

Viewing the 10 μ s Folding of a Protein

- Solvated system is ~30,000 atoms
- Simulated in NAMD using CHARMM22/ CMAP
- ~100 ns/day on 329 processors
- Starting conformations either fully extended or thermally denatured
- Three independent WT simulations done
- Six mutant simulations
- Altogether over 50 µs of simulation
- Simulations of WW domain reveal deficit of force field

Protein dynamics in cells go out to a millisecond and longer. We recently increased computational time scales from 100 ns to 60 microseconds!

Over **50 microsecond** of protein folding **WT villin head piece; exp 4** μ **s, sim 6** μ **s**

100 - 1,000,000 processors

Implementing Polarizable Force Fields into NAMD

Atomic polarizability not yet accounted for in modeling. Respective force fields are being developed; here the fluctuating charge model of Brooks et al.

Polarizable water; fluct. charge

Goal: Realize polarizable force fields in our modeling program effectively.

Modeling a ribosome-channel complex

Simulation system 2.7 million atoms simulated in total for nearly 50 ns

- Ribosome-SecY channel complex: known only from low-resolution density maps (grey outline)
- Used MD Flexible Fitting to fit atomic structures to map

Simulations reveal atomic-scale interactions that maintain complex

Modeling a ribosome-channel complex

2.7 million atoms simulated in total for nearly 50 ns

• Ribosome-SecY channel complex: known only from low-resolution density maps (grey outline)

• Used MD Flexible Fitting to fit atomic structures to map

Simulations reveal atomic-scale interactions that maintain complex

Modeling a ribosome-channel complex

Simulation system **2.7 million atoms** simulated in total for nearly 50 ns

- Ribosome-SecY channel complex: known only from low-resolution density maps (grey outline)
- Used MD Flexible Fitting to fit atomic structures to map

Simulations reveal atomic-scale interactions that maintain complex

The Nuclear Pore Complex - What Is It?

NPC

Importin- β; SREBP-2 cargo transcription factor

Simulation, Reverse Coarse Graining Permits One to Explore at Atomic Level Structure and Dynamics

L. Miao and K. Schulten, Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. *Structure*, 17:449-459, 2009

Viewing the Morphogenesis of a Cellular Membrane from Flat to Tubular in 200 µs

A. Arkhipov, Y. Yin, and K. Schulten. Four-scale description of membrane sculpting by BAR domains. *Biophysical J.*, 95: 2806-2821 2008.

Ying Yin, Anton Arkhipov, and Klaus Schulten. Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure 17, 882-892, 2009.

vesicle formed by BAR domains (5x10⁷ atoms)

Component 1: Light Harvesting Complex 2 (LH2)

LH2 aggregates induce curvature via packing

All-atom Simulations of a Membrane-Bending Protein Complex

Sener et al., *Chem. Phys.* **357:**188-197 (2009) Hsin et al., *Biophys. J.*, in press (2009)

Photosynthetic core complex:

0.9 million atoms simulated in total for > 51 ns

- Core complex stacks into tubes in bacterial cells
- Each core complex is thought to induce local curvautre in membrane

Form-follows-function architecture of purple bacterial light harvesting systems

Klaus Schulten, Jen Hsin, Danielle Chandler, Melih Sener U. Illinois at Urbana-Champaign

Collaborators: Neil Hunter, Arvi Freiberg, Tony Crofts, Chris Chipot

NAMD leaders	Acknow	ledgements	
L. Kale J. Phillips <i>S. Kumar (IBM)</i> polarizable ff P. Freddolino D. Hardy fibrinogen	10 µs folding P. Freddolino <i>M. Gruebele (UIUC)</i> BAR domain Y. Yin A. Arkhipov	GPU team J. Stone (leader) D. Hardy B. Isralewitz J. Saam K. Vandivoort R. Brunner W. Hwu (UIUC leader)	ribosome Elizabeth Villa L. Trabucco J. Gumbart <i>J. Frank (Columbia U.)</i> nuclear pore complex T. Isaro
E. Lee B. Lim (Mayo) Fundin	ng: NIH, NSF 🌿	National Center for Research Resources	L. Miao DOE - Incite
Theo	Aretical and Comp Backmar	Dutational Biophysi	ics Group