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Abstract

Head pose and gesture offer several conversational grounding cues and are
used extensively in face-to-face interaction among people. To recognize visual
feedback efficiently, humans often use contextual knowledge from previous and
current events to anticipate when feedback is most likely to occur. In this paper
we describe how contextual information can be used to predict visual feedback
and improve recognition of head gestures in human-computer interfaces. Lexi-
cal, prosodic, timing, and gesture features can be used to predict a user’s visual
feedback during conversational dialog with a robotic or virtual agent. In non-
conversational interfaces, context features based on user-interface system events
can improve detection of head gestures for dialog box confirmation or document
browsing. Our user study with prototype gesture-based components indicate quan-
titative and qualitative benefits of gesture-based confirmation over conventional
alternatives. Using a discriminative approach to contextual prediction and multi-
modal integration, performance of head gesture detection was improved with con-
text features even when the topic of the test set was significantly different than the
training set.

1 Introduction

During face-to-face conversation, people use visual feedback to communicate relevant
information and to synchronize rhythm between participants. When people interact
naturally with each other, it is common to see indications of acknowledgment, agree-
ment, or disinterest given with a simple head gesture. Nonverbal feedback includes
head nodding and its use for visual grounding, turn-taking and answering yes/no ques-
tions. When recognizing such visual feedback, people use more than their visual per-
ception: knowledge about the current topic and expectations from previous utterances
help guide recognition of nonverbal cues. Our goal is to equip computer interfaces
with the ability to similarly perceive visual feedback gestures, and to exploit contex-
tual information from the current interaction state when performing visual feedback
recognition.
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Recent advances in computer vision have led to efficient head pose tracking sys-
tems, which can return the position and orientation of a user’s head through automatic
passive observation, as well as methods for recognition of head gestures using discrim-
inatively trained statistical classifiers. We show how detected head gestures can be used
for visual feedback both in a conversational dialog interaction and in interaction with a
traditional windows-based graphical user interface. In both cases the use of interaction
context proves critical to system performance.

When interacting with a computer in a conversational setting, dialog state can pro-
vide useful context for recognition. In the last decade, many embodied conversational
agents (ECAs) have been developed for face-to-face interaction, using both physical
robots and virtual avatars. A key component of these systems is the dialogue man-
ager, usually consisting of a history of the past events, current discourse moves, and an
agenda of future actions. The dialogue manager uses contextual information to decide
which verbal or nonverbal action the agent should perform next (i.e., context-based
synthesis). Contextual information has proven useful for aiding speech recognition:
in [15], a speech recognizer’s grammar changes dynamically depending on the agent’s
previous action or utterance. In a similar fashion, we have developed a context-based
visual recognition module that builds upon the contextual information available in the
dialogue manager to improve performance of visual feedback recognition (Figure 1).

In a non-conversational interface, head gestures can also be useful for interacting
with interface elements. A perceptive interface sensitive to head gesture can lead to
more natural notification and navigation interactions. Computer interfaces often inter-
rupt a user’s primary activity with a notification about an event or condition, which
may or may not be relevant to the main activity. Currently, a user must shift keyboard
or mouse focus to attend to the notification, and use keyboard and mouse events to
page through the displayed information and dismiss the notification before returning
to the main activity. Requiring keyboard or mouse events to respond to notifications
can clearly cause disruption to users during certain activities or tasks. We explore two
types of head gesture-based window controls: dialog box acknowledgment/agreement,
and document browsing. These components were chosen as they support the aspects of
the notification scenario described above. The first allows a user to effectively accept
or reject a dialog box or other notification window by nodding or shaking their head.
The second component allows a user to page through a document using head nods.

We present a prediction framework for incorporating context with vision-based
head gesture recognition. Contextual features are derived from the utterances of an
ECA or the event state of a traditional user interface. Figure 2 presents our frame-
work for context-based gesture recognition. Our framework allows us to predict, for
example, that in certain contexts a glance is not likely whereas a head shake or nod
is (as in Figure 1), or that a head nod is not likely and a head nod misperceived by
the vision system can be ignored. The use of dialogue or interface context for visual
gesture recognition has, to our knowledge, not been explored before for conversational
or windows-based interaction.

In the following sections we describe the contextual information available in con-
versational dialog systems and traditional window interfaces, our approach to context-
based gesture recognition based on a discriminative classifier cascade, and our experi-
ments in each domain.
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Figure 1: Contextual recognition of head gestures during face-to-face interaction with
a conversational robot. In this scenario, contextual information from the robot’s spoken
utterance helps disambiguating the listener’s visual gesture.

2 Related Work

There has been considerable work on gestures with ECAs. Bickmore and Cassell de-
veloped an ECA that exhibited many gestural capabilities to accompany spoken con-
versation and could interpret spoken utterances from human users [2]. Sidneret al.
have investigated how people interact with a humanoid robot [22]. They found that
more than half their participants naturally nodded at the robot’s conversational contri-
butions even though the robot could not interpret head nods. Nakanoet al. analyzed
eye gaze and head nods in computer-human conversation and found that their subjects
were aware of the lack of conversational feedback from the ECA [20]; they incorpo-
rated their results in an ECA that updated its dialogue state. Numerous other ECAs
(e.g. [29, 4]) are exploring aspects of gestural behavior in human-ECA interactions.
Physically embodied ECAs—for example, ARMAR II [8, 9] and Leo [3]–have also
begun to incorporate the ability to perform articulated body tracking and recognize hu-
man gestures. Matsusakaet al. uses head pose to determine who is speaking in three
party conversations [17].

Several authors have proposed face tracking for pointer or scrolling control and
have reported successful user studies [28, 14]. In contrast to eye gaze [31], users seem
to be able to maintain fine motor control of head gaze at or below the level needed
to make fine pointing gestures.1 However, many systems required users to manually
initialize or reset tracking. These systems supported a direct manipulation style of
interaction, and did not recognize distinct gestures.

There has been substantial research in hand/body gesture for human-computer in-

1Involuntary microsaccades are known to limit the accuracy of eye-gaze based tracking[11].
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Figure 2: Framework for context-based gesture recognition. The contextual predictor
translates contextual features into a likelihood measure, similar to the visual recognizer
output. The multi-modal integrator fuses these visual and contextual likelihood mea-
sures. The system manager is a generalization of the dialog manager (conversational
interactions) and the window manager (window system interactions).

teraction. Lenmanet al. explored the use of pie- and marking menus in hand gesture-
based interaction [16]. Cohenet al. studied the issues involved in controlling computer
applications via hand gestures composed of both static and dynamic symbols [7].

Head pose and gesture offer several key conversational grounding cues and are used
extensively in face-to-face interaction among people. Stiefelhagen developed several
systems for tracking face pose in meeting rooms and has shown that face pose is very
useful for predicting turn-taking [25]. Takemaeet al. also examined face pose in
conversation and showed that if tracked accurately, face pose is useful in creating a
video summary of a meeting [26]. Siracusaet al. developed a system that uses head
pose tracking to interpret who was talking to who in conversational setting [24]. The
position and orientation of the head can be used to estimate head gaze which is a good
estimate of a person’s attention.

Recognition of head gestures has been demonstrated by tracking eye position over
time. Kapoor and Picard presented a technique to recognize head nods and head shakes
based on two Hidden Markov Models (HMMs) trained and tested using 2D coordinate
results from an eye gaze tracker [12]. Kawato and Ohya suggested a technique for
head gesture recognition using between eye templates [13]. When compared with eye
gaze, head gaze can be more accurate when dealing with low resolution images and
can be estimated over a larger range than eye gaze [18]. Fugieet al. also used HMMs
to perform head nod recognition [10]. In their paper, they combined head gesture de-
tection with prosodic recognition of Japanese spoken utterances to determine strongly
positive, weak positive and negative responses to yes/no type utterances.

Context has been previously used in computer vision to disambiguate recognition
of individual objects given the current overall scene category [27]. While some systems
[20, 3] have incorporated tracking of fine motion actions or visual gesture, none have
included top-down dialogue context as part of the visual recognition process. To our
knowledge no previous work has explored the use of dialog or window manager state
as context for visual recognition of interaction gestures.
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3 Context in Conversational Interaction

Reliable recognition of nodding gestures is vital for conversation. Human speakers,
even when speaking to an ECA, nod without accompanying phrases, such as “yes, uh-
huh” or “ok” [1, 23]. For reliable recognition of head gestures, people use knowledge
about the current dialog during face-to-face conversational interactions to anticipate
visual feedback from their interlocutor. Our goal is to equip computer interfaces with
the ability to similarly perceive visual feedback gestures. As depicted in Figure 1,
knowledge of an ECA’s spoken utterance can help predict which visual feedback is
most likely.

We can use a conversational agent’s knowledge about the current dialog to improve
recognition of visual feedback (i.e., head gestures). Figure 3 shows a simplified ar-
chitecture which captures aspects common to several different systems [20, 21]. The
dialog manager merges information from the input devices with the history and the dis-
course model. The dialogue manager contains two main sub-components, an agenda
and a history: the agenda keeps a list of all the possible actions the agent and the user
(i.e., human participant) can do next. This list is updated by the dialogue manager
based on its discourse model (prior knowledge) and on the history. Dialog managers
generally exploit contextual information to produce output for the speech and gesture
synthesizer, and we can use similar cues to predict when visual feedback gestures from
the user will be likely.

We extract information from the dialog manager rather than directly access internal
ECA state. Our proposed method extracts contextual features from the messages sent
to the audio and gesture synthesizers. This strategy allows us to extract dialog context
without any knowledge of the internal representation and so, our method can be applied
to most ECA architectures.

We highlight four types of contextual features easily available from the dialog man-
ager: lexical features, prosody and punctuation features, timing information, and ges-
ture displays.

L EXICAL FEATURES Lexical features are computed from the words said by the em-
bodied agent. By analyzing the word content of the current or next utterance, one
should be able to anticipate and distinguish certain visual feedback gestures. For ex-
ample, if the current spoken utterance started with “Do you”, the interlocutor will most
likely answer using affirmation or negation. In this case, visual feedback in the form
of a head nod or a head shake is likely. On the other hand, if the current spoken utter-
ance started with “What”, then it is less likely to see the listener head shake or head
nod–other visual feedback gestures (e.g., pointing) are more likely.

PROSODY AND PUNCTUATION Prosody can also be an important cue to predict ges-
ture displays. We use punctuation features output by the dialog system as a proxy for
prosody cues. Punctuation features modify how the text-to-speech engine will pro-
nounce an utterance. Punctuation features can be seen as a substitute for more complex
prosodic processing that are not yet available from most speech synthesizers. A comma
in the middle of a sentence will produce a short pause, which will most likely trigger
some feedback from the listener. A question mark at the end of the sentence represents
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Figure 3: Simplified architecture for embodied conversational agent. Our method in-
tegrates contextual information from the dialogue manager inside the visual analysis
module.

a question that should be answered by the listener. When merged with lexical features,
the punctuation features can help recognize situations (e.g., yes/no questions) where
the listener will most likely use head gestures to answer.

T IMING Timing is an important part of spoken language and information about when
a specific word is spoken or when a sentence ends is critical. This information can aid
the ECA to anticipate visual grounding feedback. People naturally give visual feedback
(e.g., head nods) during pauses of the speaker as well as just before the pause occurs.
In natural language processing (NLP), lexical and syntactic features are predominant
but for face-to-face interaction with an ECA, timing is also an important feature.

GESTURE DISPLAY Synthesized gestures are a key capability of ECAs and it can
also be leveraged as a context cue for gesture interpretation. As described in [5], visual
feedback synthesis can improve the engagement of the user with the ECA. The gestures
expressed by the ECA influence the type of visual feedback from the human participant.
For example, if the agent makes a deictic pointing gesture, the user is more likely to
look at the location that the ECA is pointing to.

The dialog manager sends the next spoken utterance, a time stamp and an approx-
imated duration to the visual analysis module. The next spoken utterance contains the
words, punctuation, and gesture tags used to generate the ECA’s actions. The utter-
ance information is processed to extract the lexical, punctuation, timing, and gesture
features. Approximate duration of utterances is generally computed by speech synthe-
sizers and made available in the synthesizer API.

4 Context in Window System Interaction

We investigate the use of context-based visual feedback recognition to interact with
conventional window system components. Dialog boxes are well-known special win-
dows that are used by computer programs or by the operating system to display infor-
mation to the user, or to get a response if needed [30]. We focus our attention to two
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types of dialog boxes:notificationdialog boxes andquestiondialog boxes.
Notification dialog boxes are one-button windows that show information from an

application and wait for the user to acknowledge the information and click a confir-
mation button. During human-to-human interactions, the process of ensuring common
understanding is called grounding [6]. Grounding is also present during interactions
with embodied conversational agents, and human participants naturally head nod as
a non-verbal feedback for grounding [20]. From these observations, we can expect
human participants to naturally accept head nodding as a way to answer notification
dialog boxes.

Question dialog boxes are multiple button windows that display a question from the
application and wait for positive or negative feedback from the user. This type of dialog
box includes both confirmation and rejection buttons. If we look again at interactions
that humans have with other humans or with embodied agents, head nods and head
shakes are a natural way in many cultures to signify positive and negative feedback, so
untrained users should be able to use these kinds of interfaces quite efficiently.

An interesting characteristic of notification and question dialog boxes is that quite
often they appear while the user is performing a different task. For example, some
email clients will notify the user of new email arrivals using a dialog box saying
“You’ve got mail!”. Another example is operating systems and applications that ques-
tion the user about installing software updates. In both cases, the user may already be
working on another task such as reading emails or browsing a document, and want to
answer the dialog box without changing focus. Answering a dialog box using a head
gesture makes it possible for users to keep keyboard and mouse focus undisturbed.

Based on our observations, we hypothesize that head gestures are a natural and
efficient way to respond to dialog boxes, especially when the user is already perform-
ing a different task. We propose a gesture-based interface design where notification
dialog boxes can be acknowledged by head nodding and question dialog boxes can be
answered by head nods or head shakes.

Similarly, people use head nods as a grounding cue when listening to information
from another person. We conjecture that reading may be similar to listening to infor-
mation, and that people may find it natural to use head nod gestures to turn pages.
We design a prototype gesture-based page-forward control to browse a document, and
evaluate it in a user study as described below.

With a window system interface, there are several sources of potential errors with a
gesture-based recognition system. We use contextual features that distinguish between
visually confounded states and reduce false positives that happen during interaction
with conventional input devices. Contextual features should be easily computed using
pre-existing information in the user interface system.

For traditional, windows-based human-computer interfaces, interaction context is
defined by the event state of the user interface system. We highlight two types of
contextual features easily available from the window manager: input device events and
display events.

I NPUT DEVICE EVENTS Recent events from a conventional input device like keyboard
or mouse can help to distinguish voluntary head gestures. For example when people
search for their cursor on the screen, they perform fast short movements similar to
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head nods or head shakes, and when people switch attention between the screen and
keyboard to place their fingers on the right keys, the resulting motion can appear like a
head nod. These types of false positives can cause difficulty, especially for users who
are not aware of the tracking system.

DISPLAY EVENTS Knowledge from what is displayed on screen can help predicting
when user’s input is more likely. A simple example of such a contextual feature is the
time since a dialog box was displayed. This contextual feature can help head gesture
recognition because user’s input is most likely after such an event but also because
people answer a dialog box usually after reading its content (∼2.5 second delay in our
experiments). So the time since the display event can be as important as the event itself.

These contextual features can be easily computed by listening to the input and
output events sent inside the message dispatching loop of the application or operating
system (see Figure 2).

5 Context-based Gesture Recognition

We use a two-stage discriminative classification scheme to integrate interaction context
with visual observations and detect gestures. A two-stage scheme allows us the free-
dom to train context prediction and visual gesture recognition components separately,
potentially using corpora collected at different times. Figure 2 depicts our complete
system.

In the contextual predictor, we learn a measure of the likelihood of certain visual
gestures given the current contextual feature values using a multi-class Support Vector
Machine (SVM). The marginm(x) of the feature vectorx, created from the concatena-
tion of the contextual features, can easily be computed given the learned set of support
vectorsxi, the associated set of labelsyi and weightswi, and the biasb:

m(x) =
l∑

i=1

yiwiK(xi, x) + b (1)

wherel is the number of support vectors andK(xi, x) is the kernel function. In our
experiments, we used a radial basis function (RBF) kernel:

K(xi, x) = e−γ‖xi−x‖2 (2)

whereγ is the kernel smoothing parameter learned automatically using cross-validation
on our training set. After training the multi-class SVM, we compute a margin for each
class and use this value as a prediction for each visual gesture.

In the multi-modal integrator, we merge context-based predictions with observa-
tions from a vision-based head gesture recognizer. We adopted a late fusion approach
because data acquisition for the contextual predictor is greatly simplified with this
approach, and initial experiments suggested performance was equivalent to an early,
single-stage integration scheme. Most recorded interactions between human partici-
pants and conversational robots do not include estimated head position; a late fusion
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framework gives us the opportunity to train the contextual predictor on a larger data set
of linguistic features.

Our integration component takes as input the margins from the contextual predictor
described earlier in this section and the visual observations from the vision-based head
gesture recognizer, and recognizes whether a head gesture has been expressed by the
human participant using a second multi-class SVM. The output from the integrator is
further sent to the dialog manager or the window manager so it can be used to decide
the next action of the ECA or to trigger the perceptive window interface.

In the vision-based gesture recognizer, we compute likelihood measurements of
head gestures using a two-step process: we first track head position and rotation, and
then use a computed head velocity feature vector to recognize head gestures. We use
a head tracking framework that merges differential tracking with view-based tracking
based on the system described by [19]. We found this tracker was able to track subtle
movements of the head for a long periods of time. While the tracker recovers the full
3-D position and velocity of the head, we found features based on angular velocities
were sufficient for gesture recognition.

For the second step of the vision-based gesture recognition (before integration of
context features), we trained a multi-class SVM with two different classes: head nods
and head shakes. The head pose tracker outputs a head rotation velocity vector at each
time step (sampled at approximately 18Hz). We transform the velocity signal into
a frequency-based feature by applying a windowed Fast-Fourier Transform (FFT) to
each dimension of the velocity independently using a 32-sample, 1-second window.
The multi-class SVM was trained on this input using an RBF kernel.

6 Conversational Experiments

The following experiment demonstrates how contextual features inferred from an agent’s
multi-modal dialogue can improve head nod and head shake recognition. We compare
the performance of the vision-only recognizer with context-only prediction and with
multi-modal integration.

6.1 Experimental Setup

For this experiment, a first data set was used to train the contextual predictor and the
multi-modal integrator, while a second data set with a different topic was used to eval-
uate head gesture recognition performance. In the training data set, a robot interacted
with a participant by demonstrating its own abilities and characteristics. This data set,
called Self, contains 7 interactions. The test data set, called iGlass, consists of nine
interactions of the robot describing an invention called iGlassware (∼340 utterances).

During each interaction, we recorded the results of the vision-based head gesture
recognizer (described in Section 5) as well as the contextual cues (spoken utterances
with start time and duration) from the dialog manager. These contextual cues were later
automatically processed to create contextual features necessary for the contextual pre-
dictor. The details of the contextual feature computation is discussed in the following
subsection.
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Figure 4: Mel, an interactive robot, can present the iGlassware demo (table and copper
cup on its right) or talk about its own dialog and sensorimotor abilities.

For both data sets, human participants were video recorded while interacting with
the robot (see Figure 4). The vision-based head tracking and head gesture recogni-
tion were run online at approximately 18Hz. The robot’s conversational model, based
on COLLAGEN [21], determined the next activity on the agenda using a predefined
set of engagement rules, originally based on results from a human–human interaction
study [22]. Each interaction lasted between 2 and 5 minutes. For ground truth, we
hand labeled each video sequence to determine exactly when the participant nodded
or shook his/her head. A total of 274 head nods and 14 head shakes were naturally
performed by the participants while interacting with the robot.

6.2 Contextual Features

The robot’s spoken utterances were automatically processed to compute contextual
features. We use four types of contextual features easily available from the dialog
manager: lexical features, prosody and punctuation features, timing information, and
gesture displays. In our implementation, the lexical feature relies on extracted bigrams
(pairs of words that occur in close proximity to each other, and in particular order)
since they can efficiently be computed given the transcript of the utterance.

While a range of bigrams may be relevant to gesture context prediction, we cur-
rently focus on the single phrase “do you”, as we observed it was an efficient predictor
of a yes/no question in many of our training dialogs. Other bigram features will proba-
bly be useful as well (for example, “have you, will you, did you”), and could be learned
using a feature selection algorithm from a set of candidate bigram features.

We extract bigrams from the utterance and set the following binary feature:

f“do you” =

{
1 if bigram “do you” is present

0 if bigram “do you” is not present

The punctuation feature and gesture feature are coded similarly:
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Figure 5: Prediction of head nods and head shakes based on 3 contextual features:
(1) distance to end-of-utterance when ECA is speaking, (2) type of utterance and
(3) lexical bigram feature. We can see that the contextual predictor learned that head
nods should happen near or at the end of an utterance or during a pause while head
shakes are most likely at the end of a question.

f? =

{
1 if the sentence ends with “?”

0 otherwise

flook left =

{
1 if a “look left” gesture happened during the utterance

0 otherwise

The timing contextual featureft represents proximity to the end of the utterance.
The intuition is that verbal and non-verbal feedback are most likely at pauses and also
just before the pause occurs. This feature can easily be computed given only two
values: t0, the utterance start-time, andδt, the estimated duration of the utterance.
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MEL:  I didn't get that, please repeat.

MEL:  I'm waiting for a reading from the table for the cup.

MEL:  Good.

S:  OK.

S:  Yes.

MEL:  See, it register needing a refill.

MEL:  Would you like me to 

           explain how this works?

Ground truth

Figure 6: Context-based head nod recognition results for a sample dialogue. The last
graph displays the ground truth. We can observe at around 101 seconds (circled and
crossed in the top graph) that the contextual information attenuates the effect of the
false positive detection from the visual recognizer.

Given these two values for the current utterance, we can estimateft at timet using:

ft(t) =

{
1−

∣∣∣ t−t0
δt

∣∣∣ if t ≤ t0 + δt

0 if t > t0 + δt

We selected our features so that they are topic independent. This means that we
should be able to learn how to predict head gesture from a small set of interactions and
then use this knowledge on a new set of interactions with a a different topic discussed
by the human participant and the ECA. However, different classes of dialogs might
have different key features, and ultimately these should be learned using a feature se-
lection algorithm (this is a topic of future work).

The contextual features are evaluated for every frame acquired by the visual anal-
ysis module (about 18Hz). The lexical,punctuation and gesture features are evaluated
based on the current spoken utterance. The effect of an utterance starts when it starts
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Figure 7: Head nod recognition curves when varying the detection threshold.

to be spoken and ends after the pause following the utterance. The top three graphs of
Figure 5 show how two sample utterances will be coded for the bigram “do you”, the
question mark and the timing feature.

A total of 236 utterances were processed to train the multi-class SVM used by our
contextual predictor. Positive and negative samples were selected from the same data
set based on manual transcription of head nods and head shakes. Test data was withheld
during evaluation in all experiments in this paper.

Figure 5 displays the output of each class of our contextual predictor for a sample
dialogue segment between the robot and a human participant. Positive margins rep-
resent a high likelihood for the gesture. It is noteworthy that the contextual predictor
automatically learned that head nods are more likely to occur around the end of an
utterance or during a pause, while head shakes are most likely to occur after the com-
pletion of an utterance. It also learned that head shakes are directly correlated with the
type of utterance (a head shake will most likely follow a question), and that head nods
can happen at the end of a question (i.e., to represent an affirmative answer) and can
also happen at the end of a normal statement (i.e., to ground the spoken utterance).

6.3 Performance

Our hypothesis was that the inclusion of contextual information within the head gesture
recognizer would increase the number of recognized head nods while reducing the
number of false detections. We tested three different configurations: (1) using the
vision-only approach, (2) using only the contextual information as input (contextual
predictor), and (3) combining the contextual information with the results of the visual
approach (multi-modal integration).

Figure 6 shows the head nod recognition results for a sample dialogue. When
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Figure 8: Head shake recognition curves when varying the detection threshold.

only vision is used for recognition, the algorithm makes a mistake at approximately
t = 101s by detecting a false head nod; visual grounding is less likely during the
middle of an utterance. By incorporating contextual information, our context-based
gesture recognition algorithm is able to reduce the number of false positives.

We computed the true positive rate using the ratio between the number of detected
gestures and the total number of ground truth gestures. A head gesture is tagged as
detected if the detector triggered at least once during a time window around the gesture.
The time window starts when the gesture starts and endsk seconds after the gesture.
The parameterk was empirically set to the maximum delay of the vision-based head
gesture recognizer (1.0 second). For the iGlass dataset, the total numbers of ground
truth gestures were 91 head nods and 6 head shakes.

The false positive rate is computed at a frame level using the ratio between the
number of falsely detected frames and the total number of non-gesture frames. A frame
is tagged as falsely detected if the head gesture recognizer triggers and if this frame is
outside any time window of a ground truth head gesture. The denominator is the total
of frames outside any time window. For the iGlass dataset, the total number of non-
gestures frames was 18246 frames and the total number of frames for all 9 interactions
was 20672 frames.

Figure 7 shows head nod detection results for all 9 subjects used during testing.
The ROC curves present the detection performance for each recognition algorithm
when varying the detection threshold. The area under the curve for each techniques
are 0.9482 for the vision only, 0.7691 for the predictor and 0.9678 for the integrator.

Figure 8 shows head shake detection results for each recognition algorithm when
varying the detection threshold. The areas under the curve for each techniques are
0.9780 for the vision only, 0.4961 for the predictor and 0.9872 for the integrator.

Table 1 summarizes the results from Figures 7 and 8 by computing the true positive

14



Vision Predictor Integrator
Head nods 81% 23% 93%

Head shakes 83% 10% 98%

Table 1: True detection rates for a fixed false positive rate of 0.1.

rates for the fixed negative rate of 0.1. Using a standard analysis of variance (ANOVA)
on all the subjects, results on the head nod detection task showed a significant differ-
ence among the means of the 3 methods of detection:F (1, 8) = 62.40, p < 0.001,
d = 0.97. Pairwise comparisons show a significant difference between all pairs, with
p < 0.001, p = 0.0015, andp < 0.001 for vision-predictor, vision-integrator, and
predictor-integrator respectively. A larger number of samples would be necessary to
see the same significance in head shakes.

7 Window System Experiments

In this section, we first describe a user study evaluating two gesture-based widgets
described in Section 4: dialog box answering and document browsing. We then de-
scribe how we compute contextual features from the windows manager. Finally, we
present the result from the user study as well as a comparison between the vision-only
recognizer and the context-based recognizer.

7.1 Experimental Setup

The main experiment consisted of two tasks: (1) reading a short text and (2) answering
three related questions. Both tasks were performed under three different experimental
interaction phases: conventional input only, head gesture input only and user-selected
input method. For each interaction, the text and questions were different. During
both tasks, dialog boxes appeared at different times asking a question or stating new
information.

The reading task was designed to replicate a situation where a person reads an
informal text (∼3 pages) using a document viewer like Adobe Acrobat Reader. At
startup, our main application connects to Acrobat Reader, using Component Object
Model (COM) technology, displays the Portable Document File (PDF) and waits for
the user input. When the participant reached the end of the document, he/she was
instructed to close Acrobat Reader and automatically the window for the second task
would start. The document browsing widget was tested during this task.

The writing task was designed to emulate an email writing process. The interface
was similar to most email clients and included the conventional fields: “To:”, “CC:”,
“Subject:” and the email body. A “Send” button was placed in the top left corner. The
questions were already typed inside the email as if the participant was replying to a
previous email.

The dialog boxes appearing during both tasks were designed to replicate reminders
sent by a calendar application (i.e., Microsoft Outlook), alerts sent by an email client,
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Figure 9: Experimental setup. A stereo camera is placed on top of the screen to track
the head position and orientation.

and questions asked during impromptu moments about software updates or assistant
help. Between 4 to 8 dialog boxes would appear during each experiment. The position
and text displayed on the dialog box changed between appearances. Participants were
asked to answer each dialog box that appeared on the screen. Two types of dialog boxes
were displayed: one “OK” button and two “Yes/No” buttons.

Both tasks were repeated three times with three different experimental interaction
phases. During the first interaction, the participants were asked to use the mouse or the
keyboard to browse the PDF document, answer all dialog boxes and reply to the email.
This interaction phase was used as a baseline where participants were introduced to
both tasks and they could remember how it felt to interact with conventional input
devices.

Between the first and second interaction, a short tutorial about head gestures for
user interfaces was performed where participants practiced the new techniques for dia-
log box answering and document browsing as described in Section 4. Participants were
free to practice it as long as they wanted but most participants were ready to start the
second phase after one minute.

During the second phase, participants were asked to browse the PDF document
and answer dialog boxes using head nods and head shakes. During the email task,
participants had to use the keyboard for typing and could use the mouse for navigating
in the email but they were asked to answer any dialog box with a head gesture. This
interaction phase was designed to introduce participants to gesture-based widgets.

During the third phase of the experiment, participants were told that they could
use any input technique to perform the browsing and email tasks. This interaction was
designed so that participants could freely choose between keyboard, mouse or head
gestures. In contrast to the previous two phases, this phase provided an indication of
which interaction technique or combination of technique was preferred.
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This phase was also designed to compare the accuracy of the head recognizer with
the judgement of a human observer. For this reason, during this third phase of the
experiment a human observer was recognizing intentional head nods from each partic-
ipant, in a “Wizard of Oz” manner. The vision-based head gesture recognizer was still
running during this phase and its results were logged for later comparison.

The study was a within-subjects design, where each participant performed more
then one interaction phase. A total of 19 people participated in our experiment. All
participants were accustomed to using the keyboard and mouse as their main input
devices, and none of them had used head gesture in a user interface before. Twelve
participants completed the first two conditions and only seven participants completed
all three conditions. Each condition took 2-3 minutes to complete on average. All
participants completed a short questionnaire about their experience and preference at
the end of the experiment.

The short questionnaire contained two sets of questions where participants were
asked to compare keyboard, mouse and head gestures. The first set of questions was
about document browsing while the second set was about dialog box answering. Both
sets had the same structure: 2 questions about efficiency and natural interaction fol-
lowed by a section for general comments. Each question asked the participant to grade
all three types of user interfaces (keyboard, mouse and head gesture) from 1 to 5 where
5 is the highest score. The first question asked participants to grade input techniques
on how efficient the technique was. The second question asked participants to grade
input techniques on how natural the technique was.

The physical setup consists of a desk with a 21” screen, a keyboard and a mouse.
A stereo camera was installed on top of the screen to track the head gaze and recognize
head gestures (see Figure 9). This camera was connected to a laptop that ran the recog-
nition system described in Section 5. The recognition system sends recognition results
to the main application, which is displayed on the desktop screen in a normal fashion.
No feedback about the recognition results is shown on this screen.

7.2 Contextual Features

For the non-conversational interface experiments, we exploit two features of interface
state commonly available through a system event dispatch mechanism: dialog box
display and mouse motion. The time from the most recent dialog box display or mouse
motion or button press event is computed, and provided as input to a context prediction
module. Such window event features can significantly reduce potential false positives
that would otherwise result based on detection from the visual modality alone.

We defined two contextual features based on window system event state:fd and
fm, defined as the time since a dialog box appeared and time since the last mouse event
and respectively. These features can be easily computed by listening to the input and
display events sent inside the message dispatching loop of the application or operating
system (see Figure 2). We compute the dialog box featurefd as

fd(t) =

{
Cd if no dialog box was shown

t− td otherwise
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Figure 10: Preferred choices for input technique during third phase of the experiment.

wheretd is the time-stamp of the last dialog box appearance andCd is default value if
no dialog box was previously shown. The same way, we compute the mouse feature
fm as

fm(t) =

{
Cm if no mouse event happened

t− tm otherwise

where tm is the time-stamp of the last mouse event andCm is default value if no
mouse event happened recently. In our experiments,Cd andCm were set to 20. The
contextual features are evaluated at the same rate as the vision-based gesture recognizer
(about 18Hz).

7.3 Results and Discussion

To obtain a qualitative analysis of our user study, we looked at the choices each par-
ticipant made during the third phase of the non-conversational experiment. During this
part of the experiment, the participant was free to decide which input device to use.
Figure 10 shows how participants decided to answer dialog boxes and browse doc-
uments. We calculated average use over the whole group of 7 participants. For the
dialog boxes, 60.4% of the time they used a head gesture to answer the dialog box,
while using mouse and keyboard only 20.9% and 18.6% respectively. For document
browsing, 31.2% of the time they used a head gesture to answer the dialog box, while
using mouse and keyboard 22.9% and 45.8% respectively.

Using a standard analysis of variance (ANOVA) on all 7 subjects who participated
in the third phase, results on the dialog box answering widget showed a significant
difference among the means of the 3 input techniques:p = 0.060. Pairwise compar-
isons show a significant difference for pairs gesture-mouse and gesture-keyboard, with
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Figure 11: Survey results for dialog box task. All 19 participants graded the naturalness
and efficiency of interaction on a scale of 1 to 5, 5 meaning best.

respectivelyp = 0.050 andp = 0.083, while the pair mouse-keyboard shown no sig-
nificant difference:p = .45. Pairwise comparisons for the document browsing show
no significant difference between all pairs, withp = 0.362, p = 0.244, andp = 0.243
for gesture-mouse, gesture-keyboard, and mouse-keyboard respectively.

We also measured qualitative results from the questionnaire. Figure 11 shows how
19 participants scored each input device for efficiency and natural feeling when inter-
acting with dialog boxes. The average scores for efficiency were 3.6, 3.5 and 4.2, for
keyboard, mouse and head gestures respectively. In the case of natural feeling, the
average scores were 3.4, 3.7 and 4.2.

Figure 12 shows how 19 participants scored each input device for efficiency and
natural feeling for document browsing. The average scores for efficiency were 4.3, 3.8
and 2.6, for keyboard, mouse and head gestures respectively. In the case of natural
feeling, the average scores were 4.1, 3.9 and 2.7.

One important fact when analyzing this data is that our participants were already
trained to use mouse and keyboard. This previous training affected their choices. The
results from Figures 10 and 11 suggest that head gestures are perceived as a natural
and efficient way to answer and acknowledge dialog boxes. Participants did not seem
to appreciate head gestures as much for document browsing. Some participants stated
in their questionnaire that they wanted to have a more precise control over the scrolling
of PDF documents. Since the head gesture paradigm only offered control at the page
level, we think that this paradigm would apply better to a slide-show application like
PowerPoint.

An interesting fact that came from our post-analysis of the user study is that some
participants performed head shakes at the notification dialog box (the dialog box with
only “OK”). This gesture could have been used to indicate that they didn’t want to be
disturbed at that specific moment and expressed their disapproval by a head shake.

We compared the results from vision-based head gesture recognizer with the ground
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Figure 12: Survey results for document browsing task. All 19 participants graded the
naturalness and efficiency of interaction on a scale of 1 to 5, 5 meaning best.

truth results on three participants. The vision-based system recognized 91% of the head
nods with a false positive rate of 0.1. This result shows that a vision-only approach can
recognize intentional head gestures but suggests the use of contextual information to
reach a lower false positive rate.

To analyze the performance of the context-based head gesture recognizer described
in Section 5, we manually annotated 12 interaction sequences for head gestures so that
we have a ground truth. From this dataset of 79 minutes of interaction, 269 head nods
and 121 head shakes were labeled as ground truth. Positive and negative samples were
selected from this data set. The evaluation of the context-based gesture recognizer was
done using a leave-one-out approach where eleven participants are used to train the
contextual predictor and multi-modal integrator and one participant is kept for testing.
Figure 13 shows the average head nod detection results for the vision-only technique
and the context-based recognizer.

During our experiments, the average false positive rate from the vision-based sys-
tem was 0.058 and the recognition performance was 85.3%. For the same false posi-
tive rate, the context-based approach recognized on average 91.0% of the head nods.
A paired t-test analysis over all tested subject returns a one-tail p-value of 0.070. Fig-
ure 13 shows that adding contextual information to the recognition framework does
reduce significantly the number of false positives.

8 Conclusion and Future Work

Our results show that contextual information can improve user gesture recognition for
interactions with embodied conversational agents and interactions with a window sys-
tem. We presented a prediction framework that extracts knowledge from the spoken di-
alogue of an embodied agent or from the user-interface system events to predict which
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Figure 13: Average ROC curves for head nods recognition. For a fixed false posi-
tive rate of 0.058 (operational point), the context-based approach improves head nod
recognition from 85.3% (vision only) to 91.0%.

head gesture is most likely. By using simple lexical, punctuation, gesture and timing
context features, we were able to improve the recognition rate of the vision-only head
gesture recognizer from 81% to 93% for head nods and from 83% to 98% for head
shakes. Similar improvements were shown when performing context-based recogni-
tion during window system interactions. Our user study indicated quantitative and
qualitative benefits of gesture-based confirmation over conventional alternatives for di-
alogue boxes in GUI interfaces, but did not show support for the prototype document
browsing interface. As future work, we plan to experiment with a richer set of contex-
tual cues, and to incorporate general feature selection to our prediction framework so
that a wide range of potential context features can be considered and the optimal set
determined from a training corpus.
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