﬂ;(w,o](3.37)

(where H;(w,o) = I)

Eqs.(3.35) and (3.37) bound the probability of decoding error
for a binary symmetric input multi-output channel in terme of
the parameters t,r,w, and A . The parameter 8 also appears
in the definition of E(A). t,r,w, and s must be chosen in
such a way as to minimize the bound for P(e); this will lead
to a set of simultaneous transcendental equations.

Only one simplification appears to be possible, and

that is to express r simply in terms of t. For given values



of t, A, and I,, the exponent in Eg.(3.35) is minimized by

1 4
setting M .(t,r) = O.( ) From Eq.(3.34), we have

filte,r) = JI(-15) exp[tIoer(11-1,)]aF, (Io,13)
I] exp[tTo4r(11-16)]aF (1o,11)

(3.28)

We now use the channel symmetry to find an r for
which the numerator in Eq.(3.38) is O. Applying the symmetry
condition, F,(I,,I;) = Fy(I;,I,),to the numerator of
Eq.(3.38), and then interchanging the variables I, and I,

the numerator of FEg.(3.38) 1is

JI(11-1,) exp [t.Io + r(Il-IO)] aF,(I,,14)
= ff(Io"Il) exP[tI]_ + r(IO-Il)JdFl(IO’Il)
Using Eq.{3.24) to express I, and I, in terms of Py(y) and

P1(y), and noting that dF,(I,,Iy) = Py(y)dy and
dFy (I,,I3) = Pi(y)dy, the numerator of Eq.(3.38) 1is

f 1,,[33;&) p) T BG4
v BB [Fre) + § 6T

r+l

t- v
= 1[PW)] P) PBoly) ay  (3.39)
y [Pl(y)_‘ [:2[' Po(y) +§~P1(y)f° d
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Ift-r +1=r, the right side of Eq.(3.39) 1s the nega-
tive of the left side, Bo that = = (t+1)/2 must make
M. (t,r) = 0.

Incorporating this result in Eq.(3.35), remcving
the maximum value of C(A,n) from the summation, and bounding

by n times the maximum term, we obtaln

P, £ 2nc, (A,n) exp n[—E(Z) + AR(t, 321]-)4- (1-A)M(t,0) - tIc]

(3.40)
evaluated at the XZXJk that maximizes the exponent.
Since the exponent in Eq.(3.40) is differentlable
for A > Aygs the maximum value for RZXJk must occur either

for A = Ay, or for a A satisfylng
B (a) = M, - pe,0). (3.41)

From figs 3-3, 1t can be seen that Eq.(3.41) has either two
solutions or no solution. If there 1s no solution, the max-
tmum value of Eq.(3.40) is at A * ajk' If there are two
solutions, the larger represents a local maximum of Eq.(3.40),
and either this A or Ajk maximizes Eq.(3.40). Finally the
minimum exponent can be obtained -in the overall probabllity
of error by setting the exponents of P1 and P2 equal and

minimizing over t and w.

P(e) £ [1 + 2nc,m()«,n]exp nfl(w,o) - w}g;(w,o)] (3.42)



w0~

subject to the four conditions:

1) M(w,0) - wM(w,0) = =-E(2) s, 55E) + (1= A)M(4,0)-t 14 ;

2) Mo(w,0) = I, = AM(t,4L) + (- (¢,0) ;

3) A chosen to maximize Eq.(3.40);

Condition 1,above,equalizes the exponent for Py and
P2; condition 2 minimizes over t and w; condition 3 maxi-
mizes over A ; and condition 4 1is necessary for the validity
of the Chernov bounds.

Postponing the problem of whether condition 4 is
consistent with the first three conditions, we first consider
conceptually how to solve for t,w, and A from the first three
conditions. For any value of t, we first find the larger
value of ‘A satisfying Eq.(3.41). Using first this value of
A and then 'ajk' we can find two values of I, from condi-
tion 2, and then find which of them maximlzes the right side
of condition 1. This procedure given us A, I., and the
right side of condition 1 as functions of t. Using the fact
that the second partial derivative of M with respect to t
is positiveEA/)it 18 easy to show that Ic is increasing with
t, and the right side of condition 1 1s decreasing with t.

inally, condition 2 can be used to solve for w,. {rom which’
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the left side of condition 1 can be solved. ©Doth these
cuantities are seen to be increasing functions of t. Since
the left slde of conditlion 1 is increasing and the right

gide decreasing with t, 1t is a simple matter to increase 1,
until the two sidees are equal, Two difficulties can occur,
however. First, w could become positive before equallity 1s
attained. 7This simply means that the channel capsascity 1s too
low for the code to be effective. The second difficulty can
occur if the left side of conditlion 1 1s greater than the
right side at t = O, If this condition holds, it can De

shown that the probabllity of decoding error 1s bounded by
P(e) £ 2nG(A,n) exp n[-E(A) +Aﬂ(0,%‘-)] (3.43)

evaluated at the A = xjk that maximizes the exponent. To
see that Eq.(3.43) 1s actually a bound to the probability of
decoding error, return to Eq.(3.27) and omit the cutoff

level on Io(v). This gives

n L
Moy D (E)eP(L)Pr[Z L (y¥) - Io(y")Zol

Using this and repeating the argument from Eq.(3.27) to
Eq.(3.42), the result is Eq.(3.43). The use of Eq.(3.43)
for F(e) instead of Eq.(3.42) is analogous to the well known

change of exponent for random coding on the BSC at rates

below critical.
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It is encouraging to note that thie bound for proba-
bllity of decoding error glves the same exponent derived in
the first psrt of this chapter for the special case of the
25C. The proof of this 1s straightforward, but quite tedi-
cus. Nevertheless, the parameters t and w will be related
tc the parameter"ljk that was used in the first derivation.

The relations are

w+l
T = 7
"L 4 Wl Jk
tE:tL‘ﬂ 2> g T - 772 e
P +q 1- A

in which A 1s the solution of condition 3. The exponent
goes to O when w = O which corresponds to p = th. The ex-
ponent changes, as discussed in the first part of the chap-

D'Jk - }1/2.

ter, when t = O which corresponde to p =
1l -A
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CHAPTER IV

DECODING

Introduction

The previous chapter analyzed the probabillity of
decoding error for (n,3J,k) codes on various binary input
channels using maximum likelihood decoding. Maximum like=-
lihood decoding 1s a convenient concept since 1t minimizes
the probability of decoding error and thus measures the
effectiveness of a code apart from any particular decodlng
scheme. However, implementing a maximum likelihood decoder
that actually compares a received sequence with all possible
code words is a most unattractive possiblility; this 1s par-
ticularly true for long block lengths, since the slze of the
code set érowe exponentially with block length. A decoder
that is relatively simple in terms of equipment, storage,
and computation is more desirable even if it moderately in=-
creases the probability of error. If the lower probabllity
of error 1s required, one can simply increase the block
length of the code.

Two decoding schemes will be described here that
appear to achleve a reasonable balance between complexity

and probability of decoding error. The first 1is partlcularly
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simple, but is applicable only to the Binary Symmetrilc
Channel at rates far below channel capacity. The second
gcheme, which decodes directly from the a posterlorl proba-
bilities at the channel output, is more promising, but can
be understood more easily after the first scheme 1ls de-
scribed.

In the first decoding scheme, the decoder computes
all the parity checks and then changes any digit that is
contained in more than some fixed number of unsatisfied par-
1ty check equations. Using these new digits, the parity
checks are recomputed and the process is repeated until the
parity checks are all satisfied.

If the parity check sets are small, this decoding
procedure is reasonable since most of the parlty check sets
will contain either one cross-over or no cross-overs. Thus,
when most of the parity check equations checking on a diglt
are unsatisfied, it is a strong indication that the digit 1is
1ncorrec£. An incorrect digit will not be corrected on the
first try if too many of the parity check sets contalining
that digit contain other cross-overs also. If some of these
other cross-overs are corrected on the first try, then the
digit in question may be corrected on the second.

Fig. 4-1 illustrates more clearly how a digit can be
corrected on the second decoding try. The branches in the
figure represent parity check sets and the nodes represent
digits. Some arbitrary digit, 4, 1s at the base of the trée,
and using arbitrary numbering, digit 12 is the £'th digit in
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the 1'th parity check set containing d. Assume that both
digit 4 and several of the digits in the first tler are
cross~-overs. Then on the first decoding try the error-free
digits in the second tier and thelr parity check constraints
will allow correction of the cross-overs in the first tier,
which in turn will allow correction of digit d on the second
decoding try. Thus digits and parity check equations can
aid in decoding a digit seemingly unconnected with them.

The probabilistlc decoding scheme to be described next util-
izes these extra digits and extra parity check equetions

more systematically.

TIER 2

qw
'[ Q--_-Q \gﬂ" ) TIER] A —-@—-—-

() =~ ua) (13)

\ -
\\\ \ //
~ \ Ve
\\\ \ ///
Fi e 4-1

PARITY CHECK SET TREE
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Probabilistic Decoding

AsBume that the code words from an (n,},k) code are
used with equal probability on an arbitrary binary input
channel. For any digit 4, using the notation of Fig. 4-1,
an iteration process will be derived that, on the m'th it~
eratlon, computes the probability that the transmitted digit
in position 4 1s one conditional on the received symbols out
to and including the m'th tier. For the first iteration, we
can consider diglt 4 and the digits in the first tier to
form a sub-code in which all sets of these digits that satis-
fy the J parity check equations in the tree are equally
likely.”

Consider the ensemble of events in which the trans-
mitted digits in the positions of d and the first tier are
independent equiprobable blnary digits, and the probabilities
of the recelved symbols in these positions are determined by
the channel transition probabilities Px(y). The probability
of any evént in this ensemble conditional on the event that
the transmitted digits satisfy the } parity check equations
1s the same as the probability of an event in the sub-code
described above., Thus, within this ensemble, we want to
find the probability that the transmitted digit in position

* An exception to this statement occurs if some linear
combination of those parity check equations not containing d
produces a parity check set contalning only digits in the
first tier. This will be discussed later, but is not a
serlous restriction.
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d 18 & one conditional on the set of reccived symbols, y,
and on the event, S, that the transmitted digits satisfy the

J parity check equations on digit d. We write this as

Pr[xdzll.y.,szl

Using this ensemble and notation, we can prove the following

theoren:

Theorem 4.1:
Let Pd be the probability that the transmitted digit

in position d is a one conditional on the received digit in
poslition 4, and let Pil be the probabllity that the trans-
mitted digit in position i of the first tier in Fig. 4-1

is a one conditional on the received symbol in position ;i[.
Let the digits be statistically independent and let S be the
event that the transmitted digits satisfy the J parity check

constraint.s on digit d. Then

. w-l
= sy p Cop.
Pr(xdzlls,i) Pg 421 1 ..Bﬁ-' (1-2p,, )
Xul

In order to prove the theorem, we need the following

lemma :

Lemma 4.1:

Consider a sequence of m independent binary digits in

which the X'th digit is 1 with probability Pl’ Then the
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7!/

probability than an even number of digits are 1 1s

-
1 +30 (1-2P4)
2
Proof of Lemma: .

Consider the function E' (1-5 + B t). Observe
that if this is expanded into a polynomial in t, the coef-
ficilent of t 1is the probability of i1 ones. The function
ji (l-Px- Pit) is identical except that all the odd powers
of t are negative. Adding these two functions, all the even
powers of t are doubled and the odd terms cancel out. Final-
ly, letting t = 1 and dividing by 2, the result 1s the prob-
abllity of an even number of ones. But

w A ™
JL(I-QEL) + W (1-5-B ) = 1 +,T(1-25 )
2 2

proving the lemma.

Proof of Theorem:

By the definition of conditional probabilities,

Pr(x3=0|8,7) = 1-P; Pr(s|xz=0,y
r(xg=0ls,7) d |%4=0,5) (4.2)

Pr(xs=1|8,7) P, Pr(s|xg=1,7)

Given that x4 = O, a parity check on d is satisfled if the
other (k-1) positions in the parity check set contaln an

even number of ones. Since all digite in the ensemble are
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statistically independent, the probabllity that all J parity
checks are satiasfied 1s the product of the probablilities of
the individual checks being satisfied, Using lemma 4.1, this

is

Pr(s|xg=0,§) = Tr [1*4% AR (4.3)

Similarly, 1f x3 = 1, a parity check on 4 1s satisfled 1if
the other (k-1) positions in the set contain an odd number of
ones. The probability of an odd number of ones 1s 1 minus
the probability given in lemma 4.1, and taking the product

over the J parity checks, we have

J wat
Pr(slxg=1,¥) = TT{ - (1-2Pp) (4.4)

izl L >

Substituting Eqs.(4.3) and (4.4) into Eq.(4.2), we get the

statement bf the theorem.,
Q. E. D.

Judging from the complexity of thies result, it would
appear difficult to compute the probability that the trans-
mitted digit in position 4 1s a one conditional on the re-
ceived digits in two or more tiers of the tree in Fig. 4-1.
Fortunately, however, the many tler case can be solved from
the one tier case by a simple iterative technique. Consider

first the 2 tier case.
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We can use theorem 4.1 to find the probability that
each of the transmitted digits in the first tier of the tree
is one conditional on the received digits in the second tler.
The only modification of the theorem is that the first pro-
duct is taken over only j-1 terms, since the parity check
set containing digit 4 is not included. Now these probabil-
itles can be used in Eg.{(4.1) to find the probability that
the transmitted digit in positlion d 1s one. The valldity of
the procedure follows immediately from the independence of
the new values of P;p in the ensemble used in Theorem 4.1,

By induction, this iteration process can be used to find the
probability that the transmitted digit 4 1s one given any
number of tlers in the tree.

The genereil decoding procedure for the entire code
may now be stated. For each digit and each comblnatlon of
j=1 parity check sets containing that dlglt, use Eq.(4.1) to
calculate the probability of a transmitted one conditional
on the recélved symbols in the j-1 parity check sets. Thus
there are J different probabilities assoclated with each dig-
1t, each one omitting 1 parity check set. Next, these prob-
abilitles are used in Eq(4.1) to compute a second order set
of probabilities. The probability to be associated with one
digit in the computation of another digit, 4, is the proba-
bility found in the first iteration omitting the parity check
set containing digit d. If the decoding 1is successful, then
the probabilities assoclated with each digit approach O or 1
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depending on the transmitted digit as the number of iter-

ations 1s increased.

If this iteration process could be contimued until
it computed the probabllity of a transmitted one conditional
on the complete received sequence, this procedure would be
equivalent to maximum likellhood decoding. However, the it-
eration process 1s only valld for as many lterations as meet
the independence assumption in Theorem 4.l. This assumption
does not hold on the m'th iteration if, first, different
nodes in the m'th tier of the tree represent the same digit
or if, second, some linear combination of those parity check
constralinte outslde the m tier tree produce a parity check
containing only digits in the m'th tier. Since each tier of
the tree contains (J-1)(k-1) more nodes than the previous
tier, the independence assumption must break down while m 1s
quite small for any code of reasonable block iengthe.

We can ignore this lack of independence, however, and
continue ﬁsing the iterative process. Thils is ultimately

Justified, of course, only by the fact that it worke. It is

also reasonable, however, because when dependencles such as
repeated digits and extra constraints start occurring, they
are far out in the tree and have a relatively minor effect.

Moreover these dependencies affect the probabilities being

computed in a random fashion and should cancel out to some
extent. Also even if dependencies occur in the m'th itera-
tion, the first m-1 lterations have reduced the equivocation

in each digit. Then we can consider the probabilities after
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the m=1'th iteration to be a new received sequence that
should be easler to decode than the original received se-
quence.

The most significant feature of this decoding scheme
is that the computation per diglit per iteration 1s indepen-
dent of block length. It 18 an unanswered question, whether
the average number of iterations required to decode is a
function of the block length. It is reasonable, however, to
expect that the average number of iteratlions is bounded by a
quantity independent of code length. The number of itera-
tlons that are effective in decoding increases with the code
length, but this greater number of iterations need be used
only for the improbable noise configuration that would have
caused errors in a shorter code. If the probability of re-
quiring m iterations to decode decreases rapidly enough with
m independent of the block length, then the average number of
l1terations to decode 1s bounded.

Pfobabilistic decoding can be performed using either
serlies or parallel computing. Series decoding can be pro-
grammed for a general purpose computer, and the experimental
data in Chapter V were obtained in this manner. For fast de-
coding, a decoder using parallel computing 1s more promising;
such a decoder could be speclially constructed. Bath the
amount of equipment and the data handling capacity in Dbits
ver second would be proportional to the block length.

Fig. 4-2 sketches a block diagram of a parallel decoder.
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Fi e 4-2
BLOCK DIAGRAM OF DECODER

For either series or parallel computing, it may be
more convenient to use Eq.(4.1) in terms of log likelihood

ratios. Let

=0| S,V 4
o Brixg | .f) A
Pr(xg=1|8,¥)
l"P 1-P.
in-—-4 = y.x. ; 1n i = y.x; (4.5)
Pa d "4 T, i i ,

when y is :1 and x20., After some manipulatlion, Eq.(4.1)
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becomes
4 X J.-'K"( e[E £(x. )] (4.6)
Yag X3 = Y3 Xg + y.. )f fix .
¢ e e R M MR
when b 4
f(x) = 1n &%
eX-1

Using this formulation, a parallel computer could be sinply
instrumented requiring principally (4j=-1)n analogue adders,
(2§-1) modulo 2 adders, and 4jn circuits to compute f(x).
The complexity of the non-linear eircult required to compute
f(x) depends on the approxlimatlons that can be made without
materially affecting the decoding process, but presumably a

very simple circuit would be sufficient.

Probability of Error Using Probabilistic Decoding

The dependencles that occur after several iteratlons

of the probabilistic decoding scheme make & methematical
analysis of the process extremely difficult. Even in the
absence of dependencies, a mathematical analysis 1s still
difficult. Conceptually, glven a distribution function of
channel transition probabilities, Eq.(4.1) can be iteratively
used to calculate successive distribution functions for the
probability that a diglt 1s 1n error. This is a complicated
computation that would have to be performed on a computer,
however, and an analysis of the resulting approximations

would be difficult. A simple procedure that avolds these
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mathematical and computational problems will be used in this
section to bound the probabllity of decoding error using
probabilistic decodin:. Although this bound is quite wealk,
i1t provides additional insight into the decoding process.

Assume a binary symmetric channel with cross-over
probability b, and assume an (n,J,k) code with j}=3 parity
check sets containing each digit. Consider a parity check
set tree, as in Fig. 4-1, containing m independent tilers,
but let the tiers be numbered from top.to bottom so that the
uppermost tler 1s the O tler, and the digit to be decoded 1is
tler m.

Modify the cecoding procedure as follows: if both
parity checks corresponding to the branches rising from s
digit in the first tier are unsatisfled, change the digit;
using these changed digits in the first tier, perform the
same operatlon on the second tier; continue this procedure
down to digit d.

Thé probabllity of decoding error for digit 4 after
this procedure is an upper bound to that resulting from
making a decislon after the m'th iteration of the probabil-
latic decoding scheme. Both procedures base their_decision
only on the received symbols in the m tier tree, but the
second procedure always makes the most likely decision from
this information.

We now determine the Probability that a digit in the
first tier is 1n error after applying the modified decoding
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procedure described above. If the digit is recelved in
error (an event of probabillity po) then a parity check con-
straining that digit will be unsatisfied if and only if an
even number of errors occurs among the other k-1 digits in
the parity check set. From lemma 4.1, the probabllity of an
even number of errors amoung k-1 digits 1s

k-1

1 + (1-2p°) (5.7)

2

Since an error will be corrected only if both parity checks
miseing from the digit are unsatisfied, the following ex-
pression gives the probability that a digit in the first

tier is received in error and then corrected.

p, |1+ (-200)*"H * (4.8)

2

By the same reasoning, Eq.(4.9) glves the probability that a
digit in the first tier 1s received correctly, but then

changed because of unsatisfied parity checkee.

2
k-1
1 - (-2po) t} (4.9)

(1-po ) 5

Combining Eqs.(4.8) and (4.9), the probabllity of error of
a diglt in the first tler after applying this decoding
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process 1is

2 2
-2p, k-1 = (1o k-1
PP = p, - pOE' + ;1 2pg ) ] + (I-DO)E ;l 2p,) ]

(4.10)

Similarly, using the fact that each digit in the
first tier has probability Py of being in error after pro-
cessing, the probabllity of error of a digit in the second

tler after processing is

2 * 2
- 1l + (1-2p )k'l 1 - (1-2p4 )k=1
P, = P, - po[ > 1 ] + (l—po)[——LBﬂ——z

and the probability of error of a digit in tier 1 + 1 after

processing is

I' k 2 ( k
1 + (1-2p1) - ‘.1 - (1-2py )™~
Pyyy = Po - poL > + (l“po)L 5

(4.11)

We now show that for sufficlently small p,, the sequence[bi]
converges to O. Consider Fig. 4-3, which is a sketch of P14,
as a function of P, . Since the ordinate for one value of i
18 the abscissa for the next, the dotted zig-zig line illus-
trates a convenient graphical method of finding p; for suc-

cessive values of 1. It can be seen from the figure that if
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0<py,) <py (for 0<p, <p ) (4.12)

P“.l = pi (for Py = 0)

then the sequence [pﬂ%.

/
/
/
i
|
|
I
|
I
|
1 fe .
Figure 4-3

Py 41 AS A FUNCTION OF p,

Mathematically, Eq.(4.12) insures that the sequence
[Pﬂ 1s bounded and decreasing, implying that it converges to
& limit point. As & result of the contimuity of Eq.(4.11),
Py+ must be equal Py at the 1limit point. Since Py41 = Py -

only for py = O, the sequence converges to O.
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Next i1t is shown that the condition of Eq.(4.12)

holds for sufficlently small p,. Using Eq.(4.11), we find

Wia 1 - (1-2p1)2(k'li’ o

Thus, decreasing P, and holding py constant decreases Dy,q,
so that if Eq.(4.12) holds for one value of p,, it must hold
for all smaller values of P, . Also from Eq.(4.11) we note

that py4y; = O for py =0 and

3Py 4]

= 2(k-1l)p
2Dy °

p1=O

For p. < 1 » the initial slope of p as a functilon of
(o] 2(k-1) 1+1

Py 1s less than 1, and since dPi+1 18 continuous,
: JP1

O € Pyy1 <01y

For sufficiently small Py Then making p, sufficlently small,
Eq.(4.12) must be sati:fied, and @1]-70. Fig. 3-1 plots the
largest value of p, for which Eq.(4.12) is satisfied for sev-
eral values of J and k. If p, 1s leses than thie value, then
as the block length, n, approaches infinity, the number of in-

dependent tiers in the parity check set tree approaches
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infinity, and the probabllity of decoding error apiroaches
Zeroe.
The rate at which [pi]-)O may be determined by

noting trat for small p1
Pyy1 = Py 2(k-1)p
rrom this 1t 1s easy to ehicw that for sufficlently large 1,
p, = C 2(k-1)p
4 (o}

where C 18 a constant independent of i. Since the number of
independent tlers 1n the tree increases logarithmically with
tlock length, this bound to the probability of decoding error
approaches O with some small negative power of block lengthe
This slow approach to O appears to be a consequence nf the
wodiflication of the decoding scheme and of the strict inde-
pendence requirement, rather than of probabilistic decoding
as a whole,

This same argument can be applied to codes with more
than 3 parity check sets per diglit. Stronger results willl be
achleved, if for some integer, b, to be determined later, a
digit 1s changed whenever b or more of the parity check con-
straints rising from the digit are violated. Ueing this

criterion and following the reasoning leading to Eq(4.11),
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we obtain
J‘l k1 ? ;] J-l-ﬂ
- , - k-
141 = Py - P Z_—_ (311) [i—-—*él'api) J - (1-2py)
A=b 2
J"'l k-l ‘9 .j"'l-g
+ (1-p,) }: (Jil) 1-(1-2p, ) 1+(1-2p1)k-
- 2 2

(4.13)

The integer b can now be chosen to minimize Py 41+ The
solution to this minimization is the smallest integer, b,

for which

k-1)2b-J+J

1-p, < |1+ (1-2py)
po |1 - (1-2py)F7t (4.14)

From this equation, i1t 1s seen that as py decreases, b also
decreases. Flg. 4-4 sketches pj_q as a functlon of pj when
b is changed according to Eq.(4.14). The break points in
the figure represent changes of b.

The procf that the probabllity of decodlng error
approaches O with an increasing number of iterations for suf-
f'lelently small cross-over probablilities is the same as he-
fore. The asymptotic approach of the sequence (Pi] to O 1s.
different, however. From Eq.(4.14), as py -» O, b takes the




2

Figure 4-4
P44+1 AS A FUNCTION OF Py WITH VARIABLE b

2
ues of b and expanding Eq.(4.13) in a power series in p1

value 4 for J even and 441 ror J odd. Using these val-
2

J=1 =1 J-1
Pyy; = p(J_:L’(k-l) 2 Py 2 4 higher (J odd) (4.15)
order
2 terms
J J
J=1 4 z
p = -1} p + higher order (J even)
1+l (%Xk ) i terms

Using this, 1t can be shown that for a suitably chosen

positive constant, Cjk' and sufficiently large 1)
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i
Py < exp 'Cjk(i%l) (j odd) (4.,16)

It 1s interesting to relate this result to the block length
of the code. The number, m, of independent tlers in a parity
check set tree 1s a random variable dependeng on both the
digit and the code. On the average, however, dependencles
start to occur when a tree contains on the order of n dlg-
ite. Since each independent tier in a parity check set tree
contains (j-1)(k-1l) digits for each digit in the tier below

1t, the number of digits in an m tier tree 1s proportional to
m
ﬁj-l)(k-l} .

Thus assume that for some constant A,
2m
no= 4 f-1)0e1] (4.17)

Combining Eqs.(4.16) and (4.17), the probabllity of

decoding error for a typical tler slze 1s

21n(3-1)(k-1)

Pp < ©Xp -Cyy ER‘] (J odd)

EH Eﬁ% (3 even)

Pp € exp -ij



§7

For J > 3, this probability of decoding error bound decreases
exponentially with a root of n. Observe that if the number
of iterations, m which can be made without dependencles

were 2 lnl ‘% ak‘l times larger, then the probabllity of
n

decoding error would decrease exponentially with n. It 1s
hypothesized that using the probabillstic decoding scheme and
continuing to lterate after dependenclies occur will produce
this exponential dependence. It 1s also reasonable to hy=-
pothesize that the maximum number of itersatlons necessary to
decode inecreases logarithmically with block length. If both
of these hypotheses are true, then a decoder can achleve an
exponential decrease in the probabllity cf decoding error at
the expense of a linear increese in storage and an at most
logarithmic increase 1n computation. Unfortunately, experl-
mental proof or disproof of these hypotheses 1s likely to be

difficult for reasons given in the next chapter.
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CHAPTER V

EXPERIMENTAL RESULTS

Introduction

The probability of decoding error, P(e), associlated
with a coding and decoding scheme can be directly measured
by simulating both the scheme and the channel of interest on
a computer. Unfortunately, the experiment must be repeated
untll there are many decoding failures if P(e) 1s to be
evaluated with any accuracy, and thus many times ?T%T
trlals are necessary. For block lengths of about 500, the
I. B. M. 704 computer requires about 2.5 seconds per itera-
tion to decode by the probabilistic decoding scheme of
Chapter IV. Consequently, many hours of computation time
are necessary to evaluate even a P({e) of the order of 10~2.

Any other experimental approach to determining P(e)
would involve measuring some other quantity that could be
used to determine P(e). For instance, for a maximum likeli=
hood decoding scheme, the dlstance properties of the code
could be experimentally measured and used to compute P(e) as
in Chapter III. So little 1s known theoretically about
probabllistic decoding, however, that the only aiternative

to direct measurement is a measurement with some of the
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channel variations eliminated. For instance, on the BSC, it
18 more convenient to measure Pc(e), the probabllity of de-
coding error given ¢ cross-overs. This reduces the rnumber
of trials somewhat, but does not eliminate the need for many
trials vwhere P (e) is small.,

Because of limitations on avallable computer time,
all of the results presented will be for situations in which
P(e) or Po(e) 18 large. Certainly it would be more 1ntér—
esting to have results for small P(e). However, the data
presented are at least sufficiently convincing to Justify
further experimental work, for which suggestions are given in
Chapter VI.

A block length of about 500 was chosen for all of
the experiments since this length is long enough to provide
large trees for decoding, but short enough to avoid storage
problems in the computer. A value of jJ = 3 parity check
sets per diglt was used for all of the codes except the cy~
lic code since preliminary investigation showed that the de=-
coding scheme 1is most effective for jJ = 3.

The first three oodes to be discussed were used on
the BSC and the last code on a Gaussian nolse channel. The
BSC was unduly emphasized for the following reasons: first,
the effect of channel variations on the BSC can be elimi-
nated by evaluating P.(e) instead of P(e); next, the BSC is
convenlent for comparison with other coding and decoding

schemes; and finally, 1t is likely that the operation of thé
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decoding scheme on one channel is typical of 1ts operation

on other channels.

(504,3,6) Code on Binary Symmetric Channel
A code of block length 504 with each diglt contalined

in three parity check sets and each parity check set contain-
ing 6 digits was selected by the IBM 704 computer using a
pseudo-random number routine. The only restriction on the
code was that no two parity check sets should contain more
than one digit in common. That restriction guaranteed the
validity of the first order 1iteration in the decoding process
and also excluded the remote possibility of choosing a code
with a minimum distance of 2.

For various numbers, c¢, of channel cross-overs, an
experimental determination was made of P,(e), the probabllity
of decoding error given ¢ cross-overs. This was done by
feeding a random permutation of ¢ ones into a simulation of
the probabilistic decoding procese described in the last
chapter. The transmitted sequence was thus assumed to be the
zero sequence since the decoding process locates errors in
the same way regardless of the transmitted code word.

Eq.(4.6) was used to compute the log llkelihood
ratio, and decoding was considered complete when all the
parity checks were satisfled. In a probabilistic formulatlon,
the parity checks are computed by first assigning to each
digit its most likely value. It follows that, in the notation
of Eq.(4.5), if i%i.’& = 1, parity is satisfied and if
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L) Y- = -1, parity is unsatisfied.
1=1 4

Fig. 5-1 plots the fraction of times the decoder was
unable to decode correctly as a function of the number of
cross-overs. The number in parentheses beside each point 1is
the number of trials performed with that rumber of cross-
overs., In all the trials on this code, the decoder never
decoded to the wrong code word; it just failed to find a code
word. If a feedback channel is avallable, this inability to
decode troublesome noise natterns is not & serious limitation,
since retransmission is possible.

Out of the error patterns correctly decoded, 86%
were decoded in between 9 and 19 iterations. The rest were
spread out between 20 and 40 iterations. There appeared to
be a slight increase in the mumber of iterations necessary to
decode as the number of cross-overs was increased from 37 to
41, but not enough to be statistically significant.

The other curve drawn in Fig. 5-1 is the theoretical
bound from Eq.(3.2) for Pc(e) using maximum likelihood decod-
ing. 1In evaluating Eq.(3.2), an asymptotic form for P(L)
was taken from Eqs.(2.12) and (2.13), and an asymptotic
formulae was used for summing L around its maximum term.

These results appear encouraging when we observe that
no other known coding and decoding scheme of this rate is
able to decode this many errors with a reasonable amount of
computation. How well the decoding scheme worke with smallér

numbers of errors is of greater interest, though. The rate
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at which the experimental Pc(e) decreases as ¢ decreases is
discouraging, but there 1s no justification for extrapolating
thls curve to much smaller numbers of cross-overs. Elther a
great deal of additional experimental data or a new theoret-
ical approach will be necessary to evaluate Pc(e) at smaller

values of c.

A (502 Code on the Binary Symmetri nnel

A (500,3,4) code, which has rate, %, was chosen by
the IBM 704 computer in the same way as the (504,3,6) code
of the last sectlion. Sequences containing from 20 to 77
crogs-overs were put in to be decoded. There were two se=~
quences for each number of cross-overs from 65 to 69 and from
T2 to 77, and one sequence for all the other numbers. The
decoding was successful for all sequences except one 73
cross-over case, one 75 cross-over case, and both 77 cross-
over cases. The theoretical error correcting breakpoint for
the (500,3,4) ensemble from Fig. 3-1 is 103 errors, and the
error correcting breakpoint for the ensemble of all codes of

rate % is 108 errors.

Low ngit clic Code

A cyclic matrix is a matrix in which each row is a
single cyclic shift of the previous row. A cyclic code 1s
described by a cyclic n by n parity check matrix, and the
row rank of this matrix is the number of independent parity

* .
check equations. A low density cyclic code is a cyclic code

# For a complete discussion of cyclic codea, see ref.( 9)
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in which each row of the parity check matrix contains a very
small number of ones.

Low density cyclic codes have two advantages over
other low density codes. First, the code words may be gen-
erated by a shift reglster with a complexity proportional to
the block length n, whereas for an ordinary low density code,
the coding complexity is proportional to n®. Second, in the
cyclic code there are n low density parity check sets avall-
able in the decoding process instead of n(1l-R). That these
n parity checks are dependent does not matter, since the de-
coding depends only on independence in the first few tlers
of the parity check set trees as in Fig. 4-1. On the other
hand, the theory developed here does not apply to cyclilc
codes. Also, no method is known to find low denslty cycllc
codes with reasonable minimum distance properties.

The probabilistic decoding scheme was applied to a
cyclic code of length 511 for which the first parlity check
set contained digite 1,2,8,16,64,128. This code has 127
information digits and a rate of approximately %. An
attempt was made to decode randomly chosen sequences of 70,
74,78,82, and 86 cross-overs. The first three trlals were
successful, but decoding occurred to a code word of weight
28 in the 82 cross-over case. This was the only example of
an incorrect decoding in all the experimental work on all

the codes tested; no decoding was possible for the 86 cross-

over casgee.
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Q0 n w¥hit ian Noige Channe

Asgsume a channel that accepts inputs of plus or minus
1 and adds a Gauscslan random variable of mean O and variance
1 to the input to form the output. The log likelihood ratio
of the input conditional on the output is simply twice the
received signal. The channei capacity of this channel can be
calculated(' )to be .5 bits per symbol. However, 1f the
receiver convertis the channel into a BSC by making a decision
on each symbol and throwing away the probabilities, the prob-
ability cf cross-over becomes .16, and the channel capacity
is reduced to .37 Dbits per symbol.

In this experiment a (500,3,5) code, which has rate
+4 bits per symbol, was sinulated on the IR{ 704 computer
along with the channel just described. Probabilistic decod-
ing was performed using the log likelihood ratios at the out-
put of the channel. Out of 13 trials, the decoding scheme
decoded correctly on 11 trials and falled to decode twice.

Thls experiment is interestling since 1t suggests
that the loss of rate necessitated by the non-optimum coding
and decoding techniques proposed here is more than compen-

sated for by the opportunity of using the a posterlori prob-

abilities at the channel output.
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CHAPTZR VI

SUGGESTIONS FOR FUTURE WORK

The codinrg and decoding scheme presented in the pre-
vious chapters represents an attempt to achileve the low error
probabilities possible with coding while avolding an exces-
sive cost in terms of equipment and computation.

The theoretical analysls of low denslity codes pre-
gented in Chapters II and III provides an adequate picture of
the codes themselves. There is opportunity for further work
in obtaining upper bounds to the minimum distance of the
codes and lower bounds for the probability of decoding error.
Also, it might be possible to simplify the upper bound to the
probability of decoding error on binary symmetric input
channels. Without better bounds on the decoding scheme, how-
ever, these problems are of greater academic than practical
interest.

The most promising area for future work 1s further
analysie of the decoding scheme, both theoretical and experi-
mental. The bound in Chapter IV for the probabllity of de-
coding error using the probabilistic decoding scheme 1s weak-

er than necessary for two reasons: first, the decoding model




that 18 used for the bound not only throws away the channel
a posteriori probabilities before decoding, but also throws
away the probablilitlee at every iteration of the decoding
process; second, for mathematical expediency, the decodlng
is stopped as soon as dependencles occur in the iteration
process.

A closer bound to the probability of error using
probabilistic decoding can be obtained by actually computlng
the distribution function of the probabillty of error assoc-
jated with a digit after an arbitrary number of iterations,
agsuming no dependencies. Eq.(4.1l) expresses the probability
of error for a digit after the first lteration as a function
of the a posteriorl probabilities of each digit in the one
tier tree. Thus, given the distributlon function of the a
posteriori probabllities connected with a received digilt,
Eq.(4.1) can be used to find the distributlion function of the
probability of error after one lteration. In a similer
manner, the distribution function of the probability of error
of a digit after any lteration can e computed from the dis-
tribution function of the probability of error after the pre-
vious iteration. This procedure must be performed numerl-
cally on a computer, and the resulting approximations are
difficult to analyze, although they should not affect the
overall behavior of the process.

Bounding the probability of error by computing these
1terative distribution functions is still limited by belng-

unable to take dependencies into account. For any particular
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channel, however, the rate at which these lterative distril-
bution functions converge to O, if they do converge to O,
might well be combined with some experimental work to pro-
vide estimates of the probability of error as a function of
code length. Because of the dependencies in the iterative
process, it is possible that the decoding scheme will work
on some channels for which these distribution functions do
not converge to O, although it 1s doubtful if very low error
probabilities could be achleved in these situations.

An analysis of the probability of decoding error tak-
ing into account the dependencies in the lteration process
appears to be quite difficult. Two possible approaches are,
first, to analyze the effect of a single dependency in the
hope of generalization, and second, to analyze the dependen-
cies on a statistical basis.

The experimental data presented in Chapter V treat
only channels that are so nolsy that the probability of de-
coding error is large. The more important questlon of how
well the decoding scheme works on less noisy channels re-
mains. to be investigated. To answer this question, a parallel
decoder of the type described in Chapter IV would have to be
constructed, since only then would very lerge numbers of
trials be practicel. Some additional experiments would be
desirable on a computer before starting such a large prolect,
however.

Various modifications of the decoding scheme ltself

can be tried experimentally with the dual purposes of lowering




the probability of decoding error and finding cheaper and
easler ways to construct a parallel decoder. Next, enough
additional data could be taken on the (564,3,6) code to ex-
tend Fig. 5-1 down to about 32 errors. This might indlcate
whether a parallel decoder is worth constructing. Flnally,
experiments should be performed at some different block
lengths to determire the dependence of the probabillity of

decoding error on block length.
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APPENDIX
PROPERTIES OF THE FUNCTICN E(A)

In Chapter II, the following bound was derived for

the minimum distance distribution of an (n,},k) ensemble of

codes.
Pr(D < n§) £ %E C¢(A,n) exp-nE(A) (A.1)
1L=2
= |
where
A= g
E(2) = (J-1)H(A) = ﬂ}l(s) + (k=1)ln €7+ jsA  (A.2)
- - -1 .
c(A,n) = [27/:1)(1 )ﬂ exp m (A.3)
- 1 s\k 8.k
M(8) + (k=1)ln 2 = 1n 2[(1+e )5+ (1-e )] (Aed)
K'(s) = A for optimum bound (A5)
k

In this appendix three theorems will be proved concerning

Eq.(A.1). The firet theorem will analyze the behavior of '
E()), the second will bound the summation in Eq.(A.1) in

(T
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terms of the first and last terms, and the third will show
that as }J and k get large, Eq.(A.l) approaches the minimum
distance distribution function derived for the ensemble of

all codes in Eg.(2.1).

Theorem A 1.
Assume k > J 2 3, and let E(A) be defined in Egs.

(A.2), (Aol})' and (A.S)o Then

1) 1im E(r) = O,
AP e

2) 1im SE = © |
A9 0 4a

3) E(A) has only one zero in the range 0 < A < %,

4) E(A) has no minimum within the range where

E(x) 2 O.

Proof:
1) We show that 1lim E(A2) = O by showlng that each

of the three terms on the right of Eq.(A.2) approaches O.
H(A) 18 glven by =ilna - (1-A)1n(1-4) and clearly approaches

0. Differentlating Eq.(A.4), we get

k-1 k=1
A = Z%LB_). - es[(1+es) - (l-e'a)K _] (A.6)

(1+08)° + (1-e8)

and from this, s »-e as & < O, But from Eq.(A.4),

1im  M(s) + (k-1)In 2 = O. Finally
55w
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k-1 -
JjsA = Jsef (1+?) - (l-eik 1_]
(1+8)" *(L@Bﬁ

vhich also approaches O as 8 — - 9.

2) From Eq.(A.2),

- -1
A A s 8 98 A

Making the substitutlon

- B -
z = L_E ’ g8 = 1ln l_& ’ (A07)
1+e° 1+z
\
and performing some manipulatlion on Eq.(A.6), we get
1=z 1-zK-1 -
= l——k A.8

6 and A are sketched as a function of z in Fig. A=1.

»i-

D e e T i ]

Figure A-1
g8 ANDAAS FUNCTIONS OF .z




K-
1im dE - 1im -1)in i+z 1l+z - 1 l-2
a-»0 d2A 2/ (3-1) 1-2 'i_:;t' n 7%

k-11j=-1
= lim 1n@‘=+f (1_4;2_’&_)

Z2/ l-z
g1 971
= 1im 1n (3*2_ ) — L (4.9)
27/ (l-zk'l)J (1+z)(1+z+...+z?*)

00 for j-2 >0, or in other words, for J 2 3.

3) Before proving parts 3 and 4 of the theorem, we

must show that S£ has only one extremum. Using Eqe(A.9),

aa
we obtain the derivitive of g§ with respect to z.
k-2
4 (gE) = = 2, + 20=L)(g=llz
dz(d)l) l1-z 1 - 2z -1)
Setting this equal to 0, we have
2k=-2 2. 4 2k-4
- - - (_l—':_z—-————l = 1"'2"'2"'--.‘\"2
(3-1)(k 1) 2) k=2 k-2
(1-z)z 7
k=2
2. r21 1
(3=1)(k=-1) = 1 + :Z:'[é + —2;] (for k even) (A.10)
i=1 z
-1 :
= ;Egj[zei + %21-%1 for k odd) (A.11)
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The functions on the right in Eqs.(A.10) and (A.11)

are increasing in z for 0<z <l. Hence the equation can

have at most one solution in this range. Thus %E'i has at

most one extremum and at most two zeros for O <A < -2]=. Then
E hae at most two zeros besides E{o) = O. But since E goes
positive as A increases from O, two zero crossings for

0<2 < 7]2'- would imply E(3) > O. However, from Eg.(A.4),

using 8 = 0 at A = ']5,

E( % ) =[(3-1)in2 - é-(k-l)ln 2 - (1-%)1:1 é]<o

Therefore E()) has exactly one zero for 0<A < %.

4) 1If E(A) has a minimum within the range for which

E(A) >0, then it would require a maximum on elther side of
the minimum in order to satisfy E(o) = O and E(%) < 0. But
E()) has at most two extremums, so this is impossible.

Qo E. Do

Theorem A.2

For an (n,},k) ensemble of codes, the minimum dis-

*
tance distribution function may be bounded by

! Pr(D £ nf) < ’é‘-'-l , * 0(nm3*2) 4+ no(¢,n)exp-nE(S) (A.12)
n

-

<1

*By O(n"""' 2) we mean a fu?cgion that goes to zero
with increasing n fagtgr than n~9J*<; that is, a function
£(n) such that 1im n'™< f(n) = 0. '




From Eq(2.14), we have

nd -J+l

Pr(D<ns) § > (E)
1=2

[n(Ll}J

We can evaluate the term for L = 2 directly. N(2) is the

Wi

number of sequences of weight 2 which satlisfy the first
parity checks of any particular code. Thers are (12() ways
of arranging 2 onee in a single parity check set; multi-
plying by the % parity check sets, we have {-{1-(12‘).

(277" w2 - ae=1)? L =), o g2,

2 2(n--].)"":L ~ 2pd-2

] of
pr(p<ng) § =t)) + 0@ 4 T o(x,n)exp-ng(A)
ond=2 1=4

(A.13)

where C(A‘,n) and E(A) are glven in Eqs.(A.2) and (A3)s In
order to bound the termsfor which L is emall in Eq.(A.13),

we note from Eq.(A.6) that as A >0, 8 —~ %ln E'a;T » Using
1
this value of 8 instead of ﬁE(—Sl = A 4in Eq.(A.2), E(A)

must be underbounded.

E(A) 2 (J-1) AlnAl- + (1-2)1ln -1-1‘-;\—] - %ln 1Ze§'{)esi+ %)lrﬁ%
ev -




)
:
|

XX

]- .ann (k-1)

B9z (3-am} - %1“[1—.”%5;;?3

Substituting -ﬁ' for A and using some inequalities we have

1L
- 2
cxp-nE(A)S n'L(%Pl)LL(g 1) (k=1) exp él i;TK_L_ (A.15)
2n
From Eq.(A.3), we get
i-1
2
c(A,n) € (27L)  exp 4—;—% (A.16)

From Egs.(A.15) and (A.16), we see that the terms for L = 4
and L = 6 in Eq.(A.13) approach zaro faster than n~d*2,
From theorem A.l, if E(§) >0, then for every term between
L=8andL=nd, E(}) 18 lower bounded by elther E(%-) or
E(f). ( If E(£)<0, the right side of Eq.(A.12) is luarger
than 1 and the trivial bound of 1 applies.) Thus, the sum-

mation between L = 8 and d n 1s bounded by

nCpax [exp-nE(%) + exp-nE(f)j

The first term of Eq.{(A.17) has an n dependence given by

-1
n[]' + J?— + 8('4’ + 1)] - O(n-.1+2) (fOI‘ 323)

The second term of Eq.(A.17) is the last expresslon gppear-.

ing in the statement of the theorem, Eq.(A.12), proving
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the theorem.
Q. E‘ D.

Theorem A.3:

Let Jﬁk be the non-zero solution of E(A) = O for
an (n,),k) ensenble, and let R =1 - % be fixed. lLet
J; < % be the solution of H(J;) = (1-R)1n 2. Then
e = o

From Theorem 2.1, J; is the typlcal minlmum distance
for the ensemble cof all random codes, so the theorem asserts

that the typical minimum distance of (n,J,k) codes approach-

es that of all codes as k gets large.

Proof:

Using F3.(A.2), E(A) can be rewritten in the form

¢ ] { K
E(A) = Z-H(A)+ & n ?} + ZJ[ﬁ())+ﬁa7- %1n[11+e°) +(1-e5)gj
(A.18)

Wwe shall show that for A # O, the last bracket in Eq.(A.17)
approaches O with increasing k. This 1s sufficlent to
prove the theorem, since é = 1-R and thus the first

bracket 1s zero only for A = §,.

H(A) + 84 = A[ln(% +s]- in(1-2)

8
Making the substitution 2 = %:sb of Eqs.(A.7) and (A.8),
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1~2 - k-1 k=1 1+ k-1
H) +8d = 50 Bh 1 h - 1n( 27(%%{
(4.19)
Also,
k
% 1nj(1+®) + (1-e8) } = 1n(l+e®) + % In (l+z )
= 1n —2- 1 1n(1+z%
= Ingo + ( ) (A.20)

Combining Eqe.(A.19) and (A.20), the second bracket in

Eq.(A.18) becomes

k-1

-1
Cyfizz) (25, 142 L 1T gk
J(e)(m)“m‘k-l Jin R T g In(1e)

As k gets large, for any z < 1 (ie.A > 0), 2K ana zX-1

approach O. Expanding the logarithm we have

ST ) B ' | k-1 k
- l%. i-2 29, + 125 “(1-2) + 42 + higher order
J( )(lmk } . ) k '%grms

In this expression J-» © linearly with k, but 25150
exponentially. Thus the second bracket in Eq.(A.18) ap-

proaches O,
Q. E. D.
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