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Abstract. Price fluctuations under adaptive learning in renewable resource markets
such as fisheries are examined. Optimal fishery management with logistic fish popu-
lation growth implies a backward-bending, discounted supply curve for bioeconomic
equilibrium sustained yield. Higher discount rates bend supply backwards more to
generate multiple steady state rational expectations equilibria. Under bounded ra-
tionality adaptive learning of a linear forecasting rule generates steady state, 2-cycle
as well as chaotic consistent expectations equilibria (CEE), which are self-fulfilling
in sample average and autocorrelations. The possibility of “learning to believe in
chaos” is robust and even enhanced by dynamic noise.
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1 Introduction

In the past decade adaptive learning models have been proposed as an alterna-
tive to rational expectations, see e.g. Evans and Honkapohja (1999) and Sargent
(1993,1999) for recent surveys. In contrast to rational expectations, adaptive learn-
ing models assume that agents do not have perfect knowledge about market equi-
librium equations, but have some belief, the perceived law of motion, about the
true unknown actual law of motion. Usually the perceived law of motion is some
parameterized model and adaptive learning simply means updating of the parame-
ters of the perceived law of motion, e.g. by ordinary least squares, as additional
observations become available. The implied actual law of motion under adaptive
learning is thus a time-varying self-referential or feedback system depending upon
the perceived law of motion. In this framework, a rational expectations equilibrium
is simply a situation where the implied actual law of motion exactly coincides with
the perceived law of motion, and adaptive learning may converge to such a rational
expectations equilibrium.

However, convergence to a rational expectations equilibrium can only occur when
the perceived law of motion is correctly specified and in the same class as the (un-
known) actual law of motion. When agents believe in a misspecified model con-
vergence to rational expectations can never occur, and the best one can hope for
is that the adaptive learning process converges to an ‘approximate rational expec-
tations equilibrium’ with optimal misspecified forecasts (Sargent, 1999). Such an
approximate rational expectations equilibrium may be a useful concept describing a
situation where agents do not understand the world in its full complexity, but have
some simple perception of this complex world and try to minimize their forecasting
errors within their simple view of the world.

The present paper applies the notion of consistent expectations equilibrium (CEE)
to an optimal harvesting model of renewable resource markets, in particular fish-
eries. A CEE refers to a situation where the unknown law of motion is nonlinear,
but agents try to forecast the complex nonlinear world with linear forecasting rules.
In equilibrium these linear forecasting rules are consistent however, that is, they are
correct in terms of sample mean and sample autocorrelations. A CEE may thus
be seen as an ‘approximate rational expectations equilibrium’, where the misspec-
ified perceived law of motion is the best linear approximation, within the class of
perceived laws of motion, of the unknown true nonlinear law of motion.

At this point, let us relate the contribution of this paper to some recent liter-
ature. In his Presidential address to the Econometric Society in the early 1990s,
Grandmont (1998) introduced the concept of a self-fulfilling mistake. This phenom-
enon can emerge when economic agents cannot distinguish between randomness
and determinism, a situation that can occur when the underlying true dynamics are
chaotic (e.g. Brock and Dechert (1991) and Radunskaya (1994)). Agents believe
mistakenly that say prices follow a stochastic law of motion, and given their belief
the actual law of motion becomes deterministically chaotic. If agents can not distin-



guish between randomness and chaos, their mistake becomes self-fulfilling. Bunow
and Weiss (1979) and Sakai and Tokumaru (1980) showed that a simple stochastic
AR(1) model can mimic the behavior of a chaotic tent map. Hommes and Sorger
(1998), following earlier work in Hommes (1998) and Sorger (1998), applied these
results and introduced the notion of a consistent expectations equilibrium (CEE),
where agents believe that prices follow a linear AR(1) stochastic process, whereas
the implied actual law of motion is a deterministic chaotic map. Along a CEE price
realizations have the same sample mean and sample autocorrelation coefficients at
all leads and lags as the AR(1) process. Hommes and Sorger (1998) find three types
of CEE, steady state, 2-cycle as well as chaotic CEE, and they show that agents can
learn to converge on each of these CEE’s.

Related work on complicated ‘approximate rational expectations’ equilibria un-
der learning includes work by Bullard (1994) and Schonhofer (1999, 2000), who show
periodic and even chaotic dynamics under adaptive learning in an OLG-model with
inflation. In another related macroeconomic application, Arifovic (1996) reports ev-
idence of fluctuations in exchange rates driven by genetic algorithm learning in an
overlapping generations economy with two currencies. Sogner and Mitlohner (2000)
have recently applied the concept of CEE in a standard asset pricing model.

In microeconomics it has long been understood that cobweb adjustment mod-
els can generate chaotic dynamics when agents have adaptive expectations, even
when demand and supply are monotonic curves (Chiarella, 1988; Hommes, 1994).
Another related model is the backward-bending supply curve of labor due to Bolle
and Neugart (1998). They demonstrate the possibility of chaotic dynamics in this
model, but do not fully work out the self-fulfilling mistake implications. However,
as stressed in Hommes (1998), along these chaotic fluctuations expectational errors
have significant autocorrelations, and boundedly rational agents might take advan-
tage of those and revise expectations accordingly. Hommes and Sorger show that
in the cobweb model with monotonic demand and supply curves with agents using
an AR(1) forecasting rule, the only CEE is the rational expectations steady state.
However, Hommes and Sorger (1998) also show for the case of a backward-bending
supply curve in which the true underlying dynamics are an asymmetric tent map
that a simple AR(1) cobweb behavior can mimic the true dynamics in the manner
of a self-fulfilling mistake. They also show the possibility that an adaptive learning
process converges to chaotic CEE cobweb dynamics. Even if the agents do not ini-
tially select the specific parameters that generate such a chaotic CEE, there can exist
positive Lebesgue measure sets of initial values for those for which a simple adap-
tive learning scheme, such as sample autocorrelation learning, will lead the agent to
adjust those values so that they converge on the parameters that do generate such
a chaotic CEE. Such a process may start out with very regular behavior that then
becomes more complex as the system converges on the chaotic implied actual law of
motion. This phenomenon has been coined learning to believe in chaos in Hommes
(1998, p.360), and explicit examples have been given in Sorger (1998) and Hommes
and Sorger (1998).

The present paper makes two contributions. Firstly, we investigate CEE in a



fishery model where the backward bending supply curve is derived from optimal
management of the fish resources, by a sole owner maximizing discounted revenues.
A backward bending supply curve in a renewable resource market appears to be
natural when the discount rate is sufficiently high. In the fishery model the implied
law of motion becomes a smooth one-dimensional non-monotonic map. Our results
show that the possibility of chaotic CEE is not restricted to piecewise linear tent
map dynamics, but occurs for general smooth non-monotonic mappings. Secondly,
we investigate the effect of dynamic noise upon the learning dynamics and show that
learning to believe in chaos is robust with respect to noise. In the presence of noise,
the adaptive learning process can easily settle down to a chaotic CEE in which errors
of the AR(1) forecasting rule have no significant autocorrelations. In fact, in a noisy
environment it becomes even more difficult for the agents to distinguish between
their stochastic AR(1) belief and the unknown underlying chaotic law of motion.
Along a noisy CEE, agents using linear statistical techniques are not able to reject
the hypothesis that prices follow a stochastic AR(1) process.

We will apply the CEE concept to fishery models, but it can apply more generally
to any renewable resource market with an open access problem as well. Fisheries
have long presented great difficulties of understanding to both biologists and econo-
mists, as well as to policymakers. This has been especially the case as there have
been many collapses of fisheries around the world as well as serious disputes between
fishers from different countries. Understanding fisheries involves modeling both the
biological aspect as well as the economic aspect and integrating the two in a sound
manner, a fusion labeled bioeconomics by Colin W. Clark (1990). Clark (1985, 1990)
emphasizes that the modeling of fishery dynamics is among the most complicated
and difficult of all such cases of bioeconomic modeling. As a scientist who has also
been involved with advising the Canadian government regarding managing the now-
collapsed Grand Banks cod fishery, he is also acutely aware of the policy difficulties
involved as well.

A number of special peculiarities arise in the case of fisheries. One, understood
since the work of Copes (1970), is that supply curves in fisheries may be backward-
bending, one of the few markets where this can happen. Copes did not present a
rigorous derivation of this result but rather imputed it from the problem of open
access that had long been identified as a serious problem aggravating the overhar-
vesting problem in many fisheries (Gordon, 1954). However Clark (1990) shows
that such a backward-bending outcome can occur in an optimally managed fishery
without open access, as long as there is a sufficiently high discount rate, a result
that will be explicitly derived below. In such cases we already know that chaotic
dynamics can arise in fairly simple models with discrete dynamic adjustments. Con-
klin and Kolberg (1994) have provided a specific model of chaotic dynamics for the
Pacific halibut fishery with such a backward-bending supply curve, although with-
out using a CEE framework. Chaotic dynamics, and chaotic CEE in particular,
are more likely to happen when there is either open access, high discount rates, or
relatively inelastic demand curves, the latter a result emphasized more broadly in
more general nonlinear bioeconomic models by Chavas and Holt (1995). Although



some of the details of the models are somewhat different, these basic problems also
arise in other renewable resource situations such as managing grazing pastures and
wild game hunting preserves (Rosser, 1995).

The paper is organized as follows. Section 2 presents the model for optimal
management of the fish resources and derives the discounted equilibrium supply
curve. Section 3 focuses on adaptive learning and consistent expectations equilibria
in the fishery model, both without and with noise. Finally, section 4 concludes.

2 The Clark-Gordon-Schaefer Fishery Model

We shall use an optimal control theoretic version of the Gordon-Schaeffer fishery
model, following Clark (1990). The presentation of the optimal equilibrium supply
and demand will be in terms of a continuous model, whereas the price fluctuations
in the corresponding speculative cobweb dynamics will be in discrete time.

Let us first introduce some notation. Let x denote population or stock of fish
(measured in terms of biomass units), h harvest of fish and F(z) = 2 growth of
fish population without harvest. In the Schaefer (1957) model the sustained yield,
with sustained yield holding if harvesting equals population growth, is given by a

logistic function:*

h = F(x) :7’:1:(1—%), (1)

with 7 intrinsic growth rate of the fish population and k the ecological carrying
capacity for the fishery, that is, the maximum possible steady-state level of x. This
yield function admits a level of the stock x at which a maximum sustained yield
(MSY) will occur which will be at x = k/2. We note that there has long been a
conflict between biologists and economists, with many biologists favoring the MSY
level of the population as being the goal of optimal public policy, whereas when
economic considerations are added to the biological ones in a combined bioeconomic
analysis, it is highly unlikely that the MSY is optimal from the economic standpoint.

Following Gordon (1954) the harvest equation is given by
h(z) = qEz, (2)

where F is the catch effort (measured in standardized vessel time) and ¢ is catch-
ability (measured per vessel per day) reflecting technology, and labor and capital.
Denoting the price of the fish per biomass by p, total revenue will be pgEx. Mar-
ginal cost of effort ¢ are assumed to be constant here so that total cost will equal
cE. Clark (1990) has studied more general cost functions with congestion effects and

1Clark (1990) and Rosser (1991, chapter 13) consider more complicated yield functions that
can involve catastrophic collapses of populations below certain critical levels. Such a non-sustained
yield outcome does not arise with the Schaefer logistic yield function. Davila and Martin-Gonzales
(1997) show yield functions for multi-species fisheries that generate backward bending supply
curves.



dynamic models in which capital stock has inertia in the form of the unwillingness of
fishers to retire their vessels even when a fishery is obviously being overfished. This
latter phenomenon can play an especially important role in the collapse of actual
fisheries.

Gordon (1954) solved for the open access equilibrium in which all positive rents
would be fished away by the continuing entry of fishers into the fishery until that
point is reached. Such entry behavior can be shown to arise from a certain kind
of externality in which the individual fisher perceives his private marginal product
to equal the social average product, the amount currently being caught per vessel
per day. Essentially the entering fishers do not take into account the effect of their
entry on the fishery and so too many of them enter and the fishery is overfished from
an economic perspective. This open access equilibrium is now called a bionomic
equilibrium and will occur where total revenue equals total cost at

B = 5(1 - @) (3)
cm .
heo = 7”p—q(1 - @) (5)

These equations have the oo-subscript on the left-hand terms because this solution
is identical to the socially optimal solution to be presented below when the discount
rate is infinity, with the discount rate being given by ¢. That is the same as saying
that the fishers are totally myopic and are paying no attention whatsoever to the
future in their decision making. That can be seen intuitively as being essentially
what happens in the open access situation where no individual fisher is taking into
account the effects of his own actions. At the other extreme, when 6 = 0 the fishers
will treat the far distant future as being equally valuable as today, that is they will
be very farsighted.

Clark (1990) presents both an optimal control solution and an optimal social
utility solution which yield the same result. Here we follow the optimal control
fishery management solution. Assume that there is a ‘sole owner’, say a government
agency or a private firm, who owns all rights to the exploitation of the fish popu-
lation. The sole owner’s objective is to maximize discounted net revenues, that is,
finding a harvesting policy h(t) solving the following maximization problem:

o0

mazyg / e~ (p — clx(t)])h(t)dt, (6)

subject to z(t) > 0 and h(t) > 0, where p is the fish price and ¢(z) the unit harvesting
cost when the population level is z. Substituting h(t) = F(z) — & into (6) yields

mazag / et (p — clx(O))(F(z) — #)dt, (7)
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which is of the form [ ¢(¢,x,Z)dt so that we can apply the classical Euler necessary
condition for a maximum % = %%. Using the Euler equation, a straightforward
computation yields

(z)F(x)
p—c(x)

Equation (8) is an implicit equation for the optimal equilibrium population level x*.
At this optimal population level, the corresponding optimal sustained yield is

F'(z) — = 6. (8)

h = F(z*). (9)

Assuming as in Gordon (1954) and Schaefer (1957) a cost function ¢(z) = ¢/qx and
the logistic sustained yield equation, we get

d(z) = Tz (10)

2
F'(z) = r— 2= (11)
k
Substituting these into (8) yields a quadratic equation for the optimal fish population

x*, whose positive solution is given by

k c 0 c 0 8cod
p) =-{1+——=-+/(14+——-)2+ : 12
==t e LD 2 (12
This optimal solution z is usually referred to as the bioeconomic equilibrium, and
is a function of the discount rate ¢, the fish price p, and the other parameters such
as the carrying capacity k, the catchability g, the marginal cost of effort ¢ and the
growth rate of fish . The corresponding optimal sustained yield is given by

Ss(p) = h = F(x3(p))- (13)

We will refer to Ss(p) in (13) as the discounted equilibrium supply curve, and writing
it as a function of the fish price p will be convenient when we study cobweb dynamics
under adaptive learning in section 3. A straightforward computation shows that, in
the limit as the discount rate tends to infinity, the discounted supply curve reduces
to the open access supply curve

o~

—) (14)

Seo(p) =
(») Pq pak

The reader may easily check that at the minimum price pp, = ¢/(¢k) the (dis-
counted) equilibrium supply becomes 0; we will assume that below this minimum
price the equilibrium supply equals zero. For consumer demand for fish, we will
choose a simple, linear form

D(p) = A— Bp. (15)

Figure la shows plots of the equilibrium demand and supply system, for different
values of the discount rate ¢, with the other parameters of the discounted supply
curve fixed at



e k = 400.000, ¢ = 0.000013, ¢ = 5000 and r = 0.05,

as suggested for several specific fisheries by Clark (1985, pp. 25, 45 and 48), and
the parameters of the demand curve fixed at

o B=025and A =% 4 2¢ =5240.5.

The marginal demand B has been chosen small, to allow for the possibility of mul-
tiple equilibria. The constant A has been chosen such that at the minimum price
Pmin = ¢/(qk) consumer demand would be exactly equal to the maximum sustained
yield. This is a convenient way of parameterizing the demand curve in such a way
that the price dynamics under adaptive learning in section 3 will be well defined and
remain bounded for all time; other nearby choices of the demand parameters lead
to similar results as those presented below.

At the extreme case 6 = 0, that is when the sole owner treats the far distant fu-
ture as equally valuable as today, the supply curve is upward sloping and approaches
the maximum sustained yield (MSY), as illustrated in figure la. For positive values
of the discount factor 6, the supply curve (13) is backward bending. This follows
easily from the observation that the bionomic equilibrium z%(p) is a decreasing func-
tion of the fish price p and the population growth map F' is non-monotonic. Figure
la shows that, as the discount rate ¢ increases, the supply curve becomes more back-
ward bending. The most backwardly bent supply curve corresponds with the totally
myopic case of § = oo, which corresponds to the open access bionomic equilibrium
case studied by Gordon (1954) and which is associated with overfishing behavior.
We note that the supply curve bends backwards quite quickly at values of the dis-
count rate that are empirically and socially meaningful, in contrast with the kinds
of discount rates that are necessary to generate chaotic dynamics in golden rule
neoclassical growth models (Nishimura and Yano, 1996; Montrucchio and Sorger,
1996; Mitra, 1998).

Figure la also contains plots of the (linear) demand curve, illustrating the fact
that a backward-bending supply curve together with a sufficiently inelastic demand
curve may lead to multiple steady state equilibria even for the static case. In the
extreme case 6 = (0 there is a unique steady state equilibrium price, whereas at the
other extreme 6 = 400 there are three different steady state equilibrium prices. The
two additional steady states are created through a tangent bifurcation at 6 = 6* ~
0.085. This shows the original argument of Copes (1970) who argued that in the
case of a strongly backward bending supply curve, increasing demand could lead to
a collapse of a fishery and a jump in the equilibrium. Such a result can be modeled
by using catastrophe theory and was done so for the collapse of the Antarctic fin
and blue whale stocks (Jones and Walters, 1976), the latter falling from over 150,000
to less than 1,000 within the space of a few years during the 1960s (Clark, 1985, p.
6). Clark (1985) provides a comprehensive (and lengthy) list of fisheries that have
collapsed around the world, although, as we have already noted, a variety of other
factors including capital stock inertia have been involved in these tragedies.



3 Price Dynamics under Adaptive Learning

We now shall consider cobweb type price fluctuations under adaptive learning, with
the equilibrium supply of fish derived from optimal fishery management as described
in the previous section. Section 3 is divided into three subsections. The first sub-
section describes price fluctuations under naive price expectations, and argues that
the naive forecasts can be improved in a linear statistical sense, even when price
fluctuations are chaotic. Subsection 3.2 recalls the notion of consistent expectations
equilibria (CEE) as introduced by Hommes and Sorger (1998). Finally, subsection
3.3 investigates CEE in the optimal control fishery model without and with noise.

3.1 Cobweb Dynamics under Naive Expectations

We now turn to the price fluctuations in this renewable resource market, assuming
that producers have to make their investment decision for fishery equipment some
fixed time period ahead. Given producers’ price expectation, the optimal produc-
tion decision is derived from the discounted equilibrium supply curve (13). Price
expectations are formed one fixed time period ahead, which may be viewed as an
investment lag. The price dynamics induced by these investment decisions then
reduce to the usual cobweb ‘hog cycle’ model, with a fixed production lag?. The
market equilibrium price at date ¢ is determined by demand and supply, i.e.,

D(pr) = Ss(pf), (16)

with D the consumer demand (15) and Ss the discounted supply curve (13). It will
be instructive to discuss the case of naive expectations first, where producers believe
that last year’s price will also prevail this year, i.e., pi = p,_1. Given that producers
have naive price expectations, the implied actual law of motion becomes

= Gs(pr-1) = D' Ss(py 1) = AS+M- (17)
Figure 1b shows graphs of the implied actual law of motion Gs under naive price
expectations, for different values of the discount rate. At the extreme case 6 = 0,
supply is increasing so that the map Gj is decreasing, and under naive expectations
prices diverge from an unstable steady state and converge to a stable 2-cycle. Along
this 2-cycle, expectations are systematically wrong. When producers expect a low
(high) price, they decide to produce a low (high) quantity, which will induce a high

2 Another complication is the speed of adjustment of the fish population. Implicitly we assume
a rapid adjustment of the population compared to price adjustment. But adjustment speeds of
fish stocks vary considerably for different fisheries, with some apparently having adjustment lags
as long as one year. For investment we assume that one year is the time horizon of decision and
thus is the appropriate lag. Therefore, there will be disequilibrium production that we are not
fully capturing in our simplified model. In subsection 3.3 we show that important features of the
adaptive learning process are persistent under dynamic noise. These dynamic noise terms may be
interpreted as noise in supply (and/or demand).



(low) market equilibrium price. For positive discount rates, beyond a critical price
the graph of Gy is increasing, so that the implied actual law of motion becomes a
non-monotonic map. As the discount rate increases, the implied actual law of motion
becomes strongly upward sloping for high prices and the price dynamics under naive
expectations become more complicated. It is not hard to show by graphical analysis
that, e.g. for the tangent bifurcation value ¢* ~ 0.085 the dynamics under naive
expectations is (topologically) chaotic. In fact, under naive expectations and with
the other parameters fixed as before, complicated dynamics arises for relatively small
values of the discount rate, say for 0.02 < 6 < 0.085. For sufficiently high values
of the discount rate, e.g. for § ~ 0.1, naive expectations drives the system to the
“bad” stable steady state equilibrium, with a high price and low fish stock.

Let us now discuss what would happen under rational expectations (perfect
foresight). Recall that there is a critical parameter value 6* ~ 0.085 for which a
tangent bifurcation occurs at which the number of steady states changes from one,
to two steady states at the bifurcation value and three steady states beyond the
bifurcation value. For small discount rates 0 < 6 < 6* the unique steady state
solution p; = pf, for all ¢, is the only rational expectations equilibrium (REE). For
large discount rates & > ¢*, three different steady states p;, i = 1, 2 or 3, coexist,
and there are multiple stationary REE. For example, three constant steady state
REE exist, where p; = p;, for all ¢, and 7 is fixed at 1, 2 or 3. In addition however,
infinitely many non-constant REE exist, since any solution p, = p;, for all ¢, and
i switching between 1,2 and 3, is a REE. For high discount rates infinitely many
REE coexist, for which prices are switching arbitrarily between the three different
steady state price levels pf, with the fish stock switching between the corresponding
high and low levels.

What happens when agents are boundedly rational and do not have exact knowl-
edge about underlying market equilibrium equations? Would boundedly rational
agents be able to learn the “good” steady state equilibrium with low prices and
high fish stock? Would boundedly rational agents be able to discover regularities in
their forecasting errors under naive expectations and change expectations accord-
ingly? In the simple case of convergence to a stable period 2 price cycle agents
should, at least in theory, be able to learn from their systematic forecasting errors
and improve their forecasts®. But what about the case of chaotic equilibrium price
fluctuations? Are boundedly rational agents able to learn in a chaotic environment
and detect regularities from time series observations to improve their forecasts?

Figure 2 shows a chaotic price series under naive expectations and the corre-
sponding chaotic forecasting errors, for 6 = 0.02. Table I contains the sample

3Hommes, Sonnemans and van de Velden (2000) have recently done laboratory experiments
where participants had to predict prices of an unknown cobweb model, with feedback from their
own forecasts. Only in about one third of the single agent experiments was the participant able
to learn the unique steady state REE. In similar multi-agent experiments in Hommes, Sonnemans,
Tuinstra and van de Velden (2000), the sample mean of realized market prices was close to the REE
price, but all multi-agent experiments exhibit significant excess volatility driven by heterogeneous
expectations.
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autocorrelations of the forecasting errors, with the first lags being highly significant.
In particular, the chaotic forecasting errors have a strongly significant negative first
order autocorrelation coefficient p; =~ —0.646. Using standard linear statistical tools
a boundedly rational agent would thus conclude that naive expectations are ‘sys-
tematically wrong’, even when prices fluctuate chaotically. As a first step agents
might try to improve their forecast accuracy by using a simple linear AR(1) rule
with a negative first order coefficient, and try to optimize the forecast parameters
by adaptive learning as additional observations become available.

3.2 Consistent Expectations Equilibria

In order to be self-contained, we briefly recall the notion of Consistent Expectations
Equilibrium, as introduced and discussed extensively in Hommes and Sorger (1998).
Consider a dynamic market equilibrium model

pe = G(p}), (18)

where G is a function relating the realized market price p; as a function of the
expected price pf. The cobweb model discussed above is of this type, with G =
D~1Ss. To complete the dynamic model, one has to specify how the agents form
their price expectation pf. We assume that agents do not know market equilibrium
equations and form expectations based only upon time series observations. We
assume that the agents know all past prices pg, p1, ..., pr—1 and use these in their
forecast p;. Notice that we assume that the equilibrium price p; is not known to the
agents when making their forecast pf, since it has not been revealed by the market
equilibrium equation yet. We further assume that agents believe that prices follow
a simple linear stochastic process, and that expectations are homogeneous across
agents. More specifically, we assume that all agents believe that prices are generated
by a stochastic AR(1) process. Given this perceived law of motion and prices known
up to p;_1, the unique predictor or forecasting rule for p; which minimizes the mean
squared prediction errors is given by

p; = a+ B(pi1 — ), (19)

where o and [ are real numbers, 5 € [—1,1]. The expected price thus equals a
constant « (the unconditional mean of the AR(1) process) plus the constant 3 (the
first order autocorrelation coefficient) times the deviation of the previous price from
the unconditional mean. Given that agents use the linear predictor (19), the implied
actual law of motion becomes

= Gop(pi-1) = Gla+ B(p-1 — @)). (20)

Now recall that the empirical or sample average of a time series (p;)52, is defined
as (see e. g. Brockwell and Davis, 1991)

1
p = lim —Zpt (21)



and the empirical or sample autocorrelation coefficients are given by

. CiT .
e b >
p; = Hm coz’ jz1 (22)
where .
J
G = T 1 tz thr] ﬁ)a Jj=0. (23)

In the special case where the time series is constant, the definition of p; involves an
indeterminate expression and all sample autocorrelations can be defined as 3’ for
some (§ € [—1,1]. We are now ready for the definition of a CEE.

Definition 1 A triple {(p;)°y; @, 5}, where (p:){2, is a sequence of prices and «
and 3 are real numbers, 3 € [—1,1], is called a consistent expectations equilibrium
(CEE) if

1. the sequence (p;)2, satisfies the implied actual law of motion (20),
2. the sample average p exists and is equal to «, and

3. the sample autocorrelation coefficients p;, j > 1, exist and the following is
true:
a. if (p;)2, is a convergent sequence, then sgn(p;) = sgn(87), j > 1;
b. if (p¢)2, is not convergent, then p; = 47, j > 1.

A CEE is a price sequence together with an AR(1) belief process such that the
expectations are self-fulfilling in terms of the observable sample average and sample
autocorrelations. Along a CEE expectations are thus correct in a linear statistical
sense, and using time series observations only agents would have no reason to deviate
from their belief*.

Given an AR(1) belief, there are at least three possible types of CEE: (i) a steady
state CEFE in which the price sequence (p;)i2, converges to a steady state price p*;
(ii) a 2-cycle CEE in which the price sequence (p;):2, converges to a period two cycle
{p%,p5} with p} # p¥; and (iii) a chaotic CEFE in which the price sequence (p;)° is
chaotic. Which of these cases occurs in a particular model depends on the mapping

G in (20).

Sample autocorrelation (SAC) learning.

The definition of a CEE involves a fixed AR(1) belief described by the parameters «
and (. Agents are supposed to stick to this belief over the entire time horizon and
the consistency of the implied actual dynamics with the belief can only be verified
if the entire price sequence is known. Now consider the more flexible situation

4Hommes and Sorger (1998) focus attention on the case of AR(1) beliefs, but emphasize that the
definition of CEE can easily be generalized to higher order belief processes, e. g., AR(k) processes
with & > 2.
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of adaptive learning in which agents change their forecasting function over time
within the class of AR(1) beliefs, and update their belief parameters oy and 3, as
additional observations become available. A natural learning scheme which nicely
fits the framework of CEE is based upon sample average and sample autocorrelation
coefficients.

For any finite set of observations {pg, p1,-..,p:} the sample average is given by
1 t

- N t>1 24

o7 PR ;p = (24)

and the first order sample autocorrelation coefficient is given by (see Brockwell and
Davis, 1991)

B = o(pi — ) (Pis1 — u)
t gzo(pz‘ — ay)?

When, in each period, the belief parameters are updated according to their sample
average and their first order sample autocorrelation, the (temporary) law of motion

(20) becomes

. t>1 (25)

Pi+1 = Gat,ﬁt (pt> = G(Oét + ﬁt(pt - Oét)) ) t>0. (26)

We call the dynamical system (24) - (26) the actual dynamics with sample autocor-
relation learning (SAC-learning)®. The initial state for the system (24) - (26) can
be any triple (pg, ag, Bo) with Gy € [—1,1].

Another perhaps better known adaptive learning process is ordinary least squares
(OLS) learning. In fact, although not identical, the SAC- and the OLS-learning
schemes are closely related, see the discussion in Hommes and Sorger (1998). In
particular, we would like to stress that for any given bounded time series the differ-
ences in the parameter estimations of the SAC- and OLS learning schemes become
arbitrarily small for large ¢. In the initial phase of the learning schemes there may
be differences between OLS- and SAC-learning however, which in a self-referential
system may in turn lead to differences in the implied realized price series in the
long run. A particular problem with the OLS-learning scheme is that the estimate
£ does not necessarily lie in the interval [—1, 1], which may cause global divergence
of the realized price series. Marcet and Sargent (1989) have proposed to impose a
so-called projection facility on OLS-learning, that is a maximum allowable interval
for the OLS-estimate B, but in general the choice of such a projection facility is
arbitrary. In contrast, the SAC estimate ; in (25) always lies in the interval [—1, 1],
so that the AR(1) coefficient [3; can not cause global divergence of the price series.
In the next subsection we will focus on the SAC adaptive learning scheme. Simu-
lations with the OLS-learning scheme lead to similar results and would not change
our general conclusions below.

°In the case of an AR(1) belief the SAC-learning scheme coincides exactly with the Durbin-
Levinson Algorithm, the well-known recursive form of the Yule-Walker estimators for an AR(p)
process, see e.g. Brockwell and Davis (1991, pp.238-245).
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3.3 CEE in the Clark-Gordon-Schaefer Fishery Model

In our simulations of the adaptive SAC-learning process (24), (25) and (26), with
G = Gs = D71Ss we have observed three typical outcomes:

e convergence to the “good” steady state equilibrium with a low price and a
high fish stock

e convergence to the “bad” steady state equilibrium with a high price and a low
fish stock

e convergence to a chaotic CEE, with prices and fish stock irregularly jumping
between low and high values

Simulations of the SAC-learning dynamics suggest that for low values of the discount
rate convergence to the “good” equilibrium steady state is the most likely outcome
of the SAC learning process, whereas for high values of the discount rate convergence
to the “bad” steady state is most likely. For intermediate discount rates the outcome
of the learning process is uncertain and in general depends on the initial states, i.e.
on the initial belief parameters ag, Gy and the initial fish stock xy. The system
may settle down to either the “good” or the “bad” steady state, possibly after a
long (chaotic) transient. However, it may also happen that belief parameters ay
and (; converge to constants o and 3* while prices never converge to a steady
state (or to a cycle), but keep fluctuating chaotically, as illustrated in figure 3
for & = 0.1. This situation is referred to as learning to believe in chaos and it
seems to occur with positive probability, that is, for an open set of initial states
(xo, a0, Bp). Learning to believe in chaos means that the SAC-learning dynamics
converges to a chaotic system, when oy and (3; have converged to constants a* and
3*, while prices keep fluctuating chaotically®. Figure 3 shows an example with the
learning parameters (o, 3;) converging to (a*, 3*) ~ (4988, —0.87) and permanent
chaotic price fluctuations with sample average a* and strongly negative first order
autocorrelation coefficient (.

In order to understand the existence of chaotic CEE for our smooth, non-
monotonic implied actual law of motion it is useful to consider the graph of the
corresponding one-dimensional map. Given the AR(1) forecasting rule with para-
meters o and 3%, Figure 4 shows the graph of the implied actual law of motion
Gsar g+ (p) = D 1Ss(a* 4+ 3*(p — a*)), and its second iterate G3 . .. From these

6The notion learning to believe in chaos has been introduced by Hommes (1998, p.360), and the
first examples have been given by Sorger (1998) and Hommes and Sorger (1998). The key feature
is that learning parameters converge to constants whereas prices do not converge but fluctuate
chaotically on a strange attractor, with the correct sample average and sample autocorrelations.
Schonhofer (1999, 2000) has recently employed the notion of learning to believe in chaos in a
somewhat different context, namely when the entire OLS-learning process fluctuates chaotically.
In Schénhofer’s examples belief parameters of the OLS-learning scheme do not converge but keep
fluctuating chaotically, while at the same time, due to inflation, prices diverge to infinity.
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graphs it follows immediately that the implied actual law of motion is a (topologi-
cally) chaotic map. A typical chaotic trajectory of the implied actual law of motion
will be characterized by up and down oscillation around the unstable steady state.
The graph of the implied actual law of motion thus suggest chaotic time series with
strongly negative first order autocorrelation. Apparently, typical chaotic time series
generated by the implied law of motion are self-fulfilling in terms of sample average
and sample autocorrelations.

Recall that our boundedly rational agents have no knowledge about underlying
market equilibrium equations, and therefore do not know the implied actual law of
motion. They only observe time series and use linear statistical techniques. Would
they be satisfied with their linear forecasting rules and stick to their AR(1) belief?
Would boundedly rational agents be able to reject their stochastic AR(1) belief or
perceived law of motion by linear statistical hypothesis testing?” Table II shows the
first 10 lags of the sample autocorrelation and partial autocorrelation of 300 obser-
vations of the chaotic price series. The autocorrelation pattern of the chaotic series
is indeed similar to the autocorrelation pattern of an AR(1) process with strongly
negative first order autocorrelation. The first order partial autocorrelation coeffi-
cient is strongly negative; all other partial autocorrelation coefficients are small, but
the lags 2 — 6 are significantly different from 0. Table III contains estimation results
of AR(1) model to the chaotic price series of 300 observations, implying estimated
belief parameters 3 ~ —0.88 and & = C/(1 — ) ~ 5064. Table IV contains the first
ten lags of the sample autocorrelations, together with their Q-statistics, of the resid-
uals of the fitted AR(1) model. Although all autocorrelations of the AR(1)-residuals
are small, some of them, e.g. at the first two lags, are statistically significant. Hence,
a careful boundedly rational agent, based upon this linear statistical analysis, would
reject the null hypothesis that prices follow an AR(1) process. Using the last 300
observations agents would discover that their AR(1) forecasting rule is not optimal
and that their AR(1) model must be misspecified.

Now let us investigate the effect of noise upon the learning dynamics. SAC-
learning with additive dynamic noise is given by (24), (25), as before, and adding a
noise term to the implied actual law of motion, i.e.

DPiy1 = Gé,at,ﬁt (pt) = G&(Oét + ﬁt(pt - Oét)) + €, t>0, (27)

where ¢, is an independently identically distributed (IID) random process and Gs =
D7'Ss in (17) as before. Notice that the noise is not merely observational noise, but
dynamic noise affecting the dynamic law of motion in each period of time. Figure
5 illustrates a typical example, with ¢; drawn from a uniform distribution over the
interval [—1000, +1000]%; for this choice of the noise process, the signal to noise ratio,

"See also Crespo-Cuaresma and Sorger (1999) for statistical hypothesis testing of consistent ex-
pectations equilibria; Schénhofer (2000) investigates statistical hypothesis testing of chaotic equi-
libria under OLS adaptive learning.

8The graphs of Gs o+ g+ and Gg’a*’ﬁ* in figure 4 show that the basin of attraction of chaotic
motion is bounded above by p = p /~ 9290. Adding noise to the system may therefore lead to prices
diverging away from the chaotic region, and lock into the “bad” steady state equilibrium with a
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as measured by the ratio o,/0. of standard deviations of the noise free price series
to the noise, is about 5. Surprisingly, even in the presence of dynamic noise, the
SAC-learning dynamics still settles down to a chaotic CEE as illustrated in figure
5. The noisy chaotic series has an autocorrelation pattern very similar to that of
an AR(1) process with strongly negative first order autocorrelation, as can be seen
in Table V. Table VI contains the estimation results of an AR(1) process for 300
observations (after a transient of 5000) of the noisy chaotic series. The estimated
parameters are B ~ —0.87 and & = 5420, which are fairly close to the coefficients of
the chaotic CEE (* ~ —0.87 and o* ~ 4988 in the noise free case. Table VII shows
that the sample autocorrelations coefficients of the residuals of the fitted AR(1)
model are not statistically significant, and the Q-statistics indicate that the null
hypothesis that prices follow a stochastic AR(1) process can not be rejected, not
even at the 10% level. Learning to believe in noisy chaos is thus a possibility which
is not rejected by linear statistical theory.

One major difference between the fishery management system considered here
and the CEE’s investigated by Hommes and Sorger (1998) is that our model is
smooth, without any kinks in the curves determining the underlying law of motion.
In Hommes and Sorger (1998), as in the other studies cited here that have come up
with self-fulfilling chaotic mistake behavior, the underlying law of motion is given by
a piecewise linear asymmetric tent map with one or more kinks. The chaotic CEE
detected in the overlapping generations model in Hommes and Sorger (1999) are
not piecewise linear but do have one kink. Our results for the optimal management
of renewable resources shows an extension of the existence of chaotic CEE result to
smooth non-monotonic mappings on the interval.

4 Summary and Conclusions

We have seen that there are a growing number of examples of systems where self-
fulfilling chaotic mistakes can occur in the form of chaotic consistent expectations
equilibria with the possibility of convergence through learning to those equilib-
ria through simple learning processes, the phenomenon of learning to believe in
chaos. Such cases include models where the underlying dynamics are determined by
asymmetric tent maps as with the overlapping generations macroeconomic model
of Sorger (1998) and the generic price adjustment model of Hommes and Sorger
(1998). We have seen presented in this paper a model of fishery dynamics that
shows such phenomena for reasonably realistic parameter values even for systems
where the underlying dynamics are given by functions that do not have kinks of the
sort found in the asymmetric tent map.

A chaotic CEE may be seen as an approzimate rational expectations equilibrium,
where agents use an optimal linear predictor to forecast an unknown nonlinear actual

high price. In the simulations with noise we have therefore chosen a bounded noise process and
imposed an upper bound on (noisy) prices of 10,000. This upperbound for prices is not inconsistent
with the AR(1) forecasting rule, because it always predicts a price well below this upperbound.
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law of motion. We have shown that such equilibria are persistent with respect
to dynamic noise. In fact, the presence of noise may increase the probability of
convergence to such learning equilibria. Agents are using a simple, but misspecified
model to forecast an unknown, possibly complicated actual law of motion. Without
noise, boundedly rational agents using time series analysis might be able to detect
the misspecification and improve their forecast model. In the presence of dynamic
noise however, misspecification becomes harder to detect and boundedly rational
agents using linear statistical techniques can do no better than stick to their optimal,
simple linear model of the world.

With regard to the specific issues raised by consideration of the fishery dynamics
model several points are in order. One is that this modeling effort certainly reinforces
much that has already been known: that chaotic or irregular dynamics are more
likely as myopia is greater or as there is a lack of control over access for which
the solution resembles the optimal solution with total myopia. This suggests that
efforts to make the markets and fishers take a longer term perspective and also
to encourage systems to control access should be encouraged, by reassigning or
enforcing property rights or by some collective system of access limitation in a
commons fishery, although we have no specific new proposals regarding these difficult
and complicated issues.

However the results in this paper do suggest at least one element of optimism
that may not have been known by analysts of these problems previously. The
implications of the possible existence of observable chaotic CEE’s in fisheries suggests
that in a world of underlying chaotic dynamics, fishers may be able to mimic the
behavior implied by accurate expectations by fairly simple, boundedly rational rules
of adaptation, even in the presence of dynamic noise which is certainly present in
the uncertain world of fisheries. More particularly, in contrast with the catastrophic
results arising from some models and situations, it should be kept in mind that
chaotic dynamics remain bounded. Thus, if a group of fishers fishing a fishery are
actually able to successfully follow an underlying truly chaotic dynamic, even if by
doing so through a self-fulfilling chaotic mistake, the results of their doing so will
not lead to the collapse of that fishery, which is certainly a desideratum.

17



References

1]

[10]

[11]

Arifovic, J. The Behavior of the Exchange Rate in the Genetic Algorithm and
Experimental Economies, Journal of Political Economy 104, no. 3, 1996, 510-
541.

Bolle, Michael, and Neugart, Michael. Complex Dynamics in a Model with
Backward Bending Labour Supply. Manuscript. Berlin: Free University of
Berlin, March 1998.

Brock, William A., and Dechert, W. Davis. Non-linear Dynamical Systems:
Instability and Chaos in Economics. In Handbook of Mathematical Economics,
vol. 4. edited by Werner Hildenbrand and Hugo Sonnenschein. Amsterdam:
North-Holland, 1991.

Brockwell, P.J., and Davis, R.A., Time Series: Theory and Methods, Second
Edition, Springer Verlag New York, 1991.

Bullard, James. Learning Equilibria. Journal of Economic Theory 64 (December
1994): 468-85.

Bullard, James and Duffy, John, Learning and Excess Volatility, Federal Re-
serve Bank of St. Louis, October 1998.

Bunow, Barry, and Weiss, George H. How Chaotic is Chaos? Chaotic and
Other ’Noisy’ Dynamics in the Frequency Domain. Mathematical Biosciences
47 (1979): 221-237.

Chavas, Jean-Paul, and Holt, Matthew. Nonlinear Dynamics and Economic
Instability: The Optimal Management of a Biological Population. Journal of
Agricultural and Resource Economics 20, no. 2 (1995): 231-46.

Chiarella, Carl. The Cobweb Model: Its Instability and the Onset of Chaos.
Economic Modelling 5 (October 1988): 377-84.

Clark, Colin W. Bioeconomic Modelling and Fisheries Management. New York:
Wiley-Interscience, 1985.

Clark, Colin W. Mathematical Bioeconomics: The Optimal Management of
Renewable Resources. 2nd ed. New York: Wiley-Interscience, 1990.

Crespo-Cuaresma, J. and Sorger, G., a-Consistent Expectations Equilibria,
SEFB-Working Paper No. 33, Vienna University of Economics and Business Ad-
ministration.

Conklin, James E., and Kolberg, William C. Chaos for the Halibut? Marine
Resource Economics 9 (Summer 1994): 153-82.

18



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Copes, Parzival. The Backward-Bending Supply Curve of the Fishing Industry.
Scottish Journal of Political Economy 17, no. 1 (1970): 69-77.

Dévila, Nancy, and Martin-Gonzélez, J.M. Supply-Demand Curves and Op-
timal Harvesting in a Multi-Species Fishery. Manuscript. Las Palmas, Spain:
University of Las Palmas de Gran Canario, April 1997.

Evans, G. and Honkapohja, S., (1998), Learning Dynamics, in Taylor, J.B. and
Woodford, M., Handbook of Macroeconomics, Elsevier, Amsterdam.

Gordon, H. Scott. The Economic Theory of a Common-Property Resource: The
Fishery. Journal of Political Economy 62 (April 1954): 124-42.

Grandmont, Jean-Michel. Expectations Formation and Stability in Large Socio-
Economic Systems. Econometrica 66 (July 1998): 741-81.

Hommes, Cars H. Dynamics of The Cobweb Model with Adaptive Expecta-
tions and Nonlinear Supply and Demand, Journal of Economic Behavior and
Organization 24, 1994, 315-335.

Hommes, Cars H. On the Consistency of Backward-Looking Expectations: The
Case of the Cobweb. Journal of Economic Behavior and Organization 33 (Jan-
uary 15, 1998): 333-62.

Hommes, Cars H., Sonnemans, Joep, and van de Velden, Henk, Expectations
in an experimental cobweb economy: some individual experiments, In: D. Delli
Gatti, M. Gallegati and A. Kirman (eds.), Interaction and Market Structure
Essays on Heterogeneity in Economics, Lecture Notes in Economics and Math-
ematical Systems Volume 484, Springer Verlag Berlin, 2000, pp.253-66.

Hommes, Cars H., Sonnemans, Joep, Tuinstra, Jan and van de Velden, Henk,
Expectations Driven Price Volatility in an Experimental Cobweb Economy,
Working Paper Center for Nonlinear Dynamics in Economics and Finance,
University of Amsterdam, 2000.

Hommes, Cars H., and Sorger, Gerhard. Consistent Expectations Equilibria.
Macroeconomic Dynamics 2, no. 3 (1998): 287-321.

Hommes, Cars H. and Sorger, Gerhard. Consistent Expectations Equilibria in
Overlapping Generations Economies. Manuscript. Amsterdam: University of
Amsterdam and Vienna: University of Vienna, April 1999.

Jones, Dixon D., and Walters, Carl J. Catastrophe Theory and Fisheries Regu-
lation. Journal of the Fisheries Research Board of Canada 33 (1976): 2829-33.

Marcet, A. and Sargent, T.J., Convergence of Least Squares Learning Mecha-
nisms in Self Referential Linear Stochastic Models, Journal of Economic Theory
Vol. 48, no. 2, (1989) 337-368.

19



[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Mitra, Tapan. On the Relationship between Discounting and Complicated Be-
havior in Dynamic Optimization Models. Journal of Economic Behavior and
Organization 33 (January 15, 1998): 421-34.

Montrucchio, Luigi, and Sorger, Gerhard. Topological Entropy of Policy Func-
tions in Concave Dynamic Optimization Models. Journal of Mathematical Eco-
nomics 25, no. 2 (1996): 181-94.

Nishimura, Kazuo, and Yano, Makoto. On the Least Upper Bound of Discount
Factors That Are Compatible with Optimal Period-Three Cycles. Journal of
Economic Theory 69 (May 1996): 306-33.

Radunskaya, A. Comparing Random and Deterministic Time Series. Fconomic
Theory 4 (1994): 765-76.

Rosser, J. Barkley, Jr. From Catastrophe to Chaos: A General Theory of Eco-
nomic Discontinuities, Boston/Dordrecht: Kluwer Academic Publishers, 1991.

Rosser, J. Barkley, Jr. Systemic Crises in Hierarchical Ecological Economies.
Land Economics 71 (May 1995): 163-72.

Sakai, H., and Tokumaru, H. Autocorrelations of a Certain Chaos. IEEE Trans-
actions on Acoustics, Speech and Signal Processing 28 (1980): 588-90.

Sargent, Thomas J., Bounded Rationality in Macroeconomics, Oxford: Claren-
don Press, 1993.

Sargent, Thomas J., The Conquest of American Inflation, Princeton: Princeton
University Press, 1999.

Schaefer, M.B. Some Considerations of Population Dynamics and Economics
in Relation to the Management of Marine Fisheries. Journal of the Fisheries
Research Board of Canada 14 (1957): 669-81.

Schonhofer, Martin, Chaotic Learning Equilibria, Journal of Economic Theory
89 (1999), 1-20.

Schonhofer, Martin, Learning to Believe in Chaos, Journal of Economic Behav-
iour and Organization 2000b, forthcoming.

Sogner, L. and Mitlohner, H., Consistent Expectations Equilibria and Learning
in a Stock Market, Journal of Economic Dynamics and Control 2000, forth-
coming.

Sorger, Gerhard. Imperfect Foresight and Chaos: An Example of a Self-
Fulfilling Mistake. Journal of Economic Behavior and Organization 33 (January
15, 1998): 363-83.

20



Figure 1. (a) Graphs of the demand and the discounted equilibrium supply curves
Ss in (18) and (b) graphs of the implied law of motion Gs in (17) under naive
expectations for several discount factors 6. As the discount factor ¢ increases two
additional steady states are created at a tangent bifurcation for 6 ~ 0.085.
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Figure 2. (a) Chaotic prices and (b) corresponding forecasting errors under naive
expectations, for delta = 0.02. The chaotic forecasting errors exhibit significant
autocorrelations, especially a negative first order autocorrelation coefficient, as can
be seen from Table 1.
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Figure 3. Learning to believe in chaos. For 6 = 0.1 and initial state (po, g, Bo) =
(1500, 6000, —1) in the SAC-learning process prices fluctuate chaotically (a), while at
the same time belief parameters o (c) and 3 (d) converge to constants o* ~ 4988 and
B* ~ —0.87. Forecasting errors (b) are chaotic and unpredictable, with amplitude
e.g. much smaller than under naive expectations (cf. figure 2b).
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Figure 4. Graphs of the first iterate Gso» g+ (a) and the second iterate G .. 5. (b)

of the implied actual law of motion for the chaotic CEFE belief parameters (a*, 5*) =
(4988, —0.87) for 6 = 0.1.
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Figure 5. Learning to believe in noisy chaos, for 6 = 0.1 and initial state (po, o, Bo) =
(1500, 6000, —1). In the presence of noise, the SAC-learning converges to a (noisy)
chaotic CEE, with chaotic price flucutations (a) and at the same time convergence
of the belief parameters oy (c) and (B, (d). Forecasting errors (b) are (noisy) chaotic
and seemingly unpredictable. Tables V-VII show that the null hypothesis that prices
follow a stochastic AR(1) process is not rejected.
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| lag |

AC]

PC | Q-Stat. | Prob. |

OO0 Tk W -

—_

-0.646

0.230
-0.151
-0.079

0.301
-0.142
-0.013
-0.016
-0.101

0.230

-0.646
-0.321
-0.310
-0.611
-0.408
-0.141
-0.154
-0.071
-0.179
-0.139

84.68

95.46
100.12
101.42
120.25
124.46
124.50
124.55
126.71
137.96

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table I: Autocorrelations and partial correlations of forecasting errors under naive

expectations.

[lag| AC]| PC | Q-Stat. | Prob. |
11-0.877 | -0.877 | 233.08 | 0.000
2 0.737 | -0.141 | 398.05 | 0.000
31-0.661 | -0.212 | 531.52 | 0.000
41 0.578 1-0.139 | 633.62 | 0.000
5| -0.527 | -0.193 | 718.91 | 0.000
6| 0.451|-0.257 | 781.63 | 0.000
7 1-0.352 | -0.023 | 819.97 | 0.000
81 0.295 | -0.001 | 846.89 | 0.000
91-0.256 | -0.061 | 867.32 | 0.000

10 | 0.211 | -0.077 | 881.23 | 0.000

Table II: Autocorrelations
SAC-learning.

and partial correlations of prices

26

of chaotic CEE under



| Model: p, = C + (p;_1,

[C=all— 7))

Variable Coefficient | Std. Error | t-Statistic Prob.

C 9538.893 157.6361 | 60.51211 0.0000

15} -0.883612 | 0.027461 | -32.17699 0.0000
R-squared 0.777087 | Mean dependent var 5061.651
Adjusted R-squared 0.776336 | S.D. dependent var 2708.605
S.E. of regression 1280.983 | Akaike info criterion 17.15531
Sum squared resid 4.87E+08 | Schwarz criterion 17.18006
Log likelihood -2562.719 | F-statistic 1035.358
Durbin-Watson stat | 2.261127 | Prob(F-statistic) 0.000000

Table III: Estimation results for AR(1) model on chaotic CEE (300 observations,
after transient of 5000).

Table IV: Autocorrelations, partial correlations and Q-statistics of residuals of fitted

AC| PC | Q-Stat. | Prob. |
11-0.134 | -0.134 | 5.3925 | 0.020
21-0.2211-0.243 | 20.136 | 0.000
31-0.083 | -0.164 | 22.221 | 0.000
41 -0.084 | -0.203 | 24.358 | 0.000
51-0.119 | -0.276 | 28.689 | 0.000
6| 0.118 | -0.087 | 32.979 | 0.000
71 0.131]-0.012 | 38.306 | 0.000
8 1-0.063 | -0.106 | 39.524 | 0.000
91-0.034 | -0.078 | 39.884 | 0.000

10 | -0.057 | -0.137 | 40.899 | 0.000

AR(1) model on chaotic CEE under SAC-learning.
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[lag| AC]| PC | Q-Stat. | Prob. |
-0.871 | -0.871 | 229.91 | 0.000
0.742 | -0.071 | 397.17 | 0.000
-0.653 | -0.095 | 527.25 | 0.000
0.563 | -0.063 | 624.31 | 0.000
-0.475 | 0.028 | 693.53 | 0.000
0.373 | -0.121 | 736.36 | 0.000
-0.290 | -0.017 | 762.40 | 0.000
0.209 | -0.081 | 775.95 | 0.000
-0.144 | -0.027 | 782.38 | 0.000
0.075 | -0.086 | 784.16 | 0.000

OO0 Tk W -

—_

Table V: Autocorrelations, partial correlations and Q)-statistics of noisy chaotic CEE
under SAC-learning.
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| Model: p, = C + (p;_1,

(C=a(l—0))

Variable Coefficient | Std. Error | t-Statistic Prob.

C 10141.58 175.9158 | 57.65017 0.0000

1] -0.871095 | 0.028454 | -30.61460 0.0000
R-squared 0.759369 | Mean dependent var 5421.955
Adjusted R-squared 0.758559 | S.D. dependent var 2981.958
S.E. of regression 1465.235 | Akaike info criterion 17.42409
Sum squared resid 6.38E+08 | Schwarz criterion 17.44884
Log likelihood -2602.901 | F-statistic 937.2537
Durbin-Watson stat | 2.090609 | Prob(F-statistic) 0.000000

Table VI: Estimation results for AR(1) model on noisy chaotic CEE (300 observa-

tions, after transient of 5000).

Table VII: Autocorrelations, partial correlations and Q-statistics of residuals of fitted

AC| PC | Q-Stat. | Prob. |
1{-0.058 | -0.058 | 1.0013 | 0.317
21-0.097 | -0.101 | 3.8737 | 0.144
31-0.048 | -0.061 | 4.5656 | 0.207
41 0.031 ] 0.015| 4.8645 | 0.301
5-0.0811-0.091 | 6.8860 | 0.229
6 | -0.042 | -0.053 | 7.4308 | 0.283
71-0.015|-0.038 | 7.5024 | 0.379
8 1-0.048 | -0.075 | 8.2286 | 0.411
91-0.019 | -0.038 | 8.3453 | 0.500

10 | -0.092 | -0.123 | 10.976 | 0.359

AR(1) model on noisy chaotic CEE under SAC-learning.
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