
Lecture 11—Introduction to Settling Velocity 
 
Settling velocity is one of those things that seems to have developed 
a whole academic industry around it—people have worried for a very 
long time how to calculate settling velocity, and how to do it 
accurately. This is not entirely silly; all granulometry devices that 
measure settling velocity as a proxy for grain size (read settling 
tubes) require a precise knowledge of the settling velocity of spheres, 
for example. Settling velocity will become a primary input for bedload 
transport studies, as well. 
 
Given how important settling velocity is to sediment transport, it’s not 
surprising that many, many people have taken a crack at solving this 
problem for once and for all. It seems so deceptively simple—
consider sediment to be spherical, and balance the weight of the 
sphere pulling it down against the friction of water rushing past the 
sphere holding it up. How hard can this be? 
 
 

 
 
Well, the first part is not hard. The weight of a sphere is just the mass 
times the acceleration of gravity, and the mass is just the volume 
times the density. SO, 
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So our only problem is what holds the sphere back. The first 
formulation of this was by Stokes in 1851. The force he felt held back 
the sphere was the viscous resistance of the fluid on the surface of 
the sphere. This is related to the surface area of the sphere, the 
viscosity of the fluid, and the velocity of the fluid. 
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To get settling velocity, just balance the two forces, and solve for v! 
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Ok, this is fine so long as viscous forces are the only ones slowing 
the sphere. HOWEVER, there’s another force to concern ourselves 
with—the impact of water striking the sphere. Picture an extreme 
example. You are a particle. You are sprayed with a firehose. Are you 
being pushed backwards by viscosity, or by impact of water? You 
guessed it—riot police don’t use firehoses because they spray really 
viscous water. So, we need a formula that handles the impact of all 
those little particles of water on our sphere. Consider a sphere being 
supported on a fountain of water: 
 
 

 



If every particle of water strikes the sphere dead on, and fully 
discharges its momentum into the sphere, then the impact is related 
to the mass of water per unit time that strikes the sphere and the 
velocity. In math: 
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Relating this to the weight of the sphere gives a velocity: 
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which is, sensu strictu, the impact law. 
 
Ok, there’s two problems with this. One, we can’t combine these two 
formulae yet. Two, we assumed that the particles of water all 
released all their momentum to the sphere, and we know for a fact 
that they don’t—the particles along the perimeter, for example, barely 
graze the sphere, so why are they giving any momentum at all? 
 
The solution to the first problem is easy. Rubey first thought this one 
up—the force balancing the weight of the sphere is the combination 
of the impact and the friction! Hey, who knew? Thus: 
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Ok, for our second problem. We need some way of talking about how 
water imparts momentum to the sphere (and wouldn’t it be nice if we 
could generalize this to things other than spheres?). One solution is 
to create a general force of drag, and make it account for both impact 
and viscous drag. Such a formulation would look a lot like the impact 



formula—you’d need the projected area, the fluid density, and the 
velocity: 
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the only addition is this drag coefficient, that’s supposed to talk about 
how important viscosity is, and to handle how water strikes the object 
(note that CD is unitless). So, all we need is some way to talk about 
how water strikes an object, and how important viscosity is in all this.  
 
For now, take it on faith—people did a lot of experiments on this and 
came up with a graph that defines how drag coefficient changes with 
changes in relative velocity. Here it is: 
 

 
 
 
Notice that we have a new Reynolds number—here the velocity is the 
settling velocity and the length scale is particle diameter and not flow 



depth. This Reynolds number does basically the same thing as 
before—it tells us when flow around an object is laminar (and 
therefore friction dominated), and when flow is turbulent (and 
therefore impact dominated). Here’s a chart that explains something 
about how flow behaves around a sphere for different particle 
Reynolds numbers: 
 

 
 
For spheres, the plot of CD vs. R is pretty interesting—for very low R, 
CD behaves as a function of R, whereas for relative large R, CD 
becomes constant at about 0.5. This is neat—CD shows the 
dominance of friction at low R, and the dominance of impact at high 
R. It also shows something called the “drag crisis” that happens to 
spheres at very high R. Here, the particle boundary Reynolds number 
becomes turbulent, and the drag on the sphere suddenly drops. 
 
Ok! So finally, then, we have a general formula for settling velocity 
that only has this one nasty in it. 
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This is commonly referred to as “impact law,” although it’s a more 
general form than true impact law.  


