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Description

The NAMD User’s Guide describes how to run and use the various features of the molecular
dynamics program NAMD. This guide includes the capabilities of the program, how to use these
capabilities, the necessary input files and formats, and how to run the program both on uniprocessor
machines and in parallel.
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Introduction

The University of Illinois at Urbana-Champaign has created its molecular dynamics software,
NAMD, developed by the Theoretical Biophysics Group (“TBG”) at Illinois’ Beckman Institute
available free of charge for non-commercial use by individuals, academic or research institutions
and corporations for in-house business purposes only, upon completion and submission of the online
registration form available from the NAMD web site http://www.ks.uiuc.edu/Research/namd/.

Commercial use of the NAMD software, or derivative works based thereon, REQUIRES A
COMMERCIAL LICENSE. Commercial use includes: (1) integration of all or part of the Software
into a product for sale, lease or license by or on behalf of Licensee to third parties, or (2) distribution
of the Software to third parties that need it to commercialize product sold or licensed by or on
behalf of Licensee. The University of Illinois will negotiate commercial-use licenses for NAMD upon
request. These requests can be directed to namd@ks.uiuc.edu

Registration

Individuals may register in their own name or with their institutional or corporate affiliations.
Registration information must include name, title, and e-mail of a person with signature authority to
authorize and commit the individuals, academic or research institution, or corporation as necessary
to the terms and conditions of the license agreement.

All parts of the information must be understood and agreed to as part of completing the form.
Completion of the form is required before software access is granted. Pay particular attention to
the authorized requester requirements above, and be sure that the form submission is authorized
by the duly responsible person.

Registration will be administered by the NAMD development team.



UNIVERSITY OF ILLINOIS
NAMD MOLECULAR DYNAMICS SOFTWARE LICENSE AGREEMENT

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees
of the University of Illinois (“Illinois”), on behalf of The Theoretical Biophysics Group (“TBG”) in
the Beckman Institute, will provide the molecular dynamics software NAMD in Executable Code
and/or Source Code form (“Software”) to Licensee, subject to the following terms and conditions.
For purposes of this Agreement, Executable Code is the compiled code, which is ready to run
on Licensee’s computer. Source code consists of a set of files which contain the actual program
commands that are compiled to form the Executable Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, in-
cluding copyright, remain with Illinois. Illinois grants, and Licensee hereby accepts, a restricted,
non-exclusive, non-transferable license to use the Software for academic, research and internal busi-
ness purposes only e.g. not for commercial use (see Paragraph 7 below), without a fee. Licensee
agrees to reproduce the copyright notice and other proprietary markings on all copies of the Soft-
ware. Licensee has no right to transfer or sublicense the Software to any unauthorized person or
entity. However, Licensee does have the right to make complimentary works that interoperate with
NAMD, to freely distribute such complimentary works, and to direct others to the TBG server to
obtain copies of NAMD itself.

2. Licensee may, at its own expense, modify the Software to make derivative works, for its own
academic, research, and internal business purposes. Licensee’s distribution of any derivative work
is also subject to the same restrictions on distribution and use limitations that are specified herein
for Illinois’ Software. Prior to any such distribution the Licensee shall require the recipient of the
Licensee’s derivative work to first execute a license for NAMD with Illinois in accordance with
the terms and conditions of this Agreement. Any derivative work should be clearly marked and
renamed to notify users that it is a modified version and not the original NAMD code distributed
by Illinois.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS
IS” AND ILLINOIS MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT, TRADE-
MARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RE-
SULTS AND PERFORMANCE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.
LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY DI-
RECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO
ANY CLAIM BY LICENSEE OR ANY THIRD PARTY ON ACCOUNT OF OR ARISING FROM
THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all
reasonable steps to insure that the Software is protected and secured from unauthorized disclosure,
use, or release and will treat it with at least the same level of care as Licensee would use to protect
and secure its own proprietary computer programs and/or information, but using no less than a
reasonable standard of care. Licensee agrees to provide the Software only to any other person or
entity who has registered with Illinois. If licensee is not registering as an individual but as an
institution or corporation each member of the institution or corporation who has access to or uses
Software must understand and agree to the terms of this license. If Licensee becomes aware of any
unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in
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writing. Licensee expressly agrees to use the Software only in the manner and for the specific uses
authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all
other applicable laws of the U.S. including, but not limited to, export control laws and the terms
of this license. Illinois shall have the right to terminate this license immediately by written notice
upon Licensee’s breach of, or non-compliance with, any of its terms. Licensee may be held legally
responsible for any copyright infringement that is caused or encouraged by its failure to abide by
the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will ac-
knowledge its use by the appropriate citation as follows:

NAMD was developed by the Theoretical Biophysics Group in the Beckman Institute for
Advanced Science and Technology at the University of Illinois at Urbana-Champaign.

Any published work which utilizes NAMD shall include the following reference:

James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid,
Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kale, and Klaus Schul-
ten. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry,
26:1781-1802, 2005.

Electronic documents will include a direct link to the official NAMD page:

http://www.ks.uiuc.edu/Research/namd/

One copy of each publication or report will be supplied to Illinois at the addresses listed below
in Contact Information.

7. Should Licensee wish to make commercial use of the Software, Licensee will contact Illinois
(namd@ks.uiuc.edu) to negotiate an appropriate license for such use. Commercial use includes: (1)
integration of all or part of the Software into a product for sale, lease or license by or on behalf
of Licensee to third parties, or (2) distribution of the Software to third parties that need it to
commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the devel-
opment of NAMD, any possession, use or sublicense of the Software by or to the United States
government shall be subject to such required restrictions.

9. NAMD is being distributed as a research and teaching tool and as such, TBG encourages
contributions from users of the code that might, at Illinois’ sole discretion, be used or incorporated to
make the basic operating framework of the Software a more stable, flexible, and/or useful product.
Licensees that wish to contribute their code to become an internal portion of the Software may be
required to sign an “Agreement Regarding Contributory Code for NAMD Software” before Illinois
can accept it (contact namd@ks.uiuc.edu for a copy).
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Contact Information

The best contact path for licensing issues is by e-mail to namd@ks.uiuc.edu or send correspondence
to:

NAMD Team
Theoretical Biophysics Group
Beckman Institute
University of Illinois
405 North Mathews MC-251
Urbana, Illinois 61801 USA
FAX: (217) 244-6078
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1 Introduction

NAMD is a parallel molecular dynamics program for UNIX platforms designed for high-performance
simulations in structural biology. This document describes how to use NAMD, its features, and
the platforms on which it runs. The document is divided into several sections:

Section 1 gives an overview of NAMD.

Section 2 lists the basics for getting started.

Section 3 describes NAMD file formats.

Section 4 explains PSF file generation with psfgen.

Section 5 presents the potential functions, non-bonded interactions, and full electrostatics.

Section 6 lists standard minimization and dynamics parameters.

Section 7 lists performance tuning parameters.

Section 8 explains user defined forces. conformation change calculations.

Section 9 describes collective variable-based calculations.

Section 10 explains alchemical free energy calculations.

Section 11 presents accelerated sampling methods.

Section 12 lists runtime analysis options.

Section 13 provides hints for X-PLOR users.

Section 14 provides sample configuration files.

Section 15 gives details on running NAMD.

Section 16 gives details on installing NAMD.

We have attempted to make this document complete and easy to understand and to make
NAMD itself easy to install and run. We welcome your suggestions for improving the documentation
or code at namd@ks.uiuc.edu.

1.1 NAMD and molecular dynamics simulations

Molecular dynamics (MD) simulations compute atomic trajectories by solving equations of motion
numerically using empirical force fields, such as the CHARMM force field, that approximate the
actual atomic force in biopolymer systems. Detailed information about MD simulations can be
found in several books such as [1, 35]. In order to conduct MD simulations, various computer
programs have been developed including X-PLOR [9] and CHARMM [8]. These programs were
originally developed for serial machines. Simulation of large molecules, however, require enormous
computing power. One way to achieve such simulations is to utilize parallel computers. In recent
years, distributed memory parallel computers have been offering cost-effective computational power.
NAMD was designed to run efficiently on such parallel machines for simulating large molecules.
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NAMD is particularly well suited to the increasingly popular Beowulf-class PC clusters, which are
quite similar to the workstation clusters for which is was originally designed. Future versions of
NAMD will also make efficient use of clusters of multi-processor workstations or PCs.

NAMD has several important features:

• Force Field Compatibility
The force field used by NAMD is the same as that used by the programs CHARMM [8] and
X-PLOR [9]. This force field includes local interaction terms consisting of bonded interactions
between 2, 3, and 4 atoms and pairwise interactions including electrostatic and van der Waals
forces. This commonality allows simulations to migrate between these three programs.

• Efficient Full Electrostatics Algorithms
NAMD incorporates the Particle Mesh Ewald (PME) algorithm, which takes the full elec-
trostatic interactions into account. This algorithm reduces the computational complexity of
electrostatic force evaluation from O(N2) to O(N logN).

• Multiple Time Stepping
The velocity Verlet integration method [1] is used to advance the positions and velocities of
the atoms in time. To further reduce the cost of the evaluation of long-range electrostatic
forces, a multiple time step scheme is employed. The local interactions (bonded, van der
Waals and electrostatic interactions within a specified distance) are calculated at each time
step. The longer range interactions (electrostatic interactions beyond the specified distance)
are only computed less often. This amortizes the cost of computing the electrostatic forces
over several timesteps. A smooth splitting function is used to separate a quickly varying
short-range portion of the electrostatic interaction from a more slowly varying long-range
component. It is also possible to employ an intermediate timestep for the short-range non-
bonded interactions, performing only bonded interactions every timestep.

• Input and Output Compatibility
The input and output file formats used by NAMD are identical to those used by CHARMM
and X-PLOR. Input formats include coordinate files in PDB format [4], structure files in
X-PLOR PSF format, and energy parameter files in either CHARMM or X-PLOR formats.
Output formats include PDB coordinate files and binary DCD trajectory files. These similar-
ities assure that the molecular dynamics trajectories from NAMD can be read by CHARMM
or X-PLOR and that the user can exploit the many analysis algorithms of the latter packages.

• Dynamics Simulation Options
MD simulations may be carried out using several options, including

– Constant energy dynamics,

– Constant temperature dynamics via

∗ Velocity rescaling,
∗ Velocity reassignment,
∗ Langevin dynamics,

– Periodic boundary conditions,

– Constant pressure dynamics via

∗ Berendsen pressure coupling,
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∗ Nosé-Hoover Langevin piston,

– Energy minimization,

– Fixed atoms,

– Rigid waters,

– Rigid bonds to hydrogen,

– Harmonic restraints,

– Spherical or cylindrical boundary restraints.

• Easy to Modify and Extend
Another primary design objective for NAMD is extensibility and maintainability. In order
to achieve this, it is designed in an object-oriented style with C++. Since molecular dynam-
ics is a new field, new algorithms and techniques are continually being developed. NAMD’s
modular design allows one to integrate and test new algorithms easily. If you are contem-
plating a particular modification to NAMD you are encouraged to contact the developers at
namd@ks.uiuc.edu for guidance.

• Interactive MD simulations
A system undergoing simulation in NAMD may be viewed and altered with VMD; for instance,
forces can be applied to a set of atoms to alter or rearrange part of the molecular structure.
For more information on VMD, see http://www.ks.uiuc.edu/Research/vmd/.

• Load Balancing
An important factor in parallel applications is the equal distribution of computational load
among the processors. In parallel molecular simulation, a spatial decomposition that evenly
distributes the computational load causes the region of space mapped to each processor to
become very irregular, hard to compute and difficult to generalize to the evaluation of many
different types of forces. NAMD addresses this problem by using a simple uniform spatial
decomposition where the entire model is split into uniform cubes of space called patches.
An initial load balancer assigns patches and the calculation of interactions among the atoms
within them to processors such that the computational load is balanced as much as possible.
During the simulation, an incremental load balancer monitors the load and performs necessary
adjustments.

1.2 User feedback

If you have problems installing or running NAMD after reading this document, please send a
complete description of the problem by email to namd@ks.uiuc.edu. If you discover and fix a
problem not described in this manual we would appreciate if you would tell us about this as well,
so we can alert other users and incorporate the fix into the public distribution.

We are interested in making NAMD more useful to the molecular modeling community. Your
suggestions are welcome at namd@ks.uiuc.edu. We also appreciate hearing about how you are
using NAMD in your work.
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2 Getting Started

2.1 What is needed

Before running NAMD, explained in section 15, the following are be needed:

• A CHARMM force field in either CHARMM or X-PLOR format.

• An X-PLOR format PSF file describing the molecular structure.

• The initial coordinates of the molecular system in the form of a PDB file.

• A NAMD configuration file.

NAMD provides the psfgen utility, documented in Section 4, which is capable of generating the
required PSF and PDB files by merging PDB files and guessing coordinates for missing atoms. If
psfgen is insufficient for your system, we recommend that you obtain access to either CHARMM
or X-PLOR, both of which are capable of generating the required files.

2.2 NAMD configuration file

Besides these input and output files, NAMD also uses a file referred to as the configuration file.
This file specifies what dynamics options and values that NAMD should use, such as the number
of timesteps to perform, initial temperature, etc. The options and values in this file control how
the system will be simulated.

A NAMD configuration file contains a set of options and values. The options and values
specified determine the exact behavior of NAMD, what features are active or inactive, how long the
simulation should continue, etc. Section 2.2.1 describes how options are specified within a NAMD
configuration file. Section 2.2.3 lists the parameters which are required to run a basic simulation.
Section 13 describes the relation between specific NAMD and X-PLOR dynamics options. Several
sample NAMD configuration files are shown in section 14.

2.2.1 Configuration parameter syntax

Each line in the configuration files consists of a keyword identifying the option being specified, and
a value which is a parameter to be used for this option. The keyword and value can be separated
by only white space:

keyword value

or the keyword and value can be separated by an equal sign and white space:

keyword = value

Blank lines in the configuration file are ignored. Comments are prefaced by a # and may appear
on the end of a line with actual values:

keyword value # This is a comment

or may be at the beginning of a line:

# This entire line is a comment . . .
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Some keywords require several lines of data. These are generally implemented to either allow the
data to be read from a file:

keyword filename

or to be included inline using Tcl-style braces:

keyword {
lots of data

}

The specification of the keywords is case insensitive so that any combination of upper and
lower case letters will have the same meaning. Hence, DCDfile and dcdfile are equivalent. The
capitalization in the values, however, may be important. Some values indicate file names, in which
capitalization is critical. Other values such as on or off are case insensitive.

2.2.2 Tcl scripting interface and features

When compiled with Tcl (all released binaries) the config file is parsed by Tcl in a fully backwards
compatible manner with the added bonus that any Tcl command may also be used. This alone
allows:

• the “source” command to include other files (works w/o Tcl too!),

• the “print” command to display messages (“puts” is broken, sorry),

• environment variables through the env array (“$env(USER)”), and

• user-defined variables (“set base sim23”, “dcdfile $base.dcd”).

Additional features include:

• The “callback” command takes a 2-parameter Tcl procedure which is then called with a list
of labels and a list of values during every timestep, allowing analysis, formatting, whatever.

• The “run” command takes a number of steps to run (overriding the now optional numsteps
parameter, which defaults to 0) and can be called repeatedly. You can “run 0” just to get
energies.

• The “minimize” command is similar to “run” and performs minimization for the specified
number of force evaluations.

• The “output” command takes an output file basename and causes .coor, .vel, and .xsc files
to be written with that name.

• Between “run” commands the reassignTemp, rescaleTemp, and langevinTemp parame-
ters can be changed to allow simulated annealing protocols within a single config file.
The useGroupPressure, useFlexibleCell, useConstantArea, useConstantRatio, LangevinPis-
ton, LangevinPistonTarget, LangevinPistonPeriod, LangevinPistonDecay, LangevinPiston-
Temp, SurfaceTensionTarget, BerendsenPressure, BerendsenPressureTarget, BerendsenPres-
sureCompressibility, and BerendsenPressureRelaxationTime parameters may be changed to
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allow pressure equilibration. The fixedAtoms, constraintScaling, and nonbondedScaling pa-
rameters may be changed to preserve macromolecular conformation during minimization and
equilibration (fixedAtoms may only be disabled, and requires that fixedAtomsForces is en-
abled to do this). The consForceScaling parameter may be changed to vary steering forces or
to implement a time-varying electric field that affects specific atoms.

• The “checkpoint” and “revert” commands (no arguments) allow a scripted simulation to save
and restore to a prior state.

• The “reinitvels” command reinitializes velocities to a random distribution based on the given
temperature.

• The “rescalevels” command rescales velocities by the given factor.

• The “reloadCharges” command reads new atomic charges from the given file, which should
contain one number for each atom, separated by spaces and/or line breaks.

• The “measure” command allows user-programmed calculations to be executed in order to
facilitate automated methods. (For example, to revert or change a parameter.) A number
of measure commands are included in the NAMD binary; the module has been designed to
make it easy for users to add additional measure commands.

• The “coorfile” command allows NAMD to perform force and energy analysis on trajectory
files. “coorfile open dcd filename” opens the specified DCD file for reading. “coorfile read”
reads the next frame in the opened DCD file, replacing NAMD’s atom coordinates with
the coordinates in the frame, and returns 0 if successful or -1 if end-of-file was reached.
“coorfile skip” skips past one frame in the DCD file; this is significantly faster than reading
coordinates and throwing them away. “coorfile close” closes the file. The “coorfile” command
is not available on the Cray T3E.

Force and energy analysis are especially useful in the context of pair interaction calculations;
see Sec. 12.1 for details, as well as the example scripts in Sec. 14.

Please note that while NAMD has traditionally allowed comments to be started by a # appear-
ing anywhere on a line, Tcl only allows comments to appear where a new statement could begin.
With Tcl config file parsing enabled (all shipped binaries) both NAMD and Tcl comments are
allowed before the first “run” command. At this point only pure Tcl syntax is allowed. In addition,
the “;#” idiom for Tcl comments will only work with Tcl enabled. NAMD has also traditionally
allowed parameters to be specified as “param=value”. This is supported, but only before the first
“run” command. Some examples:

# this is my config file <- OK
reassignFreq 100 ; # how often to reset velocities <- only w/ Tcl
reassignTemp 20 # temp to reset velocities to <- OK before "run"
run 1000 <- now Tcl only
reassignTemp 40 ; # temp to reset velocities to <- ";" is required

NAMD has also traditionally allowed parameters to be specified as “param=value” as well as
“param value”. This is supported, but only before the first “run” command. For an easy life, use
“param value”.
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2.2.3 Required NAMD configuration parameters

The following parameters are required for every NAMD simulation:

• numsteps (page 57),

• coordinates (page 20),

• structure (page 20),

• parameters (page 20),

• exclude (page 45),

• outputname (page 21),

• one of the following three:

– temperature (page 58),

– velocities (page 20),

– binvelocities (page 21).

These required parameters specify the most basic properties of the simulation. In addition, it is
highly recommended that pairlistdist be specified with a value at least one greater than cutoff.
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3 Input and Output Files

NAMD was developed to be compatible with existing molecular dynamics packages, especially
the packages X-PLOR [9] and CHARMM [8]. To achieve this compatibility, the set of input files
which NAMD uses to define a molecular system are identical to the input files used by X-PLOR
and CHARMM. Thus it is trivial to move an existing simulation from X-PLOR or CHARMM to
NAMD. A description of these molecular system definition files is given in Section 3.1.

In addition, the output file formats used by NAMD were chosen to be compatible with X-
PLOR and CHARMM. In this way the output from NAMD can be analyzed using X-PLOR,
CHARMM, or a variety of the other tools that have been developed for the existing output file
formats. Descriptions of the output files formats are also given in Section 3.1.

3.1 File formats

3.1.1 PDB files

The PDB (Protein Data Bank) format is used to store coordinate or velocity data being input
or output from NAMD. This is the standard format for coordinate data for most other molecular
dynamics programs as well, including X-PLOR and CHARMM. A full description of this file format
can be obtained from the PDB web site at http://www.rcsb.org/pdb/.

3.1.2 X-PLOR format PSF files

NAMD uses the same protein structure files that X-PLOR does. At this time, the easiest way
to generate these files is using X-PLOR or CHARMM, although it is possible to build them by
hand. CHARMM can generate an X-PLOR format PSF file with the command “write psf card
xplor”.

3.1.3 CHARMM19, CHARMM22, and CHARMM27 parameter files

NAMD supports CHARMM19, CHARMM22, and CHARMM27 parameter files in both X-PLOR
and CHARMM formats. (X-PLOR format is the default, CHARMM format parameter files may be
used given the parameter “paraTypeCharmm on”.) For a full description of the format of commands
used in these files, see the X-PLOR and CHARMM User’s Manual [9].

3.1.4 DCD trajectory files

NAMD produces DCD trajectory files in the same format as X-PLOR and CHARMM. The DCD
files are single precision binary FORTRAN files, so are transportable between computer architec-
tures. They are not, unfortunately, transportable between big-endian (most workstations) and little
endian (Intel) architectures. (This same caveat applies to binary velocity and coordinate files. The
utility programs flipdcd and flipbinpdb are provided with the Linux/Intel version to reformat
these files.) The exact format of these files is very ugly but supported by a wide range of analysis
and display programs.
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3.2 NAMD configuration parameters

3.2.1 Input files

• coordinates < coordinate PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing initial position coordinate data. Note that path
names can be either absolute or relative. Only one value may be specified.

• structure < PSF file >
Acceptable Values: UNIX filename
Description: The X-PLOR format PSF file describing the molecular system to be simu-
lated. Only one value may be specified.

• parameters < parameter file >
Acceptable Values: UNIX filename
Description: A CHARMM19, CHARMM22, or CHARMM27 parameter file that defines
all or part of the parameters necessary for the molecular system to be simulated. At least one
parameter file must be specified for each simulation. Multiple definitions (but only one file
per definition) are allowed for systems that require more than one parameter file. The files
will be read in the order that they appear in the configuration file. If duplicate parameters
are read, a warning message is printed and the last parameter value read is used. Thus, the
order that files are read can be important in cases where duplicate values appear in separate
files.

• paraTypeXplor < Is the parameter file in X-PLOR format? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the parameter file(s) are in X-PLOR format. X-
PLOR format is the default for parameter files! Caveat: The PSF file should be also con-
structed with X-PLOR in case of an X-PLOR parameter file because X-PLOR stores in-
formation about the multiplicity of dihedrals in the PSF file. See the X-PLOR manual for
details.

• paraTypeCharmm < Is the parameter file in CHARMM format? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the parameter file(s) are in CHARMM format. X-
PLOR format is the default for parameter files! Caveat: The information about multiplicity
of dihedrals will be obtained directly from the parameter file, and the full multiplicity will be
used (same behavior as in CHARMM). If the PSF file originates from X-PLOR, consecutive
multiple entries for the same dihedral (indicating the dihedral multiplicity for X-PLOR) will
be ignored.

• velocities < velocity PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing the initial velocities for all atoms in the simulation.
This is typically a restart file or final velocity file written by NAMD during a previous simu-
lation. Either the temperature or the velocities/binvelocities option must be defined
to determine an initial set of velocities. Both options cannot be used together.
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• binvelocities < binary velocity file >
Acceptable Values: UNIX filename
Description: The binary file containing initial velocities for all atoms in the simulation.
A binary velocity file is created as output from NAMD by activating the binaryrestart
or binaryoutput options. The binvelocities option should be used as an alternative to
velocities. Either the temperature or the velocities/binvelocities option must be
defined to determine an initial set of velocities. Both options cannot be used together.

• bincoordinates < binary coordinate restart file >
Acceptable Values: UNIX filename
Description: The binary restart file containing initial position coordinate data.
A binary coordinate restart file is created as output from NAMD by activating the
binaryrestart or binaryoutput options. Note that, in the current implementation at least,
the bincoordinates option must be used in addition to the coordinates option, but the
positions specified by coordinates will then be ignored.

• cwd < default directory >
Acceptable Values: UNIX directory name
Description: The default directory for input and output files. If a value is given, all
filenames that do not begin with a / are assumed to be in this directory. For example, if
cwd is set to /scr, then a filename of outfile would be modified to /scr/outfile while a
filename of /tmp/outfile would remain unchanged. If no value for cwd is specified, than all
filenames are left unchanged but are assumed to be relative to the directory which contains
the configuration file given on the command line.

3.2.2 Output files

• outputname < output PDB file >
Acceptable Values: UNIX filename prefix
Description: At the end of every simulation, NAMD writes two PDB files, one containing
the final coordinates and another containing the final velocities of all atoms in the simulation.
This option specifies the file prefix for these two files. The position coordinates will be saved
to a file named as this prefix with .coor appended. The velocities will be saved to a file named
as this prefix with .vel appended. For example, if the prefix specified using this option was
/tmp/output, then the two files would be /tmp/output.coor and /tmp/output.vel.

• binaryoutput < use binary output files? >
Acceptable Values: yes or no
Default Value: yes
Description: Activates the use of binary output files. If this option is set to yes,
then the final output files will be written in binary rather than PDB format. Binary files
preserve more accuracy between NAMD restarts than ASCII PDB files, but the binary files
are not guaranteed to be transportable between computer architectures. (The utility program
flipbinpdb is provided with the Linux/Intel version to reformat these files.)

• restartname < restart files >
Acceptable Values: UNIX filename prefix
Description: The prefix to use for restart filenames. NAMD produces PDB restart files
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that store the current positions and velocities of all atoms at some step of the simulation. This
option specifies the prefix to use for restart files in the same way that outputname specifies
a filename prefix for the final positions and velocities. If restartname is defined then the
parameter restartfreq must also be defined.

• restartfreq < frequency of restart file generation >
Acceptable Values: positive integer
Description: The number of timesteps between the generation of restart files. If
restartfreq is defined, then restartname must also be defined.

• restartsave < use timestep in restart filenames? >
Acceptable Values: yes or no
Default Value: no
Description: Appends the current timestep to the restart filename prefix, producing a
sequence of restart files rather than only the last version written.

• binaryrestart < use binary restart files? >
Acceptable Values: yes or no
Default Value: yes
Description: Activates the use of binary restart files. If this option is set to yes, then
the restart files will be written in binary rather than PDB format. Binary files preserve more
accuracy between NAMD restarts than ASCII PDB files, but the binary files are not guaran-
teed to be transportable between computer architectures. (The utility program flipbinpdb
is provided with the Linux/Intel version to reformat these files.)

• DCDfile < coordinate trajectory output file >
Acceptable Values: UNIX filename
Description: The binary DCD position coordinate trajectory filename. This file stores the
trajectory of all atom position coordinates using the same format (binary DCD) as X-PLOR.
If DCDfile is defined, then DCDfreq must also be defined.

• DCDfreq < timesteps between writing coordinates to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of position coordinates to the
trajectory file. The initial positions will not be included in the trajectory file.

• DCDUnitCell < write unit cell data to dcd file? >
Acceptable Values: yes or no
Default Value: yes if periodic cell
Description: If this option is set to yes, then DCD files will contain unit cell information
in the style of Charmm DCD files. By default this option is enabled if the simulation cell is
periodic in all three dimensions and disabled otherwise.

• velDCDfile < velocity trajectory output file >
Acceptable Values: UNIX filename
Description: The binary DCD velocity trajectory filename. This file stores the trajectory
of all atom velocities using the same format (binary DCD) as X-PLOR. If velDCDfile is
defined, then velDCDfreq must also be defined.

22



• velDCDfreq < timesteps between writing velocities to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of velocities to the trajectory
file. The initial velocities will not be included in the trajectory file.

3.2.3 Standard output

NAMD logs a variety of summary information to standard output. The standard units used by
NAMD are Angstroms for length, kcal/mol for energy, Kelvin for temperature, and bar for pressure.
Wallclock or CPU times are given in seconds unless otherwise noted.

BOUNDARY energy is from spherical boundary conditions and harmonic restraints, while MISC
energy is from external electric fields and various steering forces. TOTAL is the sum of the various
potential energies, and the KINETIC energy. TOTAL2 uses a slightly different kinetic energy
that is better conserved during equilibration in a constant energy ensemble. TOTAL3 is another
variation with much smaller short-time fluctuations that is also adjusted to have the same running
average as TOTAL2. Defects in constant energy simulations are much easier to spot in TOTAL3
than in TOTAL or TOTAL2.

PRESSURE is the pressure calculated based on individual atoms, while GPRESSURE incor-
porates hydrogen atoms into the heavier atoms to which they are bonded, producing smaller fluc-
tuations. The TEMPAVG, PRESSAVG, and GPRESSAVG are the average of temperature and
pressure values since the previous ENERGY output; for the first step in the simulation they will
be identical to TEMP, PRESSURE, and GPRESSURE.

• outputEnergies < timesteps between energy output >
Acceptable Values: positive integer
Default Value: 1
Description: The number of timesteps between each energy output of NAMD. This
value specifies how often NAMD should output the current energy values to stdout (which
can be redirected to a file). By default, this is done every step. For long simulations, the
amount of output generated by NAMD can be greatly reduced by outputting the energies
only occasionally.

• mergeCrossterms < add crossterm energy to dihedral? >
Acceptable Values: yes or no
Default Value: yes
Description: If crossterm (or CMAP) terms are present in the potential, the energy is
added to the dihedral energy to avoid altering the energy output format. Disable this feature
to add a separate “CROSS” field to the output.

• outputMomenta < timesteps between momentum output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each momentum output of NAMD. If
specified and nonzero, linear and angular momenta will be output to stdout.

• outputPressure < timesteps between pressure output >
Acceptable Values: nonnegative integer
Default Value: 0
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Description: The number of timesteps between each pressure output of NAMD. If specified
and nonzero, atomic and group pressure tensors will be output to stdout.

• outputTiming < timesteps between timing output >
Acceptable Values: nonnegative integer
Default Value: the greater of firstLdbStep or 10× outputEnergies
Description: The number of timesteps between each timing output of NAMD. If nonzero,
CPU and wallclock times and memory usage will be output to stdout. These data are from
node 0 only; CPU times and memory usage for other nodes may vary.

3.3 AMBER force field parameters

AMBER format PARM file and coordinate file can be read by NAMD, which allows one to use
AMBER force field to carry out all types of simulations that NAMD has supported. NAMD can
read PARM files in either the format used in AMBER 6 or the new format defined in AMBER 7.
The output of the simulation (restart file, DCD file, etc.) will still be in traditional format that
has been used in NAMD.

• amber < use AMBER format force field? >
Acceptable Values: yes or no
Default Value: no
Description: If amber is set to on, then parmfile must be defined, and structure and
parameters should not be defined.

• parmfile < AMBER format PARM file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

• ambercoor < AMBER format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When amber is set to on, either ambercoor
or coordinates must be defined, but not both.

• readexclusions < Read exclusions from PARM file? >
Acceptable Values: yes or no
Default Value: yes
Description: PARM file explicitly gives complete exclusion (including 1-4 exclusions)
information. When readexclusions is set to on, NAMD will read all exclusions from PARM
file and will not add any more; alternatively, if readexclusions is set to off, NAMD will
ignore the exclusions in PARM file and will automatically generate them according to the
exclusion policy specified by exclude.

• scnb < VDW 1-4 scaling factor >
Acceptable Values: decimal ≥ 1.0
Default Value: 2.0
Description: Same meaning as SCNB in AMBER. Note that in NAMD, 1-4 vdw inter-
actions are DIVIDED by scnb, whereas 1-4 electrostatic interactions are MULTIPLIED by
1-4scaling. So 1-4scaling should be set to the inverse of SCEE value used in AMBER.
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Caveat:
1. Polarizable parameters in AMBER are not supported.
2. NAMD does not support the 10-12 potential terms in some old AMBER versions. When non-zero
10-12 parameter is encountered in PARM file, NAMD will terminate.
3. NAMD has several exclusion policy options, defined by exclude. The way AMBER dealing with
exclusions corresponds to the “scaled1-4” in NAMD. So for simulations using AMBER force field,
one would specify “exclude scaled1-4” in the configuration file, and set 1-4scaling to the inverse
value of SCEE as would be used in AMBER.
4. NAMD does not read periodic box lengths in PARM or coordinate file. They must be explicitly
specified in NAMD configuration file.
5. By default, NAMD applies switching functions to the non-bond interactions within the cut-
off distance, which helps to improve energy conservation, while AMBER does not use switching
functions so it simply truncates the interactions at cutoff. However, if “authentic” AMBER cutoff
simulations are desired, the switching functions could be turned off by specifying “switching off”
in NAMD configuration file.
6. NAMD and AMBER may have different default values for some parameters (e.g., the tolerance
of SHAKE). One should check other sections of this manual for accurate descriptions of the NAMD
options.

Following are two examples of the NAMD configuration file to read AMBER force field and
carry out simulation. They may help users to select proper NAMD options for AMBER force field.
For the convenience of AMBER users, the AMBER 6 sander input files are given in the left for
comparison, which would accomplish similar tasks in AMBER.

Example 1: Non-periodic boundary system, cutoff simulation

---AMBER---- ---NAMD---

TITLE
&cntrl
ntb=0, igb=2, # non-periodic, use cutoff for non-bond
nstlim=1000, numsteps 1000 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=50, restartfreq 50 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=0., temperature 0 # Initial temp for velocity assignment
cut=10., cutoff 10

switching off # Turn off the switching functions
scee=1.2, exclude scaled1-4

1-4scaling 0.833333 # =1/1.2, default is 1.0
scnb=2.0 scnb 2 # This is default
&end

amber on # Specify this is AMBER force field
parmfile prmtop # Input PARM file
ambercoor inpcrd # Input coordinate file
outputname md # Prefix of output files
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Example 2: Periodic boundary system, PME, NVE ensemble, using SHAKE algorithm

---AMBER---- ---NAMD---

TITLE
&cntrl
ntc=2, ntf=2, # SHAKE to the bond between each hydrogen and it mother atom

rigidBonds all
tol=0.0005, rigidTolerance 0.0005 # Default is 0.00001
nstlim=500, numsteps 500 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=100, restartfreq 100 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=300., temperature 300 # Initial temp for velocity assignment
cut=9., cutoff 9

switching off # Turn off the switching functions
&end
&ewald PME on # Use PME for electrostatic calculation

# Orthogonal periodic box size
a=62.23, cellBasisVector1 62.23 0 0
b=62.23, cellBasisVector2 0 62.23 0
c=62.23, cellBasisVector3 0 0 62.23
nfft1=64, PMEGridSizeX 64
nfft2=64, PMEGridSizeY 64
nfft3=64, PMEGridSizeZ 64
ischrgd=1, # NAMD doesn’t force neutralization of charge
&end

amber on # Specify this is AMBER force field
parmfile FILENAME # Input PARM file
ambercoor FILENAME # Input coordinate file
outputname PREFIX # Prefix of output files
exclude scaled1-4
1-4scaling 0.833333 # =1/1.2, default is 1.0

3.4 GROMACS force field parameters

NAMD has the ability to load GROMACS ASCII topology (.top) and coordinate (.gro) files, which
allows you to run most GROMACS simulations in NAMD. All simulation output will still be in
the traditional NAMD formats.

• gromacs < use GROMACS format force field? >
Acceptable Values: on or off
Default Value: off
Description: If gromacs is set to on, then grotopfile must be defined, and structure
and parameters should not be defined.
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• grotopfile < GROMACS format topology/parameter file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

• grocoorfile < GROMACS format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When gromacs is set to on, either
grocoorfile or coordinates must be defined, but not both.

However, NAMD does not have support for many GROMACS-specific options:

• Dummies (fake atoms with positions generated from the positions of real atoms) are not
supported.

• The GROMACS pairs section, where explicit 1–4 parameters are given between pairs of
atoms, is not supported, since NAMD calculates its 1–4 interactions exclusively by type.

• Similarly, exclusions are not supported. The biggest problem here is that GROMACS RB
dihedrals are supposed to imply exclusions, but NAMD does not support this.

• Constraints, restraints, and settles are not implemented in NAMD.

• In some cases, it may not work to override some but not all of the parameters for a bond,
atom, etc. In this case, NAMD will generate an error and stop. The parser will sometimes
not tolerate correct GROMACS files or fail to detect errors in badly formatted files.

• NAMD does not support all the types of bond potentials that exist in GROMACS, but
approximates them with harmonic or sinusoidal potentials.

• NAMD does not read periodic box lengths in the coordinate file. They must be explicitly
specified in the NAMD configuration file.
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4 Creating PSF Structure Files

The psfgen structure building tool consists of a portable library of structure and file manipulation
routines with a Tcl interface. Current capabilities include

• reading CHARMM topology files

• reading psf files in X-PLOR/NAMD format

• extracting sequence data from single segment PDB files

• generating a full molecular structure from sequence data

• applying patches to modify or link different segments

• writing NAMD and VMD compatible PSF structure files

• extracting coordinate data from PDB files

• constructing (guessing) missing atomic coordinates

• deleting selected atoms from the structure

• writing NAMD and VMD compatible PDB coordinate files

We are currently refining the interface of psfgen and adding features to create a complete
molecular building solution. We welcome your feedback on this new tool.

4.1 Ordinary Usage

psfgen is currently distributed in two forms. One form is as a standalone program implemented as
a Tcl interpreter which reads commands from standard output. You may use loops, variables, etc.
as you would in a VMD or NAMD script. You may use psfgen interactively, but we expect it to be
run most often with a script file redirected to standard input. The second form is as a Tcl package
which can be imported into any Tcl application, including VMD. All the commands available to
the standalone version of psfgen are available to the Tcl package; using psfgen within VMD lets
you harness VMD’s powerful atom selection capability, as well as instantly view the result of your
structure building scripts. Examples of using psfgen both with and without VMD are provided in
this document.

Generating PSF and PDB files for use with NAMD will typically consist of the following steps:

1. Preparing separate PDB files containing individual segments of protein, solvent, etc. before
running psfgen.

2. Reading in the appropriate topology definition files and aliasing residue and atom names found
in the PDB file to those found in the topology files. This will generally include selecting a
default protonation state for histidine residues.

3. Generating the default structure using segment and pdb commands.

4. Applying additional patches to the structure.

5. Reading coordinates from the PDB files.
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6. Deleting unwanted atoms, such as overlapping water molecules.

7. Guessing missing coordinates of hydrogens and other atoms.

8. Writing PSF and PDB files for use in NAMD.

4.1.1 Preparing separate PDB files

Many PDB files in the PDB databank contain multiple chains, corresponding to protein subunits,
water, and other miscellaneous groups. Protein subunits are often identified by their chain ID in
the PDB file. In psfgen, each of these groups must be assigned to their own segment. This applies
most strictly in the case of protein chains, each of which must be assigned to its own segment so
that N-terminal and C-terminal patches can be applied. You are free to group water molecules into
whatever segments you choose.

Chains can be split up into their own PDB files using your favorite text editor and/or Unix
shell commands, as illustrated in the BPTI example below. If you are using VMD you can also use
atom selections to write pieces of the structure to separate files:

# Split a file containing protein and water into separate segments.
# Creates files named myfile_water.pdb, myfile_frag0.pdb, myfile_frag1.pdb,...
# Requires VMD.
mol load pdb myfile.pdb
set water [atomselect top water]
$water writepdb myfile_water.pdb
set protein [atomselect top protein]
set chains [lsort -unique [$protein get pfrag]]
foreach chain $chains {

set sel [atomselect top "pfrag $chain"]
$sel writepdb myfile_frag${chain}.pdb

}

4.1.2 Deleting unwanted atoms

The delatom command described below allows you to delete selected atoms from the structure.
It’s fine to remove atoms from your structure before building the PSF and PDB files, but you
should never edit the PSF and PDB files created by psfgen by hand as it will probably mess up
the internal numbering in the PSF file.

Very often the atoms you want to delete are water molecules that are either too far from the
solute, or else outside of the periodic box you are trying to prepare. In either case VMD atom
selections can be used to select the waters you want to delete. For example:

# Load a pdb and psf file into both psfgen and VMD.
resetpsf
readpsf myfile.psf
coordpdb myfile.pdb
mol load psf myfile.psf pdb myfile.pdb
# Select waters that are more than 10 Angstroms from the protein.
set badwater1 [atomselect top "name OH2 and not within 10 of protein"]
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# Alternatively, select waters that are outside our periodic cell.
set badwater2 [atomselect top "name OH2 and (x<-30 or x>30 or y<-30 or>30

or z<-30 or z>30)"]
# Delete the residues corresponding to the atoms we selected.
foreach segid [$badwater1 get segid] resid [$badwater1 get resid] {

delatom $segid $resid
}
# Have psfgen write out the new psf and pdb file (VMD’s structure and
# coordinates are unmodified!).
writepsf myfile_chopwater.psf
writepdb myfile_chopwater.pdb

4.2 BPTI Example

To actually run this demo requires

• the program psfgen from any NAMD distribution,

• the CHARMM topology and parameter files top_all22_prot.inp and par_all22_prot.inp
from http://www.pharmacy.umaryland.edu/faculty/amackere/force fields.htm, and

• the BPTI PDB file 6PTI.pdb available from the Protein Data Bank at http://www.pdb.org/
by searching for 6PTI and downloading the complete structure file in PDB format.

Building the BPTI structure

In this demo, we create the files bpti.psf and bpti.pdb in the output directory which can then
be used for a simple NAMD simulation.

# File: bpti_example.tcl
# Requirements: topology file top_all22_prot.inp in directory toppar
# PDB file 6PTI.pdb in current directory

# Create working directory; remove old output files
mkdir -p output
rm -f output/6PTI_protein.pdb output/6PTI_water.pdb

# (1) Split input PDB file into segments}
grep -v ’^HETATM’ 6PTI.pdb > output/6PTI_protein.pdb
grep ’HOH’ 6PTI.pdb > output/6PTI_water.pdb

# (2) Embed the psfgen commands in this script
psfgen << ENDMOL

# (3) Read topology file
topology toppar/top_all22_prot.inp

# (4) Build protein segment
segment BPTI {
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pdb output/6PTI_protein.pdb
}

# (5) Patch protein segment
patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

# (6) Read protein coordinates from PDB file
pdbalias atom ILE CD1 CD ; # formerly "alias atom ..."
coordpdb output/6PTI_protein.pdb BPTI

# (7) Build water segment
pdbalias residue HOH TIP3 ; # formerly "alias residue ..."
segment SOLV {
auto none
pdb output/6PTI_water.pdb
}

# (8) Read water coordinaes from PDB file
pdbalias atom HOH O OH2 ; # formerly "alias atom ..."
coordpdb output/6PTI_water.pdb SOLV

# (9) Guess missing coordinates
guesscoord

# (10) Write structure and coordinate files
writepsf output/bpti.psf
writepdb output/bpti.pdb

# End of psfgen commands
ENDMOL

Step-by-step explanation of the script:

(1) Split input PDB file into segments. 6PTI.pdb is the original file from the Protein Data
Bank. It contains a single chain of protein and some PO4 and H2O HETATM records. Since each
segment must have a separate input file, we remove all non-protein atom records using grep. If
there were multiple chains we would have to split the file by hand. Create a second file containing
only waters.

(2) Embed the psfgen commands in this script. Run the psfgen program, taking everything
until “ENDMOL” as input. You may run psfgen interactively as well. Since psfgen is built on a
Tcl interpreter, you may use loops, variables, etc., but you must use $$ for variables when inside a
shell script. If you want, run psfgen and enter the following commands manually.
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(3) Read topology file. Read in the topology definitions for the residues we will create. This
must match the parameter file used for the simulation as well. Multiple topology files may be read
in since psfgen and NAMD use atom type names rather than numbers in psf files.

(4) Build protein segment. Actually build a segment, calling it BPTI and reading the sequence
of residues from the stripped pdb file created above. In addition to the pdb command, we could
specify residues explicitly. Both angles and dihedrals are generated automatically unless “auto
none” is added (which is required to build residues of water). The commands “first” and “last”
may be used to change the default patches for the ends of the chain. The structure is built when
the closing } is encountered, and some errors regarding the first and last residue are normal.

(5) Patch protein segment. Some patch residues (those not used to begin or end a chain) are
applied after the segment is built. These contain all angle and dihedral terms explicitly since they
were already generated. In this case we apply the patch for a disulfide link three separate times.

(6) Read protein coordinates from PDB file. The same file used to generate the sequence
is now read to extract coordinates. In the residue ILE, the atom CD is called CD1 in the pdb file,
so we use “pdbalias atom” to define the correct name. If the segment names in the pdb file match
the name we gave in the segment statement, then we don’t need to specify it again; in this case we
do specify the segment, so that all atoms in the pdb file must belong to the segment.

(7) Build water segment. Build a segment for the crystal waters. The residue type for water
depends on the model, so here we alias HOH to TIP3. Because CHARMM uses an additional H-H
bond we must disable generation of angles and dihedrals for segments containing water. Then read
the pdb file.

(8) Read water coordinates from PDB file. Alias the atom type for water oxygen as well
and read coordinates from the file to the segment SOLV. Hydrogen doesn’t show up in crystal
structures so it is missing from this pdb file.

(9) Guessing missing coordinates. The tolopogy file contains default internal coordinates
which can be used to guess the locations of many atoms, hydrogens in particular. In the output
pdb file, the occupancy field of guessed atoms will be set to 0, atoms which are known are set
to 1, and atoms which could not be guessed are set to -1. Some atoms are “poorly guessed” if
needed bond lengths and angles were missing from the topology file. Similarly, waters with missing
hydrogen coordinates are given a default orientation.

Write structure and coordinate files. Now that all of the atoms and bonds have been created,
we can write out the psf structure file for the system. We also create the matching coordinate pdb
file. The psf and pdb files are a matched set with identical atom ordering as needed by NAMD.

Using generated files in NAMD.

The files bpti.pdb and bpti.psf can now be used with NAMD, but the initial coordinates require
minimization first. The following is an example NAMD configuration file for the BPTI example.
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# NAMD configuration file for BPTI

# molecular system
structure output/bpti.psf

# force field
paratypecharmm on
parameters toppar/par_all22_prot.inp
exclude scaled1-4
1-4scaling 1.0

# approximations
switching on
switchdist 8
cutoff 12
pairlistdist 13.5
margin 0
stepspercycle 20

#integrator
timestep 1.0

#output
outputenergies 10
outputtiming 100
binaryoutput no

# molecular system
coordinates output/bpti.pdb

#output
outputname output/bpti
dcdfreq 1000

#protocol
temperature 0
reassignFreq 1000
reassignTemp 25
reassignIncr 25
reassignHold 300

#script

minimize 1000

run 20000
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4.3 Building solvent around a protein

The following script illustrates how psfgen and VMD can be used together to add water around a
protein structure. It assumes you already have a psf and pdb file for your protein, as well as a box
of water which is large enough to contain the protein. For more information on how atomselections
can be used within VMD scripts, see the VMD User’s Guide.

proc addwater { psffile pdbfile watpsf watpdb } {
# Create psf/pdb files that contain both our protein as well as
# a box of equilibrated water. The water box should be large enough
# to easily contain our protein.
resetpsf
readpsf $psffile
readpsf $watpsf
coordpdb $pdbfile
coordpdb $watpdb

# Load the combined structure into VMD
writepsf combine.psf
writepdb combine.pdb
mol load psf combine.psf pdb combine.pdb

# Assume that the segid of the water in watpsf is QQQ
# We want to delete waters outside of a box ten Angstroms
# bigger than the extent of the protein.
set protein [atomselect top "not segid QQQ"]
set minmax [measure minmax $protein]
foreach {min max} $minmax { break }
foreach {xmin ymin zmin} $min { break }
foreach {xmax ymax zmax} $max { break }

set xmin [expr $xmin - 10]
set ymin [expr $ymin - 10]
set zmin [expr $zmin - 10]
set xmax [expr $xmax + 10]
set ymax [expr $ymax + 10]
set zmax [expr $zmax + 10]

# Center the water on the protein. Also update the coordinates held
# by psfgen.
set wat [atomselect top "segid QQQ"]
$wat moveby [vecsub [measure center $protein] [measure center $wat]]
foreach atom [$wat get {segid resid name x y z}] {
foreach {segid resid name x y z} $atom { break }
coord $segid $resid $name [list $x $y $z]
}

# Select waters that we don’t want in the final structure.
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set outsidebox [atomselect top "segid QQQ and (x <= $xmin or y <= $ymin \
or z <= $zmin or x >= $xmax or y >= $ymax or z >= $xmax)"]
set overlap [atomselect top "segid QQQ and within 2.4 of (not segid QQQ)"]

# Get a list of all the residues that are in the two selections, and delete
# those residues from the structure.
set reslist [concat [$outsidebox get resid] [$overlap get resid]]
set reslist [lsort -unique -integer $reslist]

foreach resid $reslist {
delatom QQQ $resid
}

# That should do it - write out the new psf and pdb file.
writepsf solvate.psf
writepdb solvate.pdb

# Delete the combined water/protein molecule and load the system that
# has excess water removed.
mol delete top
mol load psf solvate.psf pdb solvate.pdb

# Return the size of the water box
return [list [list $xmin $ymin $zmin] [list $xmax $ymax $zmax]]
}

4.4 List of Commands

• topology [list] <file name>
Purpose: Read in molecular topology definitions from file.
Arguments: <file name>: CHARMM format topology file.
list: Lists all currently specified topology files.
residues: Return a list of the known residue topologies.
patches: Return a list of the known residue patches.
Context: Beginning of script, before segment. May call multiple times.

• pdbalias residue <alternate name> <real name>
Purpose: Provide translations from residues found in PDB files to proper residue names read
in from topology definition files. Proper names from topology files will be used in generated
PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <alternate name>: Residue name found in PDB file.
<real name>: Residue name found in topology file.
Context: Before reading sequence with pdb. May call multiple times.

• segment [segids] [resids] [residue] [first] [last] <segment ID> [resid] [atom name] {
<commands> }
Purpose: Build a segment of the molecule. A segment is typically a single chain of protein
or DNA, with default patches applied to the termini. Segments may also contain pure solvent
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or lipid. Options [segids] [resids] [residue] [first] [last] are used to query information
about the specified segment.
Arguments: segids: Return a list of segids for the molecule in the current context.
resids: Return a list of resids for the molecule in the current context.
residue: Return the residue name of the residue in the given segment with the given resid.
atoms: Return a list of atoms for the given segment with the given resid.
coordinates: Return x, y, z coordinates for the given atom.
first: Returns the name of the patch that was applied to the beginning of the specified
segment.
last: Returns the name of the patch that was applied to the end of the specified segment.
<segment ID>: Unique name for segment, 1–4 characters.
<commands>: Sequence of commands in Tcl syntax to build the primary structure of the
segment, including auto, first, last, residue, pdb, etc.
Context: After topology definitions and residue aliases. May call multiple times. Structure
information is generated at the end of every segment command.

• auto [angles] [dihedrals] [none]
Purpose: Override default settings from topology file for automatic generation of angles and
dihedrals for the current segment.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
none: Disable generation of angles and dihedrals.
Context: Anywhere within segment, does not affect later segments.

• first <patch name>
Purpose: Override default patch applied to first residue in segment. Default is read from
topology file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• last <patch name>
Purpose: Override default patch applied to last residue in segment. Default is read from
topology file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• residue <resid> <resname> [chain]
Purpose: Add a single residue to the end of the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric.
<resname>: Residue type name from topology file. <chain>: Single-character chain identi-
fier.
Context: Anywhere within segment.

• pdb <file name>
Purpose: Extract sequence information from PDB file when building segment. Residue IDs
will be preserved, residue names must match entries in the topology file or should be aliased
before pdb is called.
Arguments: <file name>: PDB file containing known or aliased residues.
Context: Anywhere within segment.
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• mutate <resid> <resname>
Purpose: Change the type of a single residue in the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric.
<resname>: New residue type name from topology file.
Context: Within segment, after target residue has been created.

• patch [list] <patch residue name> <segid:resid> [...]
Purpose: Apply a patch to one or more residues. Patches make small modifications to the
structure of residues such as converting one to a terminus, changing the protonation state, or
creating disulphide bonds between a pair of residues.
Arguments: list: Lists all patches applied explicitey using the command ’patch’.
listall: Lists all currently applied patches including default patches.
<patch residue name>: Name of patch residue from topology definition file.
<segid:resid>: List of segment and residue pairs to which patch should be applied.
Context: After one or more segments have been built.

• regenerate [angles] [dihedrals]
Purpose: Remove all angles and/or dihedrals and completely regenerate them using the
segment automatic generation algorithms. This is only needed if patches were applied that
do not correct angles and bonds. Segment and file defaults are ignored, and angles/dihedrals
for the entire molecule are regenerated from scratch.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
Context: After one or more segments have been built.

• multiply <factor> <segid[:resid[:atomname]]> [...]
Purpose: Create multiple images of a set of atoms for use in locally enhanced sampling. The
beta column of the output pdb file is set to 1...<factor> for each image. Multiple copies of
bonds, angles, etc. are created. Atom, residue or segment names are not altered; images are
distinguished only by beta value. This is not a normal molecular structure and may confuse
other tools.
Arguments: <factor>:
<segid:resid:atomname>: segment, residue, or atom to be multiplied. If :resid is omitted the
entire segment is multiplied; if :atomname is omitted the entire residue is multiplied. May be
repeated as many times as necessary to include all atoms.
Context: After one or more segments have been built, all patches applied, and coordinates
guessed. The effects of this command may confuse other commands.

• delatom <segid> [resid] [atom name]
Purpose: Delete one or more atoms. If only segid is specified, all atoms from that segment
will be removed from the structure. If both segid and resid are specified, all atoms from
just that residue will be removed. If segid, resid, and atom name are all specified, just a
single atom will be removed.
Arguments: <segid>: Name of segment.
<resid>: Name of residue (optional).
<atom name>: Name of atom (optional).
Context: After all segments have been built and patched.

37



• resetpsf
Purpose: Delete all segments in the structure. The topology definitions and aliases are left
intact. If you want to clear the topology and aliases as well, use psfcontext reset instead.
Arguments:
Context: After one or more segments have been built.

• psfcontext [context] [new] [delete]
Purpose: Switches between complete contexts, including structure, topology definitions, and
aliases. If no arguments are provided, the current context is returned. If <context> or new is
specified, a new context is entered and the old context is returned. If delete is also specified,
the old context is destroyed and “deleted <old context>” is returned. An error is returned if
the specified context does not exist or if delete was specified and the current context would
still be in use. It may be possible to write robust, error-tolerant code with this interface, but
it would not be easy. Please employ the following revised psfcontext usage instead.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.

• psfcontext reset
Purpose: Clears the structure, topology definitions, and aliases, creating clean environment
just like a new context.
Arguments:
Context: At any time.

• psfcontext create
Purpose: Creates a new context and returns its ID, but does not switch to it. This is different
from psfcontext new above, which switches to the newly created context and returns the
current context’s ID.
Arguments:
Context: At any time.

• psfcontext delete <context>
Purpose: Deletes the specified context. An error is returned if the specified context does not
exist or would still be in use. This is different from psfcontext <context> delete above,
which switches to the specified context and deletes the current one.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.

• psfcontext eval <context> { <commands> }
Purpose: Evaluates <commands> in the specified context, returning to the current context
on exit. This should be totally robust, returning to the orignal context in case of errors and
preventing its deletion when nested.
Arguments: <context>: Context ID returned by psfcontext create.
<commands>: Script to be executed in the specified context.
Context: At any time.

• psfcontext stats
Purpose: Returns the total numbers of contexts that have been created and destroyed. This
is useful for checking if a script is leaking contexts.
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Arguments:
Context: At any time.

• writepsf [charmm] [x-plor] [cmap] [nocmap] <file name>
Purpose: Write out structure information as PSF file. A simplified session log is listed in
the REMARKS section of the PSF file.
Arguments: charmm: Use CHARMM format (numbers for atom types).
x-plor: Use X-PLOR format (names for atom types), the default format required by NAMD.
cmap: Write cross-term entries to PSF file if present, the default.
nocmap: Do not write cross-term entries to PSF file, even if present.
<file name>: PSF file to be generated.
Context: After all segments have been built and patched.

• readpsf <file name>
Purpose: Read in structure information from PSF file and adds it to the structure. It is an
error if any segments in the PSF file already exist.
Arguments: <file name>: PSF file in X-PLOR format (names for atom types).
Context: Anywhere but within segment.

• pdbalias atom <residue name> <alternate name> <real name>
Purpose: Provide translations from atom names found in PDB files to proper atom names
read in from topology definition files. Proper names from topology files will be used in
generated PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <residue name>: Proper or aliased residue name.
<alternate name>: Atom name found in PDB file.
<real name>: Atom name found in topology file.
Context: Before reading coordinates with coordpdb. May call multiple times.

• coord <segid> <resid> <atomname> <{ x y z }>
Purpose: Set coordinates for a single atom.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom.
<atomname>: Name of target atom.
<{ x y z }>: Coordinates to be assigned.
Context: After structure has been generated.

• coordpdb <file name> [segid]
Purpose: Read coordinates from PDB file, matching segment, residue and atom names.
Arguments: <file name>: PDB file containing known or aliased residues and atoms.
<segid>: If specified override segment IDs in PDB file.
Context: After segment has been generated and atom aliases defined.

• guesscoord
Purpose: Guesses coordinates of atoms for which they were not explicitly set. Calculation
is based on internal coordinate hints contained in toplogy definition files. When these are
insufficient, wild guesses are attempted based on bond lengths of 1 Å and angles of 109◦.
Arguments: None.
Context: After stucture has been generated and known coordinates read in.
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• writepdb <file name>
Purpose: Writes PDB file containing coordinates. Atoms order is identical to PSF file
generated by writepsf (unless structure has been changed). The O field is set to 1 for atoms
with known coordinates, 0 for atoms with guessed coordinates, and -1 for atoms with no
coordinate data available (coordinates are set to 0 for these atoms).
Arguments: <file name>: PDB file to be written.
Context: After structure and coordinates are complete.

4.5 Example of a Session Log

The command “writepsf” prints a simple session log as “REMARKS” at the beginning of the PSF
file. The log contains information about applied patches and used topology files which not stored
in the standard records of PSF files. These informations are also available after a PSF file was read
by command “readpsf”. Here’a a simple axample:

PSF

1 !NTITLE
REMARKS original generated structure x-plor psf file
REMARKS 4 patches were applied to the molecule.
REMARKS topology 1LOV_autopsf-temp.top
REMARKS segment P1 { first NTER; last CTER; auto angles dihedrals }
REMARKS segment O1 { first NONE; last NONE; auto none }
REMARKS segment W1 { first NONE; last NONE; auto none }
REMARKS defaultpatch NTER P1:1
REMARKS defaultpatch CTER P1:104
REMARKS patch DISU P1:10 P1:2
REMARKS patch DISU P1:103 P1:6

1704 !NATOM
1 P1 1 ALA N NH3 -0.300000 14.0070 0

...

All patches that were applied explicitely using the “patch” command are listed following the
keyword “patch”, but the patches that result from default patching like the first and last patches
of a segment are marked as “defaultpatch”. Further the segment based patching rules are listed
along with the angle/dihedral autogeneration rules.
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5 Force Field Parameters

5.1 Potential energy functions

Evaluating the force is the most computationally demanding part of molecular dynamics. The force
is the negative gradient of a scalar potential energy function,

~F (~r) = −∇U(~r), (1)

and, for systems of biomolecules, this potential function involves the summing,

U(~r) =
∑

Ubonded(~r) +
∑

Unonbonded(~r), (2)

over a large number of bonded and nonbonded terms. The bonded potential terms involve 2–
, 3–, and 4–body interactions of covalently bonded atoms, with O(N) terms in the summation.
The nonbonded potential terms involve interactions between all pairs of atoms (usually excluding
pairs of atoms already involved in a bonded term), with O(N2) terms in the summation, although
fast evaluation techniques are used to compute good approximations to their contribution to the
potential with O(N) or O(N logN) computational cost.

5.1.1 Bonded potential energy terms

The bonded potential terms involve 2–, 3–, and 4–body interactions of covalently bonded atoms.
The 2–body spring bond potential describes the harmonic vibrational motion between an (i, j)–

pair of covalently bonded atoms,
Ubond = k(rij − r0)2, (3)

where rij = ‖~rj −~ri‖ gives the distance between the atoms, r0 is the equilibrium distance, and k is
the spring constant.

The 3–body angular bond potential describes the angular vibrational motion occurring between
an (i, j, k)–triple of covalently bonded atoms,

Uangle = kθ(θ − θ0)2 + kub(rik − rub)2, (4)

where, in the first term, θ is the angle in radians between vectors ~rij = ~rj −~ri and ~rkj = ~rj −~rk, θ0
is the equilibrium angle, and kθ is the angle constant. The second term is the Urey–Bradley term
used to describe a (noncovalent) spring between the outer i and k atoms, active when constant
kub 6= 0, where, like the spring bond, rik = ‖~rk − ~ri‖ gives the distance between the pair of atoms
and rub is the equilibrium distance.

The 4–body torsion angle (also known as dihedral angle) potential describes the angular spring
between the planes formed by the first three and last three atoms of a consecutively bonded
(i, j, k, l)–quadruple of atoms,

Utors =

{
k(1 + cos(nψ + φ)) if n > 0,
k(ψ − φ)2 if n = 0,

(5)

where ψ is the angle in radians between the (i, j, k)–plane and the (j, k, l)–plane. The integer
constant n is nonnegative and indicates the periodicity. For n > 0, φ is the phase shift angle and k
is the multiplicative constant. For n = 0, φ acts as an equilibrium angle and the units of k change
to potential/rad2. A given (i, j, k, l)–quadruple of atoms might contribute multiple terms to the
potential, each with its own parameterization. The use of multiple terms for a torsion angle allows
for complex angular variation of the potential, effectively a truncated Fourier series.
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5.1.2 Nonbonded potential energy terms

The nonbonded potential terms involve interactions between all (i, j)–pairs of atoms, usually ex-
cluding pairs of atoms already involved in a bonded term. Even using a fast evaluation methods
the cost of computing the nonbonded potentials dominates the work required for each time step of
an MD simulation.

The Lennard–Jones potential accounts for the weak dipole attraction between distant atoms
and the hard core repulsion as atoms become close,

ULJ = (−Emin)

[(
Rmin

rij

)12

− 2
(
Rmin

rij

)6
]
, (6)

where rij = ‖~rj−~ri‖ gives the distance between the pair of atoms. The parameter Emin = ULJ(Rmin)
is the minimum of the potential term (Emin < 0, which means that −Emin is the well-depth). The
Lennard–Jones potential approaches 0 rapidly as rij increases, so it is usually truncated (smoothly
shifted) to 0 past a cutoff radius, requiring O(N) computational cost.

The electrostatic potential is repulsive for atomic charges with the same sign and attractive for
atomic charges with opposite signs,

Uelec = ε14
Cqiqj
ε0rij

, (7)

where rij = ‖~rj − ~ri‖ gives the distance between the pair of atoms, and qi and qj are the charges
on the respective atoms. Coulomb’s constant C and the dielectric constant ε0 are fixed for all
electrostatic interactions. The parameter ε14 is a unitless scaling factor whose value is 1, except
for a modified 1–4 interaction, where the pair of atoms is separated by a sequence of three covalent
bonds (so that the atoms might also be involved in a torsion angle interaction), in which case
ε14 = ε, for a fixed constant 0 ≤ ε ≤ 1. Although the electrostatic potential may be computed with
a cutoff like the Lennard–Jones potential, the 1/r potential approaches 0 much more slowly than
the 1/r6 potential, so neglecting the long range electrostatic terms can degrade qualitative results,
especially for highly charged systems. There are other fast evaluation methods that approximate the
contribution to the long range electrostatic terms that require O(N) or O(N logN) computational
cost, depending on the method.

5.2 Non-bonded interactions

NAMD has a number of options that control the way that non-bonded interactions are calculated.
These options are interrelated and can be quite confusing, so this section attempts to explain the
behavior of the non-bonded interactions and how to use these parameters.

5.2.1 Van der Waals interactions

The simplest non-bonded interaction is the van der Waals interaction. In NAMD, van der Waals
interactions are always truncated at the cutoff distance, specified by cutoff. The main option
that effects van der Waals interactions is the switching parameter. With this option set to on, a
smooth switching function will be used to truncate the van der Waals potential energy smoothly at
the cutoff distance. A graph of the van der Waals potential with this switching function is shown
in Figure 1. If switching is set to off, the van der Waals energy is just abruptly truncated at the
cutoff distance, so that energy may not be conserved.
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Figure 1: Graph of van der Waals potential with and without the application of the switching function.
With the switching function active, the potential is smoothly reduced to 0 at the cutoff distance. Without
the switching function, there is a discontinuity where the potential is truncated.

The switching function used is based on the X-PLOR switching function. The parameter
switchdist specifies the distance at which the switching function should start taking effect to bring
the van der Waals potential to 0 smoothly at the cutoff distance. Thus, the value of switchdist
must always be less than that of cutoff.

5.2.2 Electrostatic interactions

The handling of electrostatics is slightly more complicated due to the incorporation of multiple
timestepping for full electrostatic interactions. There are two cases to consider, one where full
electrostatics is employed and the other where electrostatics are truncated at a given distance.

First let us consider the latter case, where electrostatics are truncated at the cutoff distance.
Using this scheme, all electrostatic interactions beyond a specified distance are ignored, or assumed
to be zero. If switching is set to on, rather than having a discontinuity in the potential at the
cutoff distance, a shifting function is applied to the electrostatic potential as shown in Figure 2. As
this figure shows, the shifting function shifts the entire potential curve so that the curve intersects
the x-axis at the cutoff distance. This shifting function is based on the shifting function used by
X-PLOR.

Next, consider the case where full electrostatics are calculated. In this case, the electrostatic
interactions are not truncated at any distance. In this scheme, the cutoff parameter has a slightly
different meaning for the electrostatic interactions — it represents the local interaction distance,
or distance within which electrostatic pairs will be directly calculated every timestep. Outside of
this distance, interactions will be calculated only periodically. These forces will be applied using a
multiple timestep integration scheme as described in Section 6.3.4.

5.2.3 Non-bonded force field parameters

• cutoff < local interaction distance common to both electrostatic and van der Waals calcu-
lations (Å) >
Acceptable Values: positive decimal
Description: See Section 5.2 for more information.
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Figure 2: Graph showing an electrostatic potential with and without the application of the shifting function.

fma

0

en
er

gy

distance

cutoff

every step
direct at

Figure 3: Graph showing an electrostatic potential when full electrostatics are used within NAMD, with
one curve portion calculated directly and the other calculated using DPMTA.

• switching < use switching function? >
Acceptable Values: on or off
Default Value: on
Description: If switching is specified to be off, then a truncated cutoff is performed.
If switching is turned on, then smoothing functions are applied to both the electrostatics
and van der Waals forces. For a complete description of the non-bonded force parameters see
Section 5.2. If switching is set to on, then switchdist must also be defined.

• vdwForceSwitching < use force switching for VDW? >
Acceptable Values: on or off
Default Value: off
Description: If both switching and vdwForceSwitching are set to on, then CHARMM
force switching is used for van der Waals forces. LJcorrection as implemented is incon-
sistent with vdwForceSwitching.

• switchdist < distance at which to activate switching/splitting function for electrostatic
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and van der Waals calculations (Å) >
Acceptable Values: positive decimal ≤ cutoff
Description: Distance at which the switching function should begin to take effect. This
parameter only has meaning if switching is set to on. The value of switchdist must be less
than or equal to the value of cutoff, since the switching function is only applied on the range
from switchdist to cutoff. For a complete description of the non-bonded force parameters
see Section 5.2.

• exclude < exclusion policy to use >
Acceptable Values: none, 1-2, 1-3, 1-4, or scaled1-4
Description: This parameter specifies which pairs of bonded atoms should be excluded
from non-bonded interactions. With the value of none, no bonded pairs of atoms will be
excluded. With the value of 1-2, all atom pairs that are directly connected via a linear bond
will be excluded. With the value of 1-3, all 1-2 pairs will be excluded along with all pairs
of atoms that are bonded to a common third atom (i.e., if atom A is bonded to atom B and
atom B is bonded to atom C, then the atom pair A-C would be excluded). With the value of
1-4, all 1-3 pairs will be excluded along with all pairs connected by a set of two bonds (i.e.,
if atom A is bonded to atom B, and atom B is bonded to atom C, and atom C is bonded to
atom D, then the atom pair A-D would be excluded). With the value of scaled1-4, all 1-3
pairs are excluded and all pairs that match the 1-4 criteria are modified. The electrostatic
interactions for such pairs are modified by the constant factor defined by 1-4scaling. The
van der Waals interactions are modified by using the special 1-4 parameters defined in the
parameter files.

• dielectric < dielectric constant for system >
Acceptable Values: decimal ≥ 1.0
Default Value: 1.0
Description: Dielectric constant for the system. A value of 1.0 implies no modification of
the electrostatic interactions. Any larger value will lessen the electrostatic forces acting in
the system.

• nonbondedScaling < scaling factor for nonbonded forces >
Acceptable Values: decimal ≥ 0.0
Default Value: 1.0
Description: Scaling factor for electrostatic and van der Waals forces. A value of 1.0
implies no modification of the interactions. Any smaller value will lessen the nonbonded
forces acting in the system.

• 1-4scaling < scaling factor for 1-4 interactions >
Acceptable Values: 0 ≤ decimal ≤ 1
Default Value: 1.0
Description: Scaling factor for 1-4 interactions. This factor is only used when the exclude
parameter is set to scaled1-4. In this case, this factor is used to modify the electrostatic inter-
actions between 1-4 atom pairs. If the exclude parameter is set to anything but scaled1-4,
this parameter has no effect regardless of its value.

• vdwGeometricSigma < use geometric mean to combine L-J sigmas >
Acceptable Values: yes or no
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Default Value: no
Description: Use geometric mean, as required by OPLS, rather than traditional arithmetic
mean when combining Lennard-Jones sigma parameters for different atom types.

• limitdist < maximum distance between pairs for limiting interaction strength(Å) >
Acceptable Values: non-negative decimal
Default Value: 0.
Description: The electrostatic and van der Waals potential functions diverge as the
distance between two atoms approaches zero. The potential for atoms closer than limitdist
is instead treated as ar2 + c with parameters chosen to match the force and potential at
limitdist. This option should primarily be useful for alchemical free energy perturbation
calculations, since it makes the process of creating and destroying atoms far less drastic
energetically. The larger the value of limitdist the more the maximum force between atoms
will be reduced. In order to not alter the other interactions in the simulation, limitdist
should be less than the closest approach of any non-bonded pair of atoms; 1.3 Å appears to
satisfy this for typical simulations but the user is encouraged to experiment. There should
be no performance impact from enabling this feature.

• LJcorrection < Apply long-range corrections to the system energy and virial to account
for neglected vdW forces? >
Acceptable Values: yes or no
Default Value: no
Description: Apply an analytical correction to the reported vdW energy and virial that
is equal to the amount lost due to switching and cutoff of the LJ potential. The correction
will use the average of vdW parameters for all particles in the system and assume a constant,
homogeneous distribution of particles beyond the switching distance. See [40] for details
(the equations used in the NAMD implementation are slightly different due to the use of a
different switching function). Periodic boundary conditions are required to make use of tail
corrections. LJcorrection as implemented is inconsistent with vdwForceSwitching.

5.2.4 PME parameters

PME stands for Particle Mesh Ewald and is an efficient full electrostatics method for use with
periodic boundary conditions. None of the parameters should affect energy conservation, although
they may affect the accuracy of the results and momentum conservation.

• PME < Use particle mesh Ewald for electrostatics? >
Acceptable Values: yes or no
Default Value: no
Description: Turns on particle mesh Ewald.

• PMETolerance < PME direct space tolerance >
Acceptable Values: positive decimal
Default Value: 10−6

Description: Affects the value of the Ewald coefficient and the overall accuracy of the
results.

• PMEInterpOrder < PME interpolation order >
Acceptable Values: positive integer
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Default Value: 4 (cubic)
Description: Charges are interpolated onto the grid and forces are interpolated off using
this many points, equal to the order of the interpolation function plus one.

• PMEGridSpacing < maximum space between grid points >
Acceptable Values: positive real
Description: The grid spacing partially determines the accuracy and efficiency of PME.
If any of the grid sizes below are not set, then PMEGridSpacing must be set (recommended
value is 1.0 Å) and will be used to calculate them. If a grid size is set, then the grid spacing
must be at least PMEGridSpacing (if set, or a very large default of 1.5).

• PMEGridSizeX < number of grid points in x dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeX should have only small integer factors (2, 3 and 5).

• PMEGridSizeY < number of grid points in y dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeY should have only small integer factors (2, 3 and 5).

• PMEGridSizeZ < number of grid points in z dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeZ should have only small integer factors (2, 3 and 5).

• PMEProcessors < processors for FFT and reciprocal sum >
Acceptable Values: positive integer
Default Value: larger of x and y grid sizes up to all available processors
Description: For best performance on some systems and machines, it may be necessary
to restrict the amount of parallelism used. Experiment with this parameter if your parallel
performance is poor when PME is used.

• FFTWEstimate < Use estimates to optimize FFT? >
Acceptable Values: yes or no
Default Value: no
Description: Do not optimize FFT based on measurements, but on FFTW rules of thumb.
This reduces startup time, but may affect performance.

• FFTWUseWisdom < Use FFTW wisdom archive file? >
Acceptable Values: yes or no
Default Value: yes
Description: Try to reduce startup time when possible by reading FFTW “wisdom” from
a file, and saving wisdom generated by performance measurements to the same file for future
use. This will reduce startup time when running the same size PME grid on the same number
of processors as a previous run using the same file.

• FFTWWisdomFile < name of file for FFTW wisdom archive >
Acceptable Values: file name
Default Value: FFTW NAMD version platform.txt
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Description: File where FFTW wisdom is read and saved. If you only run on one platform
this may be useful to reduce startup times for all runs. The default is likely sufficient, as it
is version and platform specific.

5.2.5 Full direct parameters

The direct computation of electrostatics is not intended to be used during real calculations, but
rather as a testing or comparison measure. Because of the O(N2) computational complexity for
performing direct calculations, this is much slower than using DPMTA or PME to compute full
electrostatics for large systems. In the case of periodic boundary conditions, the nearest image
convention is used rather than a full Ewald sum.

• FullDirect < calculate full electrostatics directly? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not direct computation of full electrostatics should be
performed.

5.2.6 DPME parameters

DPME is an implementation of PME that is no longer included in the released NAMD binaries.
We recommend that you use the current PME implementation.

• useDPME < Use old DPME code? >
Acceptable Values: yes or no
Default Value: no
Description: Switches to old DPME implementation of particle mesh Ewald. The new
code is faster and allows non-orthogonal cells so you probably just want to leave this option
turned off. If you set cellOrigin to something other than (0, 0, 0) the energy may differ
slightly between the old and new implementations. DPME is no longer included in released
binaries.

5.2.7 DPMTA parameters

DPMTA is no longer included in the released NAMD binaries. We recommend that you instead
use PME with a periodic system because it conserves energy better, is more efficient, and is better
parallelized. If you must have the fast multipole algorithm you may compile NAMD yourself.

These parameters control the options to DPMTA, an algorithm used to provide full electrostatic
interactions. DPMTA is a modified version of the FMA (Fast Multipole Algorithm) and, unfortu-
nately, most of the parameters still refer to FMA rather than DPMTA for historical reasons. Don’t
be confused!

For a further description of how exactly full electrostatics are incorporated into NAMD, see
Section 6.3.4. For a greater level of detail about DPMTA and the specific meaning of its options,
see the DPMTA distribution which is available via anonymous FTP from the site ftp.ee.duke.edu
in the directory /pub/SciComp/src.

• FMA < use full electrostatics? >
Acceptable Values: on or off
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Default Value: off
Description: Specifies whether or not the DPMTA algorithm from Duke University should
be used to compute the full electrostatic interactions. If set to on, DPMTA will be used with
a multiple timestep integration scheme to provide full electrostatic interactions as detailed in
Section 6.3.4. DPMTA is no longer included in released binaries.

• FMALevels < number of levels to use in multipole expansion >
Acceptable Values: positive integer
Default Value: 5
Description: Number of levels to use for the multipole expansion. This parameter is only
used if FMA is set to on. A value of 4 should be sufficient for systems with less than 10,000
atoms. A value of 5 or greater should be used for larger systems.

• FMAMp < number of multipole terms to use for FMA >
Acceptable Values: positive integer
Default Value: 8
Description: Number of terms to use in the multipole expansion. This parameter is only
used if FMA is set to on. If the FMAFFT is set to on, then this value must be a multiple of 4.
The default value of 8 should be suitable for most applications.

• FMAFFT < use DPMTA FFT enhancement? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the DPMTA code should use the FFT enhancement
feature. This parameter is only used if FMA is set to on. If FMAFFT is set to on, the value of
FMAMp must be set to a multiple of 4. This feature offers substantial benefits only for values
of FMAMp of 8 or greater. This feature will substantially increase the amount of memory used
by DPMTA.

• FMAtheta < DPMTA theta parameter (radians) >
Acceptable Values: decimal
Default Value: 0.715
Description: This parameter specifies the value of the theta parameter used in the DPMTA
calculation. The default value is based on recommendations by the developers of the code.

• FMAFFTBlock < blocking factor for FMA FFT >
Acceptable Values: positive integer
Default Value: 4
Description: The blocking factor for the FFT enhancement to DPMTA. This parameter
is only used if both FMA and FMAFFT are set to on. The default value of 4 should be suitable
for most applications.

5.3 Water Models

5.3.1 Water model parameters

NAMD currently supports the 3-site TIP3P water model and the 4-site TIP4P water model. TIP3P
is the current default water model. Usage of alternate water models is described below.
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• waterModel < using which water model? >
Acceptable Values: tip3 or tip4
Default Value: tip3
Description: Specifies if the TIP3P or TIP4P water model is to be used. When using
the TIP4P water model, the ordering of atoms within each TIP4P water molecule must be
oxygen, hydrogen, hydrogen, lone pair. Alternate orderings will fail.

5.4 Constraints and Restraints

5.4.1 Bond constraint parameters

• rigidBonds < controls if and how ShakeH is used >
Acceptable Values: none, water, all
Default Value: none
Description: When water is selected, the hydrogen-oxygen and hydrogen-hydrogen dis-
tances in waters are constrained to the nominal length or angle given in the parameter file,
making the molecules completely rigid. When rigidBonds is all, waters are made rigid
as described above and the bond between each hydrogen and the (one) atom to which it is
bonded is similarly constrained. For the default case none, no lengths are constrained.

• rigidTolerance < allowable bond-length error for ShakeH (Å) >
Acceptable Values: positive decimal
Default Value: 1.0e-8
Description: The ShakeH algorithm is assumed to have converged when all constrained
bonds differ from the nominal bond length by less than this amount.

• rigidIterations < maximum ShakeH iterations >
Acceptable Values: positive integer
Default Value: 100
Description: The maximum number of iterations ShakeH will perform before giving up
on constraining the bond lengths. If the bond lengths do not converge, a warning message is
printed, and the atoms are left at the final value achieved by ShakeH. Although the default
value is 100, convergence is usually reached after fewer than 10 iterations.

• rigidDieOnError < maximum ShakeH iterations >
Acceptable Values: on or off
Default Value: on
Description: Exit and report an error if rigidTolerance is not achieved after rigidItera-
tions.

• useSettle < Use SETTLE for waters. >
Acceptable Values: on or off
Default Value: on
Description: If rigidBonds are enabled then use the non-iterative SETTLE algorithm to
keep waters rigid rather than the slower SHAKE algorithm.

5.4.2 Harmonic restraint parameters

The following describes the parameters for the harmonic restraints feature of NAMD. For historical
reasons the terminology of “harmonic constraints” has been carried over from X-PLOR. This feature
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allows a harmonic restraining force to be applied to any set of atoms in the simulation.

• constraints < are constraints active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not harmonic constraints are active. If it is set to off,
then no harmonic constraints are computed. If it is set to on, then harmonic constraints are
calculated using the values specified by the parameters consref, conskfile, conskcol, and
consexp.

• consexp < exponent for harmonic constraint energy function >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent to be use in the harmonic constraint energy function. This value
must be a positive integer, and only even values really make sense. This parameter is used
only if constraints is set to on.

• consref < PDB file containing constraint reference positions >
Acceptable Values: UNIX file name
Description: PDB file to use for reference positions for harmonic constraints. Each atom
that has an active constraint will be constrained about the position specified in this file.

• conskfile < PDB file containing force constant values >
Acceptable Values: UNIX filename
Description: PDB file to use for force constants for harmonic constraints.

• conskcol < column of PDB file containing force constant >
Acceptable Values: X, Y, Z, O, or B
Description: Column of the PDB file to use for the harmonic constraint force constant.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). Regardless of which column is used, a
value of 0 indicates that the atom should not be constrained. Otherwise, the value specified
is used as the force constant for that atom’s restraining potential.

• constraintScaling < scaling factor for harmonic constraint energy function >
Acceptable Values: positive
Default Value: 1.0
Description: The harmonic constraint energy function is multiplied by this parameter,
making it possible to gradually turn off constraints during equilibration. This parameter is
used only if constraints is set to on.

• selectConstraints < Restrain only selected Cartesian components of the coordinates? >
Acceptable Values: on or off
Default Value: off
Description: This option is useful to restrain the positions of atoms to a plane or a line
in space. If active, this option will ensure that only selected Cartesian components of the
coordinates are restrained. E.g.: Restraining the positions of atoms to their current z values
with no restraints in x and y will allow the atoms to move in the x-y plane while retaining
their original z-coordinate. Restraining the x and y values will lead to free motion only along
the z coordinate.

51



• selectConstrX < Restrain X components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian x components of the positions.

• selectConstrY < Restrain Y components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian y components of the positions.

• selectConstrZ < Restrain Z components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian z components of the positions.

5.4.3 Fixed atoms parameters

Atoms may be held fixed during a simulation. NAMD avoids calculating most interactions in which
all affected atoms are fixed unless fixedAtomsForces is specified.

• fixedAtoms < are there fixed atoms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not fixed atoms are present.

• fixedAtomsForces < are forces between fixed atoms calculated? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not forces between fixed atoms are calculated. This
option is required to turn fixed atoms off in the middle of a simulation. These forces will
affect the pressure calculation, and you should leave this option off when using constant
pressure if the coordinates of the fixed atoms have not been minimized. The use of constant
pressure with significant numbers of fixed atoms is not recommended.

• fixedAtomsFile < PDB file containing fixed atom parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the fixed atom flags for each atom. If this parameter is
not specified, then the PDB file specified by coordinates is used.

• fixedAtomsCol < column of PDB containing fixed atom parameters >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the containing fixed atom parameters for
each atom. The coefficients can be read from any floating point column of the PDB file. A
value of 0 indicates that the atom is not fixed.
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6 Standard Minimization and Dynamics Parameters

6.1 Boundary Conditions

In addition to periodic boundary conditions, NAMD provides spherical and cylindrical boundary
potentials to contain atoms in a given volume. To apply more general boundary potentials written
in Tcl, use tclBC as described in Sec. 8.10.

6.1.1 Periodic boundary conditions

NAMD provides periodic boundary conditions in 1, 2 or 3 dimensions. The following parameters
are used to define these boundary conditions.

• cellBasisVector1 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector2 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector3 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellOrigin < center of periodic cell (Å) >
Acceptable Values: position
Default Value: 0 0 0
Description: When position rescaling is used to control pressure, this location will remain
constant. Also used as the center of the cell for wrapped output coordinates.

• extendedSystem < XSC file to read cell parameters from >
Acceptable Values: file name
Description: In addition to .coor and .vel output files, NAMD generates a .xsc (eXtended
System Configuration) file which contains the periodic cell parameters and extended system
variables, such as the strain rate in constant pressure simulations. Periodic cell parameters
will be read from this file if this option is present, ignoring the above parameters.

• XSTfile < XST file to write cell trajectory to >
Acceptable Values: file name
Description: NAMD can also generate a .xst (eXtended System Trajectory) file which
contains a record of the periodic cell parameters and extended system variables during the
simulation. If XSTfile is defined, then XSTfreq must also be defined.

• XSTfreq < how often to append state to XST file >
Acceptable Values: positive integer
Description: Like the DCDfreq option, controls how often the extended system configura-
tion will be appended to the XST file.
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• wrapWater < wrap water coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other side
of the cell on output. This option alters this behavior for water molecules only.

• wrapAll < wrap all coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other side
of the cell on output. This option alters this behavior for all contiguous clusters of bonded
atoms.

• wrapNearest < use nearest image to cell origin when wrapping coordinates? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally wrapped to the diagonal unit cell centered on the
origin. This option, combined with wrapWater or wrapAll, wraps coordinates to the nearest
image to the origin, providing hexagonal or other cell shapes.

6.1.2 Spherical harmonic boundary conditions

NAMD provides spherical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• sphericalBC < use spherical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not spherical boundary conditions are to be applied to
the system. If set to on, then sphericalBCCenter, sphericalBCr1 and sphericalBCk1 must
be defined, and sphericalBCexp1, sphericalBCr2, sphericalBCk2, and sphericalBCexp2
can optionally be defined.

• sphericalBCCenter < center of sphere (Å) >
Acceptable Values: position
Description: Location around which sphere is centered.

• sphericalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect.
This distance is a radius from the center.

• sphericalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.
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• sphericalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• sphericalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect.
This distance is a radius from the center. If this parameter is defined, then spericalBCk2
must also be defined.

• sphericalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• sphericalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

6.1.3 Cylindrical harmonic boundary conditions

NAMD provides cylindrical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• cylindricalBC < use cylindrical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not cylindrical boundary conditions are to be applied to
the system. If set to on, then cylindricalBCCenter, cylindricalBCr1, cylindricalBCl1
and cylindricalBCk1 must be defined, and cylindricalBCAxis, cylindricalBCexp1,
cylindricalBCr2, cylindricalBCl2, cylindricalBCk2, and cylindricalBCexp2 can op-
tionally be defined.

• cylindricalBCCenter < center of cylinder (Å) >
Acceptable Values: position
Description: Location around which cylinder is centered.

• cylindricalBCAxis < axis of cylinder (Å) >
Acceptable Values: x, y, or z
Description: Axis along which cylinder is aligned.

• cylindricalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the non-axis plane of the cylinder.
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• cylindricalBCl1 < distance along cylinder axis for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the cylinder axis.

• cylindricalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• cylindricalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• cylindricalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect
along the non-axis plane of the cylinder. If this parameter is defined, then cylindricalBCl2
and spericalBCk2 must also be defined.

• cylindricalBCl2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes
effect along the cylinder axis. If this parameter is defined, then cylindricalBCr2 and
spericalBCk2 must also be defined.

• cylindricalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• cylindricalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

6.2 Energy Minimization

6.2.1 Conjugate gradient parameters

The default minimizer uses a sophisticated conjugate gradient and line search algorithm with much
better performance than the older velocity quenching method. The method of conjugate gradients
is used to select successive search directions (starting with the initial gradient) which eliminate
repeated minimization along the same directions. Along each direction, a minimum is first bracketed
(rigorously bounded) and then converged upon by either a golden section search, or, when possible,
a quadratically convergent method using gradient information.

For most systems, it just works.
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• minimization < Perform conjugate gradient energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns efficient energy minimization on or off.

• minTinyStep < first initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-6
Description: If your minimization is immediately unstable, make this smaller.

• minBabyStep < max initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-2
Description: If your minimization becomes unstable later, make this smaller.

• minLineGoal < gradient reduction factor for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-4
Description: Varying this might improve conjugate gradient performance.

6.2.2 Velocity quenching parameters

You can perform energy minimization using a simple quenching scheme. While this algorithm is not
the most rapidly convergent, it is sufficient for most applications. There are only two parameters
for minimization: one to activate minimization and another to specify the maximum movement of
any atom.

• velocityQuenching < Perform old-style energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns slow energy minimization on or off.

• maximumMove < maximum distance an atom can move during each step (Å) >
Acceptable Values: positive decimal
Default Value: 0.75× cutoff/stepsPerCycle
Description: Maximum distance that an atom can move during any single timestep of
minimization. This is to insure that atoms do not go flying off into space during the first few
timesteps when the largest energy conflicts are resolved.

6.3 Dynamics

6.3.1 Timestep parameters

• numsteps < number of timesteps >
Acceptable Values: positive integer
Description: The number of simulation timesteps to be performed. An integer greater
than 0 is acceptable. The total amount of simulation time is numsteps× timestep.

• timestep < timestep size (fs) >
Acceptable Values: non-negative decimal
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Default Value: 1.0
Description: The timestep size to use when integrating each step of the simulation. The
value is specified in femtoseconds.

• firsttimestep < starting timestep value >
Acceptable Values: non-negative integer
Default Value: 0
Description: The number of the first timestep. This value is typically used only when a
simulation is a continuation of a previous simulation. In this case, rather than having the
timestep restart at 0, a specific timestep number can be specified.

6.3.2 Initialization

• temperature < initial temperature (K) >
Acceptable Values: positive decimal
Description: Initial temperature value for the system. Using this option will generate a
random velocity distribution for the initial velocities for all the atoms such that the system
is at the desired temperature. Either the temperature or the velocities/binvelocities
option must be defined to determine an initial set of velocities. Both options cannot be used
together.

• COMmotion < allow initial center of mass motion? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not motion of the center of mass of the entire system
is allowed. If this option is set to no, the initial velocities of the system will be adjusted to
remove center of mass motion of the system. Note that this does not preclude later center-
of-mass motion due to external forces such as random noise in Langevin dynamics, boundary
potentials, and harmonic restraints.

• seed < random number seed >
Acceptable Values: positive integer
Default Value: pseudo-random value based on current UNIX clock time
Description: Number used to seed the random number generator if temperature or
langevin is selected. This can be used so that consecutive simulations produce the same
results. If no value is specified, NAMD will choose a pseudo-random value based on the
current UNIX clock time. The random number seed will be output during the simulation
startup so that its value is known and can be reused for subsequent simulations. Note that if
Langevin dynamics are used in a parallel simulation (i.e., a simulation using more than one
processor) even using the same seed will not guarantee reproducible results.

6.3.3 Conserving momentum

• zeroMomentum < remove center of mass drift due to PME >
Acceptable Values: yes or no
Default Value: no
Description: If enabled, the net momentum of the simulation and any resultant drift
is removed before every full electrostatics step. This correction should conserve energy and
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have minimal impact on parallel scaling. This feature should only be used for simulations that
would conserve momentum except for the slight errors in PME. (Features such as fixed atoms,
harmonic restraints, steering forces, and Langevin dynamics do not conserve momentum; use
in combination with these features should be considered experimental.) Since the momentum
correction is delayed, enabling outputMomenta will show a slight nonzero linear momentum
but there should be no center of mass drift.

6.3.4 Multiple timestep parameters

To further reduce the cost of computing full electrostatics, NAMD uses a multiple timestepping
integration scheme. In this scheme, the total force acting on each atom is broken into two pieces, a
quickly varying local component and a slower long range component. The local force component is
defined in terms of a splitting function. The local force component consists of all bonded and van der
Waals interactions as well as that portion of electrostatic interactions for pairs that are separated
by less than the local interaction distance determined by the splitting function. The long range
component consists only of electrostatic interactions outside of the local interaction distance. Since
the long range forces are slowly varying, they are not evaluated every timestep. Instead, they are
evaluated every k timesteps, specified by the NAMD parameter fullElectFrequency. An impulse
of k times the long range force is applied to the system every k timesteps (i.e., the r-RESPA
integrator is used). For appropriate values of k, it is believed that the error introduced by this
infrequent evaluation is modest compared to the error already incurred by the use of the numerical
(Verlet) integrator. Improved methods for incorporating these long range forces are currently being
investigated, with the intention of improving accuracy as well as reducing the frequency of long
range force evaluations.

In the scheme described above, the van der Waals forces are still truncated at the local interac-
tion distance. Thus, the van der Waals cutoff distance forms a lower limit to the local interaction
distance. While this is believed to be sufficient, there are investigations underway to remove this
limitation and provide full van der Waals calculations in O(N) time as well.

One of the areas of current research being studied using NAMD is the exploration of better
methods for performing multiple timestep integration. Currently the only available method is the
impulse-based Verlet-I or r-RESPA method which is stable for timesteps up to 4 fs for long-range
electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for bonded forces Setting rigid
all (i.e., using SHAKE) increases these timesteps to 6 fs, 2 fs, and 2 fs respectively but eliminates
bond motion for hydrogen. The mollified impulse method (MOLLY) reduces the resonance which
limits the timesteps and thus increases these timesteps to 6 fs, 2 fs, and 1 fs while retaining all
bond motion.

• fullElectFrequency < number of timesteps between full electrostatic evaluations >
Acceptable Values: positive integer factor of stepspercycle
Default Value: nonbondedFreq
Description: This parameter specifies the number of timesteps between each full elec-
trostatics evaluation. It is recommended that fullElectFrequency be chosen so that the
product of fullElectFrequency and timestep does not exceed 4.0 unless rigidBonds all
or molly on is specified, in which case the upper limit is perhaps doubled.

• nonbondedFreq < timesteps between nonbonded evaluation >
Acceptable Values: positive integer factor of fullElectFrequency
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Default Value: 1
Description: This parameter specifies how often short-range nonbonded interactions should
be calculated. Setting nonbondedFreq between 1 and fullElectFrequency allows triple
timestepping where, for example, one could evaluate bonded forces every 1 fs, short-range
nonbonded forces every 2 fs, and long-range electrostatics every 4 fs.

• MTSAlgorithm < MTS algorithm to be used >
Acceptable Values: impulse/verletI or constant/naive
Default Value: impulse
Description: Specifies the multiple timestep algorithm used to integrate the long and short
range forces. impulse/verletI is the same as r-RESPA. constant/naive is the stale force
extrapolation method.

• longSplitting < how should long and short range forces be split? >
Acceptable Values: c1, c2
Default Value: c1
Description: Specifies the method used to split electrostatic forces between long and short
range potentials. The c1 option uses a cubic polynomial splitting function,
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to affect C1 continuity in the splitting of the electrostatic potential [43]. The c2 option uses
a quintic polynomial splitting function,
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to affect C2 continuity in the splitting of the electrostatic potential. The S5 splitting func-
tion, contributed by Bruce Berne, Ruhong Zhou, and Joe Morrone, produces demonstrably
better long time stability than S3 without requiring any additional computational cost during
simulation, since the nonbonded forces are calculated via a lookup table. Note that earlier
options xplor and sharp are no longer supported.

• molly < use mollified impulse method (MOLLY)? >
Acceptable Values: on or off
Default Value: off
Description: This method eliminates the components of the long range electrostatic forces
which contribute to resonance along bonds to hydrogen atoms, allowing a fullElectFrequency
of 6 (vs. 4) with a 1 fs timestep without using rigidBonds all. You may use rigidBonds
water but using rigidBonds all with MOLLY makes no sense since the degrees of freedom
which MOLLY protects from resonance are already frozen.

• mollyTolerance < allowable error for MOLLY >
Acceptable Values: positive decimal
Default Value: 0.00001
Description: Convergence criterion for MOLLY algorithm.

• mollyIterations < maximum MOLLY iterations >
Acceptable Values: positive integer
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Default Value: 100
Description: Maximum number of iterations for MOLLY algorithm.

6.4 Temperature Control and Equilibration

6.4.1 Langevin dynamics parameters

NAMD is capable of performing Langevin dynamics, where additional damping and random forces
are introduced to the system. This capability is based on that implemented in X-PLOR which is
detailed in the X-PLOR User’s Manual [9], although a different integrator is used.

• langevin < use Langevin dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin dynamics active. If set to on, then the
parameter langevinTemp must be set and the parameters langevinFile and langevinCol
can optionally be set to control the behavior of this feature.

• langevinTemp < temperature for Langevin calculations (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by Langevin dynamics will be adjusted.
This temperature will be roughly maintained across the affected atoms through the addition
of friction and random forces.

• langevinDamping < damping coefficient for Langevin dynamics (1/ps) >
Acceptable Values: positive decimal
Default Value: per-atom values from PDB file
Description: Langevin coupling coefficient to be applied to all atoms (unless
langevinHydrogen is off, in which case only non-hydrogen atoms are affected). If not given,
a PDB file is used to obtain coefficients for each atom (see langevinFile and langevinCol
below).

• langevinHydrogen < Apply Langevin dynamics to hydrogen atoms? >
Acceptable Values: on or off
Default Value: on
Description: If langevinDamping is set then setting langevinHydrogen to off will turn
off Langevin dynamics for hydrogen atoms. This parameter has no effect if Langevin coupling
coefficients are read from a PDB file.

• langevinFile < PDB file containing Langevin parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the Langevin coupling coefficients for each atom. If this
parameter is not specified, then the PDB file specified by coordinates is used.

• langevinCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the Langevin coupling coefficients for each
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atom. The coefficients can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

6.4.2 Temperature coupling parameters

NAMD is capable of performing temperature coupling, in which forces are added or reduced to
simulate the coupling of the system to a heat bath of a specified temperature. This capability is
based on that implemented in X-PLOR which is detailed in the X-PLOR User’s Manual [9].

• tCouple < perform temperature coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not temperature coupling is active. If set to on, then
the parameter tCoupleTemp must be set and the parameters tCoupleFile and tCoupleCol
can optionally be set to control the behavior of this feature.

• tCoupleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by temperature coupling will be ad-
justed. This temperature will be roughly maintained across the affected atoms through the
addition of forces.

• tCoupleFile < PDB file with tCouple parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the temperature coupling coefficient for each atom. If
this parameter is not specified, then the PDB file specified by coordinates is used.

• tCoupleCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the temperature coupling coefficient for
each atom. This value can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

6.4.3 Temperature rescaling parameters

NAMD allows equilibration of a system by means of temperature rescaling. Using this method,
all of the velocities in the system are periodically rescaled so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
rescaling is performed.

• rescaleFreq < number of timesteps between temperature rescaling >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the number of
timesteps between each temperature rescaling. If this value is given, then the rescaleTemp
parameter must also be given to specify the target temperature.
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• rescaleTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The temperature to which all velocities will be rescaled every rescaleFreq
timesteps. This parameter is valid only if rescaleFreq has been set.

6.4.4 Temperature reassignment parameters

NAMD allows equilibration of a system by means of temperature reassignment. Using this method,
all of the velocities in the system are periodically reassigned so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
reassignment is performed.

• reassignFreq < number of timesteps between temperature reassignment >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the num-
ber of timesteps between each temperature reassignment. If this value is given, then the
reassignTemp parameter must also be given to specify the target temperature.

• reassignTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Default Value: temperature if set, otherwise none
Description: The temperature to which all velocities will be reassigned every reassignFreq
timesteps. This parameter is valid only if reassignFreq has been set.

• reassignIncr < temperature increment for equilibration (K) >
Acceptable Values: decimal
Default Value: 0
Description: In order to allow simulated annealing or other slow heating/cooling protocols,
reassignIncr will be added to reassignTemp after each reassignment. (Reassignment is
carried out at the first timestep.) The reassignHold parameter may be set to limit the final
temperature. This parameter is valid only if reassignFreq has been set.

• reassignHold < holding temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The final temperature for reassignment when reassignIncr is set;
reassignTemp will be held at this value once it has been reached. This parameter is valid
only if reassignIncr has been set.

6.4.5 Lowe-Andersen dynamics parameters

NAMD can perform Lowe-Andersen dynamics, a variation of Andersen dynamics whereby the
radial relative velocities of atom pairs are randomly modified based on a thermal distribution.
The Lowe-Andersen thermostat is Galilean invariant, therefore conserving momentum, and is thus
independent of absolute atom velocities. Forces are applied only between non-bonded, non-hydrogen
pairs of atoms. When using rigid bonds, forces are applied to the center of mass of hydrogen groups.
The implementation is based on Koopman and Lowe [30].

• loweAndersen < use Lowe-Andersen dynamics? >
Acceptable Values: on or off
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Default Value: off
Description: Specifies whether or not Lowe-Andersen dynamics are active. If set to on,
then the parameter loweAndersenTemp must be set and the parameters loweAndersenCutoff
and loweAndersenRate can optionally be set.

• loweAndersenTemp < temperature for Lowe-Andersen calculations (K) >
Acceptable Values: positive decimal
Description: Temperature of the distribution used to set radial relative velocities. This
determines the target temperature of the system.

• loweAndersenCutoff < cutoff radius for Lowe-Andersen collisions (Å) >
Acceptable Values: positive decimal
Default Value: 2.7
Description: Forces are only applied to atoms within this distance of one another.

• loweAndersenRate < rate for Lowe-Andersen collisions (1/ps) >
Acceptable Values: positive decimal
Default Value: 50
Description: Determines the probability of a collision between atoms within the cutoff
radius. The probability is the rate specified by this keyword times the non-bonded timestep.

6.5 Pressure Control

Constant pressure simulation (and pressure calculation) require periodic boundary conditions. Pres-
sure is controlled by dynamically adjusting the size of the unit cell and rescaling all atomic coordi-
nates (other than those of fixed atoms) during the simulation.

Pressure values in NAMD output are in bar. PRESSURE is the pressure calculated based on
individual atoms, while GPRESSURE incorporates hydrogen atoms into the heavier atoms to which
they are bonded, producing smaller fluctuations. The TEMPAVG, PRESSAVG, and GPRESSAVG
are the average of temperature and pressure values since the previous ENERGY output; for the
first step in the simulation they will be identical to TEMP, PRESSURE, and GPRESSURE.

The phenomenological pressure of bulk matter reflects averaging in both space and time of the
sum of a large positive term (the kinetic pressure, nRT/V ), and a large cancelling negative term
(the static pressure). The instantaneous pressure of a simulation cell as simulated by NAMD will
have mean square fluctuations (according to David Case quoting Section 114 of Statistical Physics
by Landau and Lifshitz) of kT/(V β), where β is the compressibility, which is RMS of roughly 100
bar for a 10,000 atom biomolecular system. Much larger fluctuations are regularly observed in
practice.

The instantaneous pressure for a biomolecular system is well defined for “internal” forces that
are based on particular periodic images of the interacting atoms, conserve momentum, and are
translationally invariant. When dealing with externally applied forces such as harmonic constraints,
fixed atoms, and various steering forces, NAMD bases its pressure calculation on the relative
positions of the affected atoms in the input coordinates and assumes that the net force will average
to zero over time. For time periods during with the net force is non-zero, the calculated pressure
fluctuations will include a term proportional to the distance to the affected from the user-defined
cell origin. A good way to observe these effects and to confirm that pressure for external forces
is handled reasonably is to run a constant volume cutoff simulation in a cell that is larger than
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the molecular system by at least the cutoff distance; the pressure for this isolated system should
average to zero over time.

Because NAMD’s impluse-basd multiple timestepping system alters the balance between bonded
and non-bonded forces from every timestep to an average balance over two steps, the calculated
pressure on even and odd steps will be different. The PRESSAVG and GPRESSAVG fields provide
the average over the non-printed intermediate steps. If you print energies on every timestep you
will see the effect clearly in the PRESSURE field.

The following options affect all pressure control methods.

• useGroupPressure < group or atomic quantities >
Acceptable Values: yes or no
Default Value: no
Description: Pressure can be calculated using either the atomic virial and kinetic energy
(the default) or a hydrogen-group based pseudo-molecular virial and kinetic energy. The
latter fluctuates less and is required in conjunction with rigidBonds (SHAKE).

• useFlexibleCell < anisotropic cell fluctuations >
Acceptable Values: yes or no
Default Value: no
Description: NAMD allows the three orthogonal dimensions of the periodic cell to fluctuate
independently when this option is enabled.

• useConstantRatio < constant shape in first two cell dimensions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the ratio of the unit cell in the x-y plane
constant while allowing fluctuations along all axes. The useFlexibleCell option is required
for this option.

• useConstantArea < constant area and normal pressure conditions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the dimension of the unit cell in the x-y plane
constant while allowing fluctuations along the z axis. This is not currently implemented in
Berendsen’s method.

6.5.1 Berendsen pressure bath coupling

NAMD provides constant pressure simulation using Berendsen’s method. The following parameters
are used to define the algorithm.

• BerendsenPressure < use Berendsen pressure bath coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Berendsen pressure bath coupling
is active. If set to on, then the parameters BerendsenPressureTarget,
BerendsenPressureCompressibility and BerendsenPressureRelaxationTime must
be set and the parameter BerendsenPressureFreq can optionally be set to control the
behavior of this feature.
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• BerendsenPressureTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Berendsen’s method. A typical value would be
1.01325 bar, atmospheric pressure at sea level.

• BerendsenPressureCompressibility < compressibility (bar−1) >
Acceptable Values: positive decimal
Description: Specifies compressibility for Berendsen’s method. A typical value would
be 4.57E-5 bar−1, corresponding to liquid water. The higher the compressibility, the more
volume will be adjusted for a given pressure difference. The compressibility and the relaxation
time appear only as a ratio in the dynamics, so a larger compressibility is equivalent to a
smaller relaxation time.

• BerendsenPressureRelaxationTime < relaxation time (fs) >
Acceptable Values: positive decimal
Description: Specifies relaxation time for Berendsen’s method. If the instantaneous pres-
sure did not fluctuate randomly during a simulation and the compressibility estimate was
exact then the inital pressure would decay exponentially to the target pressure with this time
constant. Having a longer relaxation time results in more averaging over pressure measure-
ments and hence smaller fluctuations in the cell volume. A reasonable choice for relaxation
time would be 100 fs. The compressibility and the relaxation time appear only as a ratio in
the dynamics, so a larger compressibility is equivalent to a smaller relaxation time.

• BerendsenPressureFreq < how often to rescale positions >
Acceptable Values: positive multiple of nonbondedFrequency and fullElectFrequency
Default Value: nonbondedFrequency or fullElectFrequency if used
Description: Specifies number of timesteps between position rescalings for Berendsen’s
method. Primarily to deal with multiple timestepping integrators, but also to reduce cell
volume fluctuations, cell rescalings can occur on a longer interval. This could reasonably be
between 1 and 20 timesteps, but the relaxation time should be at least ten times larger.

6.5.2 Nosé-Hoover Langevin piston pressure control

NAMD provides constant pressure simulation using a modified Nosé-Hoover method in which
Langevin dynamics is used to control fluctuations in the barostat. This method should be combined
with a method of temperature control, such as Langevin dynamics, in order to simulate the NPT
ensemble.

The Langevin piston Nose-Hoover method in NAMD is a combination of the Nose-Hoover
constant pressure method as described in GJ Martyna, DJ Tobias and ML Klein, ”Constant pressure
molecular dynamics algorithms”, J. Chem. Phys 101(5), 1994, with piston fluctuation control
implemented using Langevin dynamics as in SE Feller, Y Zhang, RW Pastor and BR Brooks,
”Constant pressure molecular dynamics simulation: The Langevin piston method”, J. Chem. Phys.
103(11), 1995.
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The equations of motion are:

r′ = p/m+ e′r

p′ = F − e′p− gp+R

V ′ = 3V e′

e′′ = 3V/W (P − P0)− gee
′ +Re/W

W = 3Nτ2kT

< R2 > = 2mgkT/h
τ = oscillationperiod

< R2
e > = 2WgekT/h

Here, W is the mass of piston, R is noise on atoms, and Re is the noise on the piston.
The user specifies the desired pressure, oscillation and decay times of the piston, and tempera-

ture of the piston. The compressibility of the system is not required. In addition, the user specifies
the damping coefficients and temperature of the atoms for Langevin dynamics.

The following parameters are used to define the algorithm.

• LangevinPiston < use Langevin piston pressure control? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin piston pressure control is ac-
tive. If set to on, then the parameters LangevinPistonTarget, LangevinPistonPeriod,
LangevinPistonDecay and LangevinPistonTemp must be set.

• LangevinPistonTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Langevin piston method. A typical value would
be 1.01325 bar, atmospheric pressure at sea level.

• LangevinPistonPeriod < oscillation period (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat oscillation time scale for Langevin piston method. If
the instantaneous pressure did not fluctuate randomly during a simulation and the decay
time was infinite (no friction) then the cell volume would oscillate with this angular period.
Having a longer period results in more averaging over pressure measurements and hence slower
fluctuations in the cell volume. A reasonable choice for the piston period would be 200 fs.

• LangevinPistonDecay < damping time scale (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat damping time scale for Langevin piston method. A value
larger than the piston period would result in underdamped dynamics (decaying ringing in the
cell volume) while a smaller value approaches exponential decay as in Berendsen’s method
above. A smaller value also corresponds to larger random forces with increased coupling to
the Langevin temperature bath. Typically this would be chosen equal to or smaller than the
piston period, such as 100 fs.

• LangevinPistonTemp < noise temperature (K) >
Acceptable Values: positive decimal
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Description: Specifies barostat noise temperature for Langevin piston method. This should
be set equal to the target temperature for the chosen method of temperature control.

• SurfaceTensionTarget < Surface tension target (dyn/cm) >
Acceptable Values: decimal
Default Value: 0.0
Description: Specifies surface tension target. Must be used with useFlexibleCell and
periodic boundary conditions. The pressure specified in LangevinPistonTarget becomes the
pressure along the z axis, and surface tension is applied in the x-y plane.

• StrainRate < initial strain rate >
Acceptable Values: decimal triple (x y z)
Default Value: 0. 0. 0.
Description: Optionally specifies the initial strain rate for pressure control. Is overridden
by value read from file specified with extendedSystem. There is typically no reason to set
this parameter.

• ExcludeFromPressure < Should some atoms be excluded from pressure rescaling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to exclude some atoms from pressure rescaling. The
coordinates and velocites of such atoms are not rescaled during constant pressure simulations,
though they do contribute to the virial calculation. May be useful for membrane protein
simulation. EXPERIMENTAL.

• ExcludeFromPressureFile < File specifying excluded atoms >
Acceptable Values: PDB file
Default Value: coordinates file
Description: PDB file with one column specifying which atoms to exclude from pressure
rescaling. Specify 1 for excluded and 0 for not excluded.

• ExcludeFromPressureCol < Column in PDB file for specifying excluded atoms >
Acceptable Values: O, B, X, Y, or Z
Default Value: O
Description: Specifies which column of the pdb file to check for excluded atoms.
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7 Performance Tuning

7.1 Non-bonded interaction distance-testing

The last critical parameter for non-bonded interaction calculations is the parameter pairlistdist.
To reduce the cost of performing the non-bonded interactions, NAMD uses a non-bonded pair list
which contained all pairs of atoms for which non-bonded interactions should be calculated. Per-
forming the search for pairs of atoms that should have their interactions calculated is an expensive
operation. Thus, the pair list is only calculated periodically, at least once per cycle. Unfortunately,
pairs of atoms move relative to each other during the steps between preparation of the pair list.
Because of this, if the pair list were built to include only those pairs of atoms that are within
the cutoff distance when the list is generated, it would be possible for atoms to drift closer to-
gether than the cutoff distance during subsequent timesteps and yet not have their non-bonded
interactions calculated.

Let us consider a concrete example to better understand this. Assume that the pairlist is built
once every ten timesteps and that the cutoff distance is 8.0 Å. Consider a pair of atoms A and B
that are 8.1 Å apart when the pairlist is built. If the pair list includes only those atoms within the
cutoff distance, this pair would not be included in the list. Now assume that after five timesteps,
atoms A and B have moved to only 7.9 Å apart. A and B are now within the cutoff distance of each
other, and should have their non-bonded interactions calculated. However, because the non-bonded
interactions are based solely on the pair list and the pair list will not be rebuilt for another five
timesteps, this pair will be ignored for five timesteps causing energy not to be conserved within the
system.

To avoid this problem, the parameter pairlistdist allows the user to specify a distance greater
than the cutoff distance for pairs to be included in the pair list, as shown in Figure 4. Pairs that
are included in the pair list but are outside the cutoff distance are simply ignored. So in the above
example, if the pairlistdist were set to 10.0 Å, then the atom pair A and B would be included
in the pair list, even though the pair would initially be ignored because they are further apart than
the cutoff distance. As the pair moved closer and entered the cutoff distance, because the pair was
already in the pair list, the non-bonded interactions would immediately be calculated and energy
conservation would be preserved. The value of pairlistdist should be chosen such that no atom
pair moves more than pairlistdist − cutoff in one cycle. This will insure energy conservation
and efficiency.

The pairlistdist parameter is also used to determine the minimum patch size. Unless the
splitPatch parameter is explicitly set to position, hydrogen atoms will be placed on the same
patch as the “mother atom” to which they are bonded. These hydrogen groups are then distance
tested against each other using only a cutoff increased by the the value of the hgroupCutoff
parameter. The size of the patches is also increased by this amount. NAMD functions correctly
even if a hydrogen atom and its mother atom are separated by more than half of hgroupCutoff
by breaking that group into its individual atoms for distance testing. Margin violation warning
messages are printed if an atom moves outside of a safe zone surrounding the patch to which it
is assigned, indicating that pairlistdist should be increased in order for forces to be calculated
correctly and energy to be conserved.

Margin violations mean that atoms that are in non-neighboring patches may be closer than the
cutoff distance apart. This may sometimes happen in constant pressure simulations when the cell
shrinks (since the patch grid remains the same size). The workaround is to increase the margin
parameter so that the simulation starts with fewer, larger patches. Restarting the simulation will
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pairlist distance cutoff

Figure 4: Depiction of the difference between the cutoff distance and the pair list distance. The pair list
distance specifies a sphere that is slightly larger than that of the cutoff so that pairs are allowed to move in
and out of the cutoff distance without causing energy conservation to be disturbed.

also regenerate the patch grid.
In rare special circumstances atoms that are involved in bonded terms (bonds, angles, dihedrals,

or impropers) or nonbonded exclusions (especially implicit exclusions due to bonds) will be placed
on non-neighboring patches because they are more than the cutoff distance apart. This can result
in the simulation dying with a message of “bad global exclusion count”. If an “atoms moving too
fast; simulation has become unstable”, “bad global exclusion count”, or similar error happens on
the first timestep then there is likely something very wrong with the input coordinates, such as the
atoms with uninitialized coordinates or different atom orders in the PSF and PDB file. Looking
at the system in VMD will often reveal an abnormal structure. Be aware that the atom IDs in the
“Atoms moving too fast” error message are 1-based, while VMD’s atom indices are 0-based. If an
“atoms moving too fast; simulation has become unstable”, “bad global exclusion count”, or similar
error happens later in the simulation then the dynamics have probably become unstable, resulting
in the system “exploding” apart. Energies printed at every timestep should show an exponential
increase. This may be due to a timestep that is too long, or some other strange feature. Saving
a trajectory of every step and working backwards in can also sometimes reveal the origin of the
instability.

• pairlistdist < distance between pairs for inclusion in pair lists (Å) >
Acceptable Values: positive decimal ≥ cutoff
Default Value: cutoff
Description: A pair list is generated pairlistsPerCycle times each cycle, containing
pairs of atoms for which electrostatics and van der Waals interactions will be calculated.
This parameter is used when switching is set to on to specify the allowable distance between
atoms for inclusion in the pair list. This parameter is equivalent to the X-PLOR parameter
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CUTNb. If no atom moves more than pairlistdist−cutoff during one cycle, then there will
be no jump in electrostatic or van der Waals energies when the next pair list is built. Since
such a jump is unavoidable when truncation is used, this parameter may only be specified
when switching is set to on. If this parameter is not specified and switching is set to on,
the value of cutoff is used. A value of at least one greater than cutoff is recommended.

• stepspercycle < timesteps per cycle >
Acceptable Values: positive integer
Default Value: 20
Description: Number of timesteps in each cycle. Each cycle represents the number of
timesteps between atom reassignments. For more details on non-bonded force evaluation, see
Section 5.2.

• splitPatch < how to assign atoms to patches >
Acceptable Values: position or hydrogen
Default Value: hydrogen
Description: When set to hydrogen, hydrogen atoms are kept on the same patch as their
parents, allowing faster distance checking and rigid bonds.

• hgroupCutoff (Å) < used for group-based distance testing >
Acceptable Values: positive decimal
Default Value: 2.5
Description: This should be set to twice the largest distance which will ever occur between
a hydrogen atom and its mother. Warnings will be printed if this is not the case. This value
is also added to the margin.

• margin < extra length in patch dimension (Å) >
Acceptable Values: positive decimal
Default Value: 0.0
Description: An internal tuning parameter used in determining the size of the cubes of
space with which NAMD uses to partition the system. The value of this parameter will not
change the physical results of the simulation. Unless you are very motivated to get the very
best possible performance, just leave this value at the default.

• pairlistMinProcs < min procs for pairlists >
Acceptable Values: positive integer
Default Value: 1
Description: Pairlists may consume a large amount of memory as atom counts, densities,
and cutoff distances increase. Since this data is distributed across processors it is normally
only problematic for small processor counts. Set pairlistMinProcs to the smallest number of
processors on which the simulation can fit into memory when pairlists are used.

• pairlistsPerCycle < regenerate x times per cycle >
Acceptable Values: positive integer
Default Value: 2
Description: Rather than only regenerating the pairlist at the beginning of a cycle,
regenerate multiple times in order to better balance the costs of atom migration, pairlist
generation, and larger pairlists.
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• outputPairlists < how often to print warnings >
Acceptable Values: non-negative integer
Default Value: 0
Description: If an atom moves further than the pairlist tolerance during a simulation
(initially (pairlistdist - cutoff)/2 but refined during the run) any pairlists covering that atom
are invalidated and temporary pairlists are used until the next full pairlist regeneration. All
interactions are calculated correctly, but efficiency may be degraded. Enabling outputPairlists
will summarize these pairlist violation warnings periodically during the run.

• pairlistShrink < tol *= (1 - x) on regeneration >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time pairlists are regenerated the tolerance is reduced
by this fraction.

• pairlistGrow < tol *= (1 + x) on trigger >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time an atom exceeds a trigger criterion that is some
fraction of the tolerance distance, the tolerance is increased by this fraction.

• pairlistTrigger < trigger is atom beyond (1 - x) * tol >
Acceptable Values: non-negative decimal
Default Value: 0.3
Description: The goal of pairlist tolerance adjustment is to make pairlist invalidations
rare while keeping the tolerance as small as possible for best performance. Rather than
monitoring the (very rare) case where atoms actually move more than the tolerance distance,
we reduce the trigger tolerance by this fraction. The tolerance is increased whenever the
trigger tolerance is exceeded, as specified by pairlistGrow.
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8 User Defined Forces

There are several ways to apply external forces to simulations with NAMD. These are described
below.

8.1 Constant Forces

NAMD provides the ability to apply constant forces to some atoms. There are two parameters that
control this feature.

• constantForce < Apply constant forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not constant forces are applied.

• consForceFile < PDB file containing forces to be applied >
Acceptable Values: UNIX filename
Description: The X, Y, Z and occupancy (O) fields of this file are read to determine
the constant force vector of each atom, which is (X,Y,Z)*O, in unit of kcal/(mol*Å). The
occupancy (O) serves as a scaling factor, which could expand the range of the force applied.
(One may be unable to record very large or very small numbers in the data fields of a PDB
file due to limited space). Zero forces are ignored.

Specifying consforcefile is optional; constant forces may be specified or updated between
runs by using the consForceConfig command.

• consForceScaling < Scaling factor for constant forces >
Acceptable Values: decimal
Default Value: 1.0
Description: Scaling factor by which constant forces are multiplied. May be changed
between run commands.

8.2 External Electric Field

NAMD provides the ability to apply a constant electric field to the molecular system being simu-
lated. Energy due to the external field will be reported in the MISC column and may be discontin-
uous in simulations using periodic boundary conditions if, for example, a charged hydrogen group
moves outside of the central cell. There are two parameters that control this feature.

• eFieldOn < apply electric field? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not an electric field is applied.

• eField < electric field vector >
Acceptable Values: vector of decimals (x y z)
Description: Vector which describes the electric field to be applied. Units are
kcal/(mol Å e), which is natural for simulations. This parameter may be changed between
run commands, allowing a square wave or other approximate wave form to be applied.
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8.3 Grid Forces

NAMD provides the ability to specify grids describing a potential in the simulation space. Each
atom is affected by the potential based on its charge and its position, using the potential function
interpolated from the specified grid(s). Energy due to the grid-defined field will be reported in the
MISC column of the output, unless a scaling factor not proportional to (1,1,1) is used.

NAMD allows the definition of multiple grids, each with a separate set of defining parame-
ters. This is specified using a tag field in each of the mgridforceXXX commands. The tag is an
alphanumeric string without spaces which identifies to which grid the specified field applies.

The grid file format is a subset of the DataExplorer DX file format. as shown below:

# Lines at the beginning of the file starting with a # symbol
# are ignored as comments
# Variables (replaced by numbers in an actual file):
# xn, yn, and zn are the number of data points along each dimension;
# xorg, yorg, and zorg is the origin of the grid, in angstroms;
# x[1-3]del, y[1-3]del, and z[1-3]del are the basis vectors which transform
# grid indices to coordinates in angstroms:
# x(i,j,k) = xorg + i * x1del + j * y1del + k * z1del
# y(i,j,k) = yorg + i * x2del + j * y2del + k * z2del
# z(i,j,k) = zorg + i * x3del + j * y3del + k * z3del
#
# Grid data follows, with three values per line, ordered z fast, y medium,
# and x slow. Exactly xn*yn*zn values should be given
#
# Note: Other features of the DX file format are not handled by this code
#
object 1 class gridpositions counts xn yn zn
origin xorg yorg zorg
delta x1del y1del z1del
delta x2del y2del z2del
delta x3del y3del z3del
object 2 class gridconnections counts xn yn zn
object 3 class array type double rank 0 items [ xn*yn*zn ] data follows
f1 f2 f3
f4 f5 f6
.
.
.

Each dimension of the grid may be specified as continuous or not. If the grid is not continuous in
a particular dimension, the potential grid is padded with one border slices on each non-continuous
face of the grid, and border grid values are computed so that the force felt by an atom outside the
grid goes to zero. If the grid is continuous along a particular dimension, atoms outside the grid
are affected by a potential that is interpolated from the grid and its corresponding periodic image
along that dimension.

To calculate the force on an atom due to the grid, the atom’s coordinates are transformed
according to the current basis vectors of the simulation box to a coordinate frame that is centered
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at the center of the specified grid. Note that the size and spatial coordinates of the grid remain
fixed, and are not scaled as the size of the simulation box fluctuates. For atoms within the grid,
the force is computed by analytically determining the gradient of the tricubic polynomial used to
interpolate the potential from surrounding grid values. For atoms outside the grid, the state of the
mgridforcecont[1,2,3] determine whether the force is zero, or computed from the images of the
grid as described above. Note that if the grid is ever larger than the periodic box, it is truncated
at the edge of that box. The consequence of this is that the computed potential will not vary
smoothly at the edges, introducing numerical instability.

The following parameters describe the grid-based potentials.

• mgridforce < apply grid forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not any grid forces are being applied.

• mgridforcefile < tag > < PDB file specifying force multipliers and charges for each atomd
>
Acceptable Values: UNIX file name
Description: The force on each atom is scaled by the corresponding value in this PDB file.
By setting the force multiplier to zero for an atom, it will not be affected by the grid force.

• mgridforcecol < tag > < column of PDB from which to read force multipliers >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Which column in the PDB file specified by mgridforcefile contains the
scaling factor

• mgridforcechargecol < tag > < column of PDB from which to read atom charges >
Acceptable Values: X, Y, Z, O, or B
Default Value: Atom charge used for electrostatics.
Description: Which column in the PDB file specified by mgridforcefile contains the
atom charge. By default, the charge value specified for the short-range Columb interactions
are also used for the grid force. Both mgridforcecol and mgridforceqcol can be specified,
in which case the apparent charge of the atom will be the product of the two values.

• mgridforcepotfile < tag > < grid potential file name >
Acceptable Values: UNIX file name
Description: File specifying the grid size, coordinates, and potential values.

• mgridforcevolts < tag > < grid potential units in eV/charge >
Acceptable Values: yes or no
Default Value: no
Description: If set, the grid potential values are expressed in eV. Otherwise, values are in
kcal/(mol charge)

• mgridforcescale < tag > < scale factor for grid potential >
Acceptable Values: Vector of decimals scalex scaley scalez

Default Value: 1 1 1
Description: Scale factor applied to the grid potential values
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• mgridforcecont1 < tag > < Is grid continuous in the direction of the first basis vector >
Acceptable Values: yes or no
Default Value: no
Description: By specifying that the grid is continuous in a direction, atoms outside of the
grid will be affected by a force determined by interpolating based on the values at the edge
of the grid with the values of the corresponding edge of the periodic image of the grid. The
current size of the simulation box is taken into account, so that as the simulation box size
fluctuates, the force on an atom outside of the grid varies continuously until it re-enters the
opposite edge of the grid. If the grid is not continuous in this direction, the interpolated force
on atoms near the edge of the grid is calculated so that it continuously approaches zero as an
atom approaches the edge of the grid.

• mgridforcecont2 < tag > < Is grid continuous in the direction of the second basis vector
>
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecont1 except applies in the direction of
the second basis vector

• mgridforcecont3 < tag > < Is grid continuous in the direction of the third basis vector >
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecont1 except applies in the direction of
the third basis vector

• mgridforcevoff < tag > < Offset periodic images of the grid by specified amounts >
Acceptable Values: vector of decimals (x y z)
Description: If a continuous grid is used along a particular basis vector, it may be desirable
to shift the potentials in the image to manipulate the potential outside the grid. For example,
consider the case where the potential is a ramp in the x direction and the grid is defined for
points [0, N), with a potential f(i, j, k) given by f(i, j, k) = f0 + i(f1 − f0)/N . By shifting
the images of the grid, the potential can be transformed as illustrated in Fig. 5.

8.4 Moving Constraints

Moving constraints feature works in conjunction with the Harmonic Constraints (see an appropriate
section of the User’s guide). The reference positions of all constraints will move according to

~r(t) = ~r0 + ~vt . (8)

A velocity vector ~v (movingConsVel) needs to be specified.
The way the moving constraints work is that the moving reference position is calculated ev-

ery integration time step using Eq. 8, where ~v is in Å/timestep, and t is the current timestep
(i.e., firstTimestep plus however many timesteps have passed since the beginning of NAMD
run). Therefore, one should be careful when restarting simulations to appropriately update the
firstTimestep parameter in the NAMD configuration file or the reference position specified in the
reference PDB file.
NOTE: NAMD actually calculates the constraints potential with U = k(x − x0)d and the force
with F = dk(x − x0), where d is the exponent consexp. The result is that if one specifies some
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Figure 5: Graph showing a slice of a ramp potential, with eight grid points along the axis, and a periodic
cell size which just contains the grid. The Unshifted case shows how the pontential is not smooth when
mgridforcevoff is not specified, or set to zero. The Shifted potential shows the grid that results when
mgridfocevoff is set so that the wrapped potential is offset so that the potential has constant slope at the
periodic boundaries.

value for the force constant k in the PDB file, effectively, the force constant is 2k in calculations.
This caveat was removed in SMD feature.

The following parameters describe the parameters for the moving harmonic constraint feature
of NAMD.

• movingConstraints < Are moving constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should moving restraints be applied to the system. If set to on, then
movingConsVel must be defined. May not be used with rotConstraints.

• movingConsVel < Velocity of the reference position movement >
Acceptable Values: vector in Å/timestep
Description: The velocity of the reference position movement. Gives both absolute value
and direction

8.5 Rotating Constraints

The constraints parameters are specified in the same manner as for usual (static) harmonic con-
straints. The reference positions of all constrained atoms are then rotated with a given angular
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velocity about a given axis. If the force constant of the constraints is sufficiently large, the con-
strained atoms will follow their reference positions.

A rotation matrix M about the axis unit vector v is calculated every timestep for the angle
of rotation corresponding to the current timestep. angle = Ωt, where Ω is the angular velocity of
rotation.

From now on, all quantities are 3D vectors, except the matrix M and the force constant K.
The current reference position R is calculated from the initial reference position R0 (at t = 0),

R = M(R0 − P ) + P , where P is the pivot point.
Coordinates of point N can be found as N = P + ((R− P ) · v)v. Normal from the atom pos to

the axis is, similarly, normal = (P + ((X − P ) · v)v) −X The force is, as usual, F = K(R −X);
This is the force applied to the atom in NAMD (see below). NAMD does not know anything
about the torque applied. However, the torque applied to the atom can be calculated as a vector
product torque = F × normal Finally, the torque applied to the atom with respect to the axis is
the projection of the torque on the axis, i.e., torqueproj = torque · v

If there are atoms that have to be constrained, but not moved, this implementation is not
suitable, because it will move all reference positions.

Only one of the moving and rotating constraints can be used at a time.
Using very soft springs for rotating constraints leads to the system lagging behind the reference

positions, and then the force is applied along a direction different from the ”ideal” direction along
the circular path.

Pulling on N atoms at the same time with a spring of stiffness K amounts to pulling on the
whole system by a spring of stiffness NK, so the overall behavior of the system is as if you are
pulling with a very stiff spring if N is large.

In both moving and rotating constraints the force constant that you specify in the constraints
pdb file is multiplied by 2 for the force calculation, i.e., if you specified K = 0.5 kcal/mol/Å2 in the
pdb file, the force actually calculated is F = 2K(R −X) = 1 kcal/mol/Å2 (R −X). SMD feature
of namd2 does the calculation without multiplication of the force constant specified in the config
file by 2.

• rotConstraints < Are rotating constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should rotating restraints be applied to the system. If set to on, then
rotConsAxis, rotConsPivot and rotConsVel must be defined. May not be used with
movingConstraints.

• rotConsAxis < Axis of rotation >
Acceptable Values: vector (may be unnormalized)
Description: Axis of rotation. Can be any vector. It gets normalized before use. If the
vector is 0, no rotation will be performed, but the calculations will still be done.

• rotConsPivot < Pivot point of rotation >
Acceptable Values: position in Å
Description: Pivot point of rotation. The rotation axis vector only gives the direction of
the axis. Pivot point places the axis in space, so that the axis goes through the pivot point.

• rotConsVel < Angular velocity of rotation >
Acceptable Values: rate in degrees per timestep
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Description: Angular velocity of rotation, degrees/timestep.

8.6 Targeted Molecular Dynamics (TMD)

In TMD, subset of atoms in the simulation is guided towards a final ’target’ structure by means
of steering forces. At each timestep, the RMS distance between the current coordinates and the
target structure is computed (after first aligning the target structure to the current coordinates).
The force on each atom is given by the gradient of the potential

UTMD =
1
2
k

N
[RMS(t)−RMS∗(t)]2 (9)

where RMS(t) is the instantaneous best-fit RMS distance of the current coordinates from the
target coordinates, and RMS∗(t) evolves linearly from the initial RMSD at the first TMD step to
the final RMSD at the last TMD step. The spring constant k is scaled down by the number N of
targeted atoms.

• TMD < Is TMD active >
Acceptable Values: on or off
Default Value: off
Description: Should TMD steering forces be applied to the system. If TMD is enabled,
TMDk, TMDFile, and TMDLastStep must be defined in the input file as well.

• TMDk < Elastic constant for TMD forces >
Acceptable Values: Positive value in kcal/mol/Å2.
Description: The value of k in Eq. 9. A value of 200 seems to work well in many cases.

• TMDOutputFreq < How often to print TMD output >
Acceptable Values: Positive integer
Default Value: 1
Description: TMD output consists of lines of the form TMD ts targetRMS currentRMS
where ts is the timestep, targetRMS is the target RMSD at that timestep, and currentRMS
is the actual RMSD.

• TMDFile < File for TMD information >
Acceptable Values: Path to PDB file
Description: Target atoms are those whose occupancy (O) is nonzero in the TMD PDB
file. The file must contain the same number of atoms as the structure file. The coordinates
for the target structure are also taken from the targeted atoms in this file. Non-targeted
atoms are ignored.

• TMDFirstStep < first TMD timestep >
Acceptable Values: Positive integer
Default Value: 0
Description:

• TMDLastStep < last TMD timestep >
Acceptable Values: Positive integer
Description: TMD forces are applied only between TMDFirstStep and TMDLastStep. The
target RMSD evolves linearly in time from the initial to the final target value.
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• TMDInitialRMSD < target RMSD at first TMD step >
Acceptable Values: Non-negative value in Å
Default Value: from coordinates
Description: In order to perform TMD calculations that involve restarting a previous
NAMD run, be sure to specify TMDInitialRMSD with the same value in each NAMD input
file, and use the NAMD parameter firstTimestep in the continuation runs so that the target
RMSD continues from where the last run left off.

• TMDFinalRMSD < target RMSD at last TMD step >
Acceptable Values: Non-negative value in Å
Default Value: 0
Description: If no TMDInitialRMSD is given, the initial RMSD will be calculated at the
first TMD step. TMDFinalRMSD may be less than or greater than TMDInitialRMSD, depending
on whether the system is to be steered towards or away from a target structure, respectively.
Forces are applied only if RMS(t) is betwween TMDInitialRMSD and RMS ∗ (t); in other
words, only if the current RMSD fails to keep pace with the target value.

8.7 Steered Molecular Dynamics (SMD)

The SMD feature is independent from the harmonic constraints, although it follows the same ideas.
In both SMD and harmonic constraints, one specifies a PDB file which indicates which atoms are
’tagged’ as constrained. The PDB file also gives initial coordinates for the constraint positions.
One also specifies such parameters as the force constant(s) for the constraints, and the velocity
with which the constraints move.

There are two major differences between SMD and harmonic constraints:

• In harmonic constraints, each tagged atom is harmonically constrained to a reference point
which moves with constant velocity. In SMD, it is the center of mass of the tagged atoms
which is constrained to move with constant velocity.

• In harmonic constraints, each tagged atom is constrained in all three spatial dimensions. In
SMD, tagged atoms are constrained only along the constraint direction.

The center of mass of the SMD atoms will be harmonically constrained with force constant k
(SMDk) to move with velocity v (SMDVel) in the direction ~n (SMDDir). SMD thus results in the
following potential being applied to the system:

U(~r1, ~r2, ..., t) =
1
2
k
[
vt− (~R(t)− ~R0) · ~n

]2
. (10)

Here, t ≡ Ntsdt where Nts is the number of elapsed timesteps in the simulation and dt is the size
of the timestep in femtoseconds. Also, ~R(t) is the current center of mass of the SMD atoms and
R0 is the initial center of mass as defined by the coordinates in SMDFile. Vector ~n is normalized
by NAMD before being used.

Output NAMD provides output of the current SMD data. The frequency of output is specified
by the SMDOutputFreq parameter in the configuration file. Every SMDOutputFreq timesteps NAMD
will print the current timestep, current position of the center of mass of the restrained atoms, and
the current force applied to the center of mass (in piconewtons, pN). The output line starts with
word SMD
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Parameters The following parameters describe the parameters for the SMD feature of NAMD.

• SMD < Are SMD features active >
Acceptable Values: on or off
Default Value: off
Description: Should SMD harmonic constraint be applied to the system. If set to on, then
SMDk, SMDFile, SMDVel, and SMDDir must be defined. Specifying SMDOutputFreq is optional.

• SMDFile < SMD constraint reference position >
Acceptable Values: UNIX filename
Description: File to use for the initial reference position for the SMD harmonic constraints.
All atoms in this PDB file with a nonzero value in the occupancy column will be tagged as
SMD atoms. The coordinates of the tagged SMD atoms will be used to calculate the initial
center of mass. During the simulation, this center of mass will move with velocity SMDVel
in the direction SMDDir. The actual atom order in this PDB file must match that in the
structure or coordinate file, since the atom number field in this PDB file will be ignored.

• SMDk < force constant to use in SMD simulation >
Acceptable Values: positive real
Description: SMD harmonic constraint force constant. Must be specified in kcal/mol/Å2.
The conversion factor is 1 kcal/mol = 69.479 pN Å.

• SMDVel < Velocity of the SMD reference position movement >
Acceptable Values: nonzero real, Å/timestep
Description: The velocity of the SMD center of mass movement. Gives the absolute value.

• SMDDir < Direction of the SMD center of mass movement >
Acceptable Values: non-zero vector
Description: The direction of the SMD reference position movement. The vector does not
have to be normalized, it is normalized by NAMD before being used.

• SMDOutputFreq < frequency of SMD output >
Acceptable Values: positive integer
Default Value: 1
Description: The frequency in timesteps with which the current SMD data values are
printed out.

8.8 Interactive Molecular Dynamics (IMD)

NAMD now works directly with VMD to allow you to view and interactively steer your simulation.
With IMD enabled, you can connect to NAMD at any time during the simulation to view the
current state of the system or perform interactive steering.

• IMDon < is IMD active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to listen for an IMD connection.

• IMDport < port number to expect a connection on >
Acceptable Values: positive integer

81



Description: This is a free port number on the machine that node 0 is running on. This
number will have to be entered into VMD.

• IMDfreq < timesteps between sending coordinates >
Acceptable Values: positive integer
Description: This allows coordinates to be sent less often, which may increase NAMD
performance or be necessary due to a slow network.

• IMDwait < wait for an IMD connection? >
Acceptable Values: yes or no
Default Value: no
Description: If no, NAMD will proceed with calculations whether a connection is present
or not. If yes, NAMD will pause at startup until a connection is made, and pause when the
connection is lost.

• IMDignore < ignore interactive steering forces >
Acceptable Values: yes or no
Default Value: no
Description: If yes, NAMD will ignore any steering forces generated by VMD to allow a
simulation to be monitored without the possibility of perturbing it.

8.9 Tcl Forces and Analysis

NAMD provides a limited Tcl scripting interface designed for applying forces and performing on-
the-fly analysis. This interface is efficient if only a few coordinates, either of individual atoms or
centers of mass of groups of atoms, are needed. In addition, information must be requested one
timestep in advance. To apply forces individually to a potentially large number of atoms, use tclBC
instead as described in Sec. 8.10. The following configuration parameters are used to enable the
Tcl interface:

• tclForces < is Tcl interface active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no Tcl
code is executed. If it is set to on, then Tcl code specified in tclForcesScript parameters
is executed.

• tclForcesScript < input for Tcl interface >
Acceptable Values: file or {script}
Description: Must contain either the name of a Tcl script file or the script itself between {
and } (may include multiple lines). This parameter may occur multiple times and scripts will
be executed in order of appearance. The script(s) should perform any required initialization
on the Tcl interpreter, including requesting data needed during the first timestep, and define
a procedure calcforces { } to be called every timestep.

At this point only low-level commands are defined. In the future this list will be expanded.
Current commands are:
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• print <anything>
This command should be used instead of puts to display output. For example,
“print Hello World”.

• atomid <segname> <resid> <atomname>
Determines atomid of an atom from its segment, residue, and name. For example, “atomid
br 2 N”.

• addatom <atomid>
Request coordinates of this atom for next force evaluation, and the calculated total force on
this atom for current force evaluation. Request remains in effect until clearconfig is called.
For example, “addatom 4” or “addatom [atomid br 2 N]”.

• addgroup <atomid list>
Request center of mass coordinates of this group for next force evaluation. Returns a group
ID which is of the form gN where N is a small integer. This group ID may then be used to
find coordinates and apply forces just like a regular atom ID. Aggregate forces may then be
applied to the group as whole. Request remains in effect until clearconfig is called. For
example, “set groupid [addgroup { 14 10 12 }]”.

• clearconfig
Clears the current list of requested atoms. After clearconfig, calls to addatom and addgroup
can be used to build a new configuration.

• getstep
Returns the current step number.

• loadcoords <varname>
Loads requested atom and group coordinates (in Å) into a local array. loadcoords should
only be called from within the calcforces procedure. For example, “loadcoords p” and
“print $p(4)”.

• loadforces <varname>
Loads the forces applied in the previous timestep (in kcal mol−1 Å−1) into a local array.
loadforces should only be called from within the calcforces procedure. For example,
“loadforces f” and “print $f(4)”.

• loadtotalforces <varname>
Loads the total forces on each requested atom in the previous time step (in kcal mol−1Å−1)
into a local array. The total force also includes external forces. Note that the “loadforces”
command returns external forces applied by the user. Therefore, one can subtract the external
force on an atom from the total force on this atom to get the pure force arising from the
simulation system.

• loadmasses <varname>
Loads requested atom and group masses (in amu) into a local array. loadmasses should only
be called from within the calcforces procedure. For example, “loadcoords m” and “print
$m(4)”.
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• addforce <atomid|groupid> <force vector>
Applies force (in kcal mol−1 Å−1) to atom or group. addforce should only be called from
within the calcforces procedure. For example, “addforce $groupid { 1. 0. 2. }”.

• addenergy <energy (kcal/mol)>
This command adds the specified energy to the MISC column (and hence the total energy) in
the energy output. For normal runs, the command does not affect the simulation trajectory
at all, and only has an artificial effect on its energy output. However, it can indeed affect
minimizations.

With the commands above and the functionality of the Tcl language, one should be able to
perform any on-the-fly analysis and manipulation. To make it easier to perform certain tasks, some
Tcl routines are provided below.

Several vector routines (vecadd, vecsub, vecscale) from the VMD Tcl interface are defined.
Please refer to VMD manual for their usage.

The following routines take atom coordinates as input, and return some geometry parameters
(bond, angle, dihedral).

• getbond <coor1> <coor2>
Returns the length of the bond between the two atoms. Actually the return value is simply
the distance between the two coordinates. “coor1” and “coor2” are coordinates of the atoms.

• getangle <coor1> <coor2> <coor3>
Returns the angle (from 0 to 180) defined by the three atoms. “coor1”, “coor2” and “coor3”
are coordinates of the atoms.

• getdihedral <coor1> <coor2> <coor3> <coor4>
Returns the dihedral (from -180 to 180) defined by the four atoms. “coor1”, “coor2”, “coor3”
and “coor4” are coordinates of the atoms.

The following routines calculate the derivatives (gradients) of some geometry parameters (angle,
dihedral).

• anglegrad <coor1> <coor2> <coor3>
An angle defined by three atoms is a function of their coordinates: θ (~r1, ~r2, ~r3) (in radian).
This command takes the coordinates of the three atoms as input, and returns a list of { ∂θ

∂ ~r1
∂θ
∂ ~r2

∂θ
∂ ~r3
}. Each element of the list is a 3-D vector in the form of a Tcl list.

• dihedralgrad <coor1> <coor2> <coor3> <coor4>
A dihedral defined by four atoms is a function of their coordinates: φ (~r1, ~r2, ~r3, ~r4) (in radian).
This command takes the coordinates of the four atoms as input, and returns a list of { ∂φ

∂ ~r1
∂φ
∂ ~r2

∂φ
∂ ~r3

∂φ
∂ ~r4
}. Each element of the list is a 3-D vector in the form of a Tcl list.

As an example, here’s a script which applies a harmonic constraint (reference position being 0)
to a dihedral. Note that the “addenergy” line is not really necessary – it simply adds the calculated
constraining energy to the MISC column, which is displayed in the energy output.

tclForcesScript {
# The IDs of the four atoms defining the dihedral
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set aid1 112
set aid2 123
set aid3 117
set aid4 115

# The "spring constant" for the harmonic constraint
set k 3.0

addatom $aid1
addatom $aid2
addatom $aid3
addatom $aid4

set PI 3.1416

proc calcforces {} {

global aid1 aid2 aid3 aid4 k PI

loadcoords p

# Calculate the current dihedral
set phi [getdihedral $p($aid1) $p($aid2) $p($aid3) $p($aid4)]
# Change to radian
set phi [expr $phi*$PI/180]

# (optional) Add this constraining energy to "MISC" in the energy output
addenergy [expr $k*$phi*$phi/2.0]

# Calculate the "force" along the dihedral according to the harmonic constraint
set force [expr -$k*$phi]

# Calculate the gradients
foreach {g1 g2 g3 g4} [dihedralgrad $p($aid1) $p($aid2) $p($aid3) $p($aid4)] {}

# The force to be applied on each atom is proportional to its
# corresponding gradient
addforce $aid1 [vecscale $g1 $force]
addforce $aid2 [vecscale $g2 $force]
addforce $aid3 [vecscale $g3 $force]
addforce $aid4 [vecscale $g4 $force]

}
}
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8.10 Tcl Boundary Forces

While the tclForces interface described above is very flexible, it is only efficient for applying
forces to a small number of pre-selected atoms. Applying forces individually to a potentially large
number of atoms, such as applying boundary conditions, is much more efficient with the tclBC
facility described below.

• tclBC < are Tcl boundary forces active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no
Tcl code is executed. If it is set to on, then Tcl code specified in the tclBCScript parameter
is executed.

• tclBCScript < input for Tcl interface >
Acceptable Values: {script}
Description: Must contain the script itself between { and } (may include multiple lines).
This parameter may occur only once. The script(s) should perform any required initialization
on the Tcl interpreter and define a procedure calcforces <step> <unique> [args...] to
be called every timestep.

• tclBCArgs < extra args for tclBC calcforces command >
Acceptable Values: {args...}
Description: The string (or Tcl list) provided by this option is appended to the tclBC
calcforces command arguments. This parameter may appear multiple times during a run in
order to alter the parameters of the boundary potential function.

The script provided in tclBCScript and the calcforces procedure it defines are executed in
multiple Tcl interpreters, one for every processor that owns patches. These tclBC interpreters do
not share state with the Tcl interpreter used for tclForces or config file parsing. The calcforces
procedure is passed as arguments the current timestep, a “unique” flag which is non-zero for exactly
one Tcl interpreter in the simulation (that on the processor of patch zero), and any arguments
provided to the most recent tclBCArgs option. The “unique” flag is useful to limit printing of
messages, since the command is invoked on multiple processors.

The print, vecadd, vecsub, vecscale, getbond, getangle, getdihedral, anglegrad, and
dihedralgrad commands described under tclForces are available at all times.

The wrapmode <mode> command, available in the tclBCScript or the calcforces procedure,
determines how coordinates obtained in the calcforces procedure are wrapped around periodic
boundaries. The options are:

• patch, (default) the position in NAMD’s internal patch data structure, requires no extra
calculation and is almost the same as cell

• input, the position corresponding to the input files of the simulation

• cell, the equivalent position in the unit cell centered on the cellOrigin

• nearest, the equivalent position nearest to the cellOrigin

The following commands are available from within the calcforces procedure:
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• nextatom
Sets the internal counter to a new atom and return 1, or return 0 if all atoms have been
processed (this may even happen the first call). This should be called as the condition of a
while loop, i.e., while {[nextatom]} { ... } to iterate over all atoms. One one atom may
be accessed at a time.

• dropatom
Excludes the current atom from future iterations on this processor until cleardrops is called.
Use this to eliminate extra work when an atom will not be needed for future force calculations.
If the atom migrates to another processor it may reappear, so this call should be used only
as an optimization.

• cleardrops
All available atoms will be iterated over by nextatom as if dropatom had never been called.

• getcoord
Returns a list {x y z} of the position of the current atom wrapped in the periodic cell (if
there is one) in the current wrapping mode as specified by wrapmode.

• getcell
Returns a list of 1–4 vectors containing the cell origin (center) and as many basis vectors
as exist, i.e., {{ox oy oz} {ax ay az} {bx by bz} {cx cy cz}}. It is more efficient to set
the wrapping mode than to do periodic image calculations in Tcl.

• getmass
Returns the mass of the current atom.

• getcharge
Returns the charge of the current atom.

• getid
Returns the 1-based ID of the current atom.

• addforce {<fx> <fy> <fz>}
Adds the specified force to the current atom for this step.

• addenergy <energy>
Adds potential energy to the BOUNDARY column of NAMD output.

As an example, these spherical boundary condition forces:

sphericalBC on
sphericalBCcenter 0.0,0.0,0.0
sphericalBCr1 48
sphericalBCk1 10
sphericalBCexp1 2

Are replicated in the following script:
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tclBC on
tclBCScript {

proc veclen2 {v1} {
foreach {x1 y1 z1} $v1 { break }
return [expr $x1*$x1 + $y1*$y1 + $z1*$z1]

}

# wrapmode input
# wrapmode cell
# wrapmode nearest
# wrapmode patch ;# the default

proc calcforces {step unique R K} {
if { $step % 20 == 0 } {

cleardrops
# if $unique { print "clearing dropped atom list at step $step" }

}
set R [expr 1.*$R]
set R2 [expr $R*$R]
set tol 2.0
set cut2 [expr ($R-$tol)*($R-$tol)]

while {[nextatom]} {
# addenergy 1 ; # monitor how many atoms are checked
set rvec [getcoord]
set r2 [veclen2 $rvec]
if { $r2 < $cut2 } {

dropatom
continue

}
if { $r2 > $R2 } {

# addenergy 1 ; # monitor how many atoms are affected
set r [expr sqrt($r2)]
addenergy [expr $K*($r - $R)*($r - $R)]
addforce [vecscale $rvec [expr -2.*$K*($r-$R)/$r]]

}
}

}
}

tclBCArgs {48.0 10.0}

8.11 External Program Forces

This feature allows an external program to be called to calculate forces at every force evaluation,
taking all atom coordinates as input.
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• extForces < Apply external program forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not external program forces are applied.

• extForcesCommand < Force calculation command >
Acceptable Values: UNIX shell command
Description: This string is the argument to the system() function at every forces evaluation
and should read coordinates from the file specified by extCoordFilename and write forces to
the file specified by extForceFilename.

• extCoordFilename < Temporary coordinate file >
Acceptable Values: UNIX filename
Description: Atom coordinates are written to this file, which should be read by the
extForcesCommand. The format is one line of “atomid charge x y z” for every atom followed
by three lines with the periodic cell basis vectors “a.x a.y a.z”, “b.x b.y b.z”, and “c.x c.y
c.z”. The atomid starts at 1 (not 0). For best performance the file should be in /tmp and
not on a network-mounted filesystem.

• extForceFilename < Temporary force file >
Acceptable Values: UNIX filename
Description: Atom forces are read from this file after extForcesCommand in run. The
format is one line of “atomid replace fx fy fz” for every atom followed by the energy on a line
by itself and then, optionally, three lines of the virial “v.xx v.xy v.xz”, “v.yx v.yy v.yz”, “v.zx
v.zy v.zz” where, e.g., v.xy = - fx * y for a non-periodic force. The atomid starts at 1 (not 0)
and all atoms must be present and in order. The energy is added to the MISC output field.
The replace flag should be 1 if the external program force should replace the forces calculated
by NAMD for that atom and 0 if the forces should be added. For best performance the file
should be in /tmp and not on a network-mounted filesystem.

89



9 Collective Variable-based Calculations1

The collective variables module replaces and greatly extends the functionality of the older
freeEnergy module for free energy of conformational change calculations. The older module is
still available in the code, but has been removed from the documentation to discourage future use.

In today’s molecular dynamics simulations, it is often useful to reduce the great number of
degrees of freedom of a into a few parameters which can be either analyzed individually, or ma-
nipulated in order to alter the dynamics in a controlled manner. These have been called ‘order
parameters’, ‘collective variables’, ‘(surrogate) reaction coordinates’, and many other terms. In this
section, the term ‘collective variable’ (shortened to colvar) is used, and it indicates any differen-
tiable function of atomic Cartesian coordinates, xi, with i between 1 and N , the total number of
atoms:

ξ(t) = ξ (xi(t),xj(t),xk(t), . . .) , 1 ≤ i, j, k . . . ≤ N (11)

The colvars module in NAMD offers several features:

• define an arbitrary number of colvars, and perform a multidimensional analysis or biased
simulation by accessing any subset of colvars independently from the rest (see 9.1);

• combine different functions of Cartesian coordinates (herein termed colvar components) into
a colvar defined as a polynomial of several such components, thereby implementing new func-
tional forms at runtime; periodic, multidimensional and symmetric components are handled
transparently (see 9.2.1);

• calculate potentials of mean force (PMFs) for any set of colvars, using different sampling
methods: currently implemented are the Adaptive Biasing Force (ABF) method (see 9.3.1),
metadynamics (see 9.3.2), Steered Molecular Dynamics (SMD) and Umbrella Sampling (US)
via a flexible harmonic restraint bias (see 9.3.3);

• calculate statistical properties of the colvars, such as their running averages and standard
deviations, time correlation functions, and multidimensional histograms, without the need to
save very large trajectory files.

9.1 General parameters and input/output files

The structure of a typical colvars configuration is represented in Figure 6. Each colvar is a com-
bination of one or more components (see 9.2), which are functions of several atomic coordinates.
Many different biasing or analysis methods can be applied to the same colvars. But care should
be taken that certain methods (such as free energy reconstruction) do not produce correct results
when other biases are adding forces to their colvars.

9.1.1 NAMD parameters

To enable a colvar calculation, two parameters should be added to the NAMD configuration file
must set (three when restarting a previous run):

1The features described in this section were contributed by Giacomo Fiorin and Jérôme Hénin, Center for Molec-
ular Modeling, University of Pennsylvania, Philadelphia, PA USA.
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Figure 6: Example of a collective variables (colvar) configuration. The colvar “d” is defined as the
difference between two distances, each calculated between the centers of mass of two atom groups.
The second colvar “c” holds the coordination number (i.e. the number of contacts) within a radius
of 6 Å between two groups. The third colvar “alpha” measures the degree of α-helicity of the
protein segment between residues 1 and 10. A moving harmonic restraint is applied to the colvars
“d” and “c”, each rescaled by means of width parameters wd and wc; the centers of the restraint,
d0 and c0, evolve with the simulation time t. The histogram of “alpha” and “c” is also recorded
on-the-fly.

• colvars < Enable the collective variables module >
Acceptable Values: boolean
Default Value: off
Description: If this flag is on, the collective variables module within NAMD is executed
at each time step; the module requires a separate configuration file, to be provided with
colvarsConfig.

• colvarsConfig < Configuration file for the collective variables >
Acceptable Values: UNIX filename
Description: This file contains the definition of all collective variables and their biasing
or analysis methods. It is meant to contain all the information needed to begin a colvars
simulation. Additional information is needed instead to continue a previous run, which is
read from the file provided by colvarsInput.

• colvarsInput < Input state file for the collective variables >
Acceptable Values: UNIX filename
Description: When continuing a previous simulation run, this file contains the current
state of all collective variables and their biasing methods. Its format is similar to that of
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colvarsConfig, but with different keywords. In normal circumstances, this file is written
automatically at the end of a NAMD run, and the user does not need to edit it.

9.1.2 Output files

By default, the collective variables module writes three output files:

• a state file, named <outputName>.colvars.state; this file is in ASCII format, regardless of
the value of binaryOutput in the NAMD configuration; the name of this file can be provided
as colvarsInput to continue the simulation in the next run;

• a restart file (equivalent to the state file) is written every colvarsRestartFrequency steps,
if either colvarsRestartFrequency or the NAMD parameter restartFreq is defined; its
name is <restartName>.colvars.state, and can be given as colvarsInput to continue an
interrupted run; (provided that the coordinates and velocities restart files at the same time
step are also used);

• a trajectory file is written during the simulation, if the colvars module pa-
rameter colvarsTrajFrequency is greater than 0 (default: 100); its name is
<outputName>.colvars.traj; unlike the state file it is not needed to restart a simulation,
but can be read in for post-processing (see 9.2.4).

Other output files may be written by specific methods applied to the colvars (e.g. by the ABF
method, see 9.3.1, or the metadynamics method, see 9.3.2). Like the colvar trajectory file, they are
needed only for analyzing, not continuing a simulation. All such files’ names also begin with the
prefix <outputName>.

9.1.3 Colvars module configuration file

Except for the three NAMD keywords listed above (colvars, colvarsConfig and colvarsInput),
all the parameters defining the colvars and their biases are read from the extra input file (provided
by colvarsConfig). Hence, none of the keywords described in this and the following sections are
available in the NAMD main configuration.

The syntax of the collective variables configuration file is similar to that of the NAMD file
(2.2.1), with a few important differences:

• certain keywords may have multiple values;

• a long value (or values) can be distributed across several lines, by using curly braces ({ and
}): the opening brace ({) must occur on the same line as the keyword, after a space character
or any other white space;

• blocks defined by curly braces may be nested: therefore, the values of a keyword (such as
colvar) may in turn contain simple keywords (such as name) and keywords with other blocks
(such as distance);

• nested keywords are only meaningful within the parent keyword’s block, and not elsewhere:
when the same keyword is available within different blocks, it may have different meanings;
for every keyword documented in the following, the “parent” keyword defining the context
block is indicated in parentheses;
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• certain keywords can be used multiple times even within the same context (e.g. the keyword
colvar);

• as in the NAMD configuration, comments can be inserted at any point using the hash sign,
#;

• unlike in the NAMD config, the deprecated ‘=’ sign between a keyword and its value, is not
allowed;

• Tcl commands and variables are not available;

• if a keyword requiring a boolean value (yes|on|true or no|off|false) is provided without
an explicit value, it defaults to ‘yes|on|true’; for example, ‘outputAppliedForce’ may be
used as shorthand for ‘outputAppliedForce on’.

Three global options are available:

• colvarsTrajFrequency < (global) Colvar value trajectory frequency >
Acceptable Values: positive integer
Default Value: 100
Description: The values of each colvar (and any additional quantities which have been set
to be reported) are written at this frequency to the file <outputName>.colvars.traj. If the
value is 0, the trajectory file is not written. For optimization, the output is buffered (as is
the NAMD log output in most operating systems), but it is synchronized with the disks every
time the restart file is written.

• colvarsTrajAppend < (global) Append to trajectory file? >
Acceptable Values: boolean
Default Value: off
Description: If this flag is enabled, and a file with the same name as the trajectory file is
already present, new data is appended to that file. Otherwise, a new file is created. Note: if
you’re running consecutive simulations with the same outputName (e.g. in FEP calculations),
you should enable this option to preserve the previous contents of the trajectory file.

• colvarsRestartFrequency < (global) Colvar module restart frequency >
Acceptable Values: positive integer
Default Value: restartFreq
Description: Allows to choose a different restart frequency for the collective variables
module. Redefining it may be useful to trace the time evolution of those few properties which
are not written to the trajectory file for reasons of disk space.

• analysis < (global) Turn on analysis calculations >
Acceptable Values: boolean
Default Value: off
Description: If this flag is enabled, the analysis mode is turned on, and all the colvars and
their biasing methods are instructed to perform whatever analysis they are configured to.

The following is a typical configuration file. The options available inside the two colvar blocks
are documented in 9.2. harmonic defines an harmonic potential, which is one of the available biases,
documented in 9.3. Note: except colvar, none of the keywords below is mandatory.
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# collective variables config file: two distances

colvarsTrajFrequency 100 # output values every 100 steps

colvar {
name 1st-colvar # needed to identify the variable

outputSystemForce yes # report also the system force on this colvar
# (in addition to the current value)

distance {
group1 {

atomNumbers 1 2 3
}
group2 {

atomNumbers 4 5 6
}

}
}

colvar {
name 2nd-colvar
...

}

harmonic {
name my_pot
colvars 1st-colvar 2nd-colvar
centers 3.0 4.0
forceConstant 5.0

}

In the following, the section 9.2 explains how to define a colvar. 9.2.1 lists the available colvar
components; 9.2.2 defines how to combine existing components to create new types of colvars; 9.2.3
documents how to define in a compact way atom groups, which are used by most components; 9.2.4
lists the available option for runtime analysis of the colvars.

9.3 lists the available methods to perform biased simulations and multidimensional analysis
(ABF, harmonic restraint, histogram, and metadynamics).

9.2 Declaring and using collective variables

Each collective variable (colvar) is defined as a combination of one or more individual quantities,
called components (see Figure 6). In most applications, only one is needed: in this case, the colvar
and its component may be identified.

In the configuration file, each colvar is created by the keyword colvar, followed by its configu-
ration options, usually between curly braces, colvar {...}. Each component is defined within the
the colvar {...} block, with a specific keyword that identifies the functional form: for example,
distance {...} defines a component of the type “distance between two atom groups”.
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To obtain the value of the colvar, ξ(r), its components qi(r) are summed with the formula:

ξ(r) =
∑

i

ci[qi(r)]ni (12)

where each component appears with a unique coefficient ci (1.0 by default) the positive integer
exponent ni (1 by default). See also for how to change these 9.2.2.

Each colvar accepts the following parameters:

• name < (colvar) Name of this colvar >
Acceptable Values: string
Default Value: “colvar” + numeric id
Description: The name is an unique case-sensitive string which allows the colvar module
to identify this colvar unambiguously; it is also used in the trajectory file to label to the
columns corresponding to this colvar.

• width < (colvar) Typical fluctuation amplitude (or grid spacing) >
Acceptable Values: positive decimal
Default Value: 1.0
Description: This number is a user-provided estimate of the typical fluctuation amplitude
for this collective variable, or conversely, the typical width of a local free energy basin. Typ-
ically, twice the standard deviation during a very short simulation run can be used. Biasing
methods use this parameter for different purposes: harmonic restraints (9.3.3) use it to rescale
the value of this colvar, the histogram (9.3.4) and ABF biases (9.3.1) interpret it as the grid
spacing in the direction of this variable, and metadynamics (9.3.2) uses it to set the width of
newly added hills. This number is expressed in the same physical unit as the colvar value.

• lowerBoundary < (colvar) Lower boundary of the colvar >
Acceptable Values: decimal
Description: Defines the lowest possible value in the domain of values that this colvar can
access. It can either be the true lower physical boundary (under which the variable is not
defined by construction), or an arbitrary value set by the user. Together with upperBoundary
and width, it provides initial parameters to define grids of values for the colvar. This op-
tion is not available for those colvars that return non-scalar values (i.e. those based on the
components distanceDir or orientation).

• upperBoundary < (colvar) Upper boundary of the colvar >
Acceptable Values: decimal
Description: Similarly to lowerBoundary, defines the highest possible or allowed value.

• expandBoundaries < (colvar) Allow biases to expand the two boundaries >
Acceptable Values: boolean
Default Value: off
Description: If defined, biasing and analysis methods may keep their own copies of
lowerBoundary and upperBoundary, and expand them to accommodate values that do not
fit in the initial range. Currently, this option is used by the metadynamics bias (9.3.2) to
keep all of its hills fully within the grid. Note: this option cannot be used when the two
boundaries already define a full interval of a periodic colvar.
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• lowerWall < (colvar) Position of the lower wall >
Acceptable Values: decimal
Default Value: lowerBoundary
Description: Defines the value below which a lower bounding restraint on the colvar is
applied, in the form of a “half-harmonic” potential. It is a good idea to set this value a little
higher than lowerBoundary.

• lowerWallConstant < (colvar) Lower wall force constant (kcal/mol) >
Acceptable Values: positive decimal
Description: If lowerWall or lowerBoundary is defined, provides the force constant. The
energy unit of the constant is kcal/mol, while the spatial unit is that of the colvar.

• upperWall < (colvar) Position of the upper wall >
Acceptable Values: decimal
Default Value: upperBoundary
Description: Similar to lowerWall. It’s a good idea to make it a little lower than
upperBoundary.

• upperWallConstant < (colvar) Upper wall force constant (kcal/mol) >
Acceptable Values: positive decimal
Description: Similar to lowerWallConstant.

• outputValue < (colvar) Output a trajectory for this colvar >
Acceptable Values: boolean
Default Value: on
Description: If colvarsTrajFrequency is non-zero, the value of this colvar is written to
the trajectory file every colvarsTrajFrequency steps in the column labeled “<name>”.

• outputVelocity < (colvar) Output a velocity trajectory for this colvar >
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the finite-difference calculated velocity
of this colvar are written to the trajectory file under the label “v <name>”.

• outputSystemForce < (colvar) Output a system force trajectory for this colvar >
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, and all components support its cal-
culation, the total system force on this colvar (i.e. the projection of all interatomic forces
except constraint forces on this colvar — see equation (24) in section 9.3.1) are written to
the trajectory file under the label “fs <name>”. The physical unit for this force is kcal/mol
divided by the colvar unit.

• outputAppliedForce < (colvar) Output an applied force trajectory for this colvar >
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the total force applied on this colvar by
biases within the colvar module are written to the trajectory under the label “fa <name>”.
The physical unit for this force is kcal/mol divided by the colvar unit.
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• extendedLagrangian < (colvar) Add extended degree of freedom >
Acceptable Values: boolean
Default Value: off
Description: Adds a fictitious particle to be coupled to the colvar by a harmonic spring.
The fictitious mass and the force constant of the coupling potential are derived from the
parameters extendedTimeConstant and extendedFluctuation, described below. Biasing
forces on the colvar are applied to this fictitious particle, rather than to the atoms directly.
This implements the extended Lagrangian formalism used in some metadynamics simula-
tions [26].

• extendedFluctuation < (colvar) Standard deviation between the colvar and the fictitious
particle (colvar unit) >
Acceptable Values: positive decimal
Default Value: 0.2 × width
Description: Defines the spring stiffness for the extendedLagrangian mode, by setting
the typical deviation between the colvar and the extended degree of freedom due to thermal
fluctuation. The spring force constant is calculated internally as kBT/σ

2, where σ is the value
of extendedFluctuation.

• extendedTimeConstant < (colvar) Oscillation period of the fictitious particle (fs) >
Acceptable Values: positive decimal
Default Value: 50.0 × timestep
Description: Defines the inertial mass of the fictitious particle, by setting the oscillation
period of the harmonic oscillator formed by the fictitious particle and the spring. The period
should be much larger than the MD time step to ensure accurate integration of the extended
particle’s equation of motion. The fictitious mass is calculated internally as kBT (τ/2πσ)2,
where τ is the period and σ is the typical fluctuation (see above).

9.2.1 Collective variable components

Each colvar has one or more components, each of them defined by a functional form, the atom
positions from which it is calculated, and any additional parameters of the functional form (cutoffs,
“reference” values, . . . ).

The types of components used determine the properties of their colvar, and which biases or anal-
ysis methods can be applied to it. For instance, the colvar returns a scalar value (a real number) if
it is made by components of one or more of the following types: distance, distanceZ, distanceXY,
angle, dihedral, coordnum, hBond, rmsd, eigenvector, orientationAngle, gyration, and
alpha. The colvar returns instead a 3-dimensional unit vector when a distanceDir is used, and a
4-dimensional unit quaternion (used to parameterize a rotation) when orientation is used. Scalar
and non-scalar components may not be summed together. Also, there can be only one non-scalar
component per colvar. Currently, binning on a grid can be performed only on colvars with scalar
components (i.e. all except distanceDir and orientation).

In addition to the type of value returned, components may have other differences. For instance,
properties like the system force (outputSystemForce option) can be calculated and used only from
certain ones (distance, distanceZ, distanceXY, dihedral, rmsd, eigenvector and gyration).
Note: restrictions only apply to the type of an individual colvar; instead, all of the biasing methods
implemented can be applied to any number of colvars.
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Some components (at the moment, only dihedral) are periodic, and all the differences between
two of their values are computed considering the periodicity. Like the non-scalar components, these
cannot be summed with others.

Most components make use of one or more atom groups, whose syntax of definition is by their
name followed by a definition block like atoms {...}, or group1 {...} and group2 {...}. Atom
groups are described in 9.2.3.

In the following, all the available component types are listed, along with their physical units
and the limiting values, if any (the latter being useful to define lowerBoundary or upperBoundary
to the colvar).

Component distance: distance between two groups. The distance {...} block defines a
distance component, between two atom groups, group1 and group2.

• group1 < (distance) First group of atoms >
Acceptable Values: Block group1 {...}
Description: First group of atoms.

• group2 < (distance) Second group of atoms >
Acceptable Values: Block group2 {...}
Description: Second group of atoms.

• oneSiteSystemForce < (distance) Measure system force on group 1 only? >
Acceptable Values: boolean
Default Value: no
Description: If this is set to yes, the system force is measured along a vector field (see
equation (24) in section 9.3.1) that only involves atoms of group1. This option is only useful
for ABF, or custom biases that compute system forces. See section 9.3.1 for details.

The value returned is a positive number (in Å), limited between 0 and the largest possible inter-
atomic distance within the chosen boundary conditions (in PBC, the minimum image convention
is used).

Component distanceZ: projection of a distance on an axis. The distanceZ {...} block
defines a distance projection component, which can be seen as measuring the distance between
two groups projected onto an axis, or the position of a group along such an axis. The axis can
be defined using either one reference group and a constant vector, or dynamically based on two
reference groups.

• main < (distanceZ, distanceXY) Main group of atoms >
Acceptable Values: Block main {...}
Description: Group of atoms whose position r is measured.

• ref < (distanceZ, distanceXY) Reference group of atoms >
Acceptable Values: Block ref {...}
Description: Reference group of atoms. The position of its center of mass is noted r1

below.

• ref2 < (distanceZ, distanceXY) Secondary reference group >
Acceptable Values: Block ref2 {...}
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Default Value: none
Description: Optional group of reference atoms, whose position r2 can be used to define
a dynamic projection axis: e = (‖r2 − r1‖)−1 × (r2 − r1). In this case, the origin is rm =
1/2(r1 + r2), and the value of the component is e · (r − rm).

• axis < (distanceZ, distanceXY) Projection axis (Å) >
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define (when normalized) a projection
axis e for the distance vector r − r1 joining the centers of groups ref and main. The value
of the component is then e · (r − r1). The vector should be written as three components
separated by commas and enclosed in parentheses.

• oneSiteSystemForce < (distanceZ, distanceXY) Measure system force on group main
only? >
Acceptable Values: boolean
Default Value: no
Description: If this is set to yes, the system force is measured along a vector field (see
equation (24) in section 9.3.1) that only involves atoms of main. This option is only useful
for ABF, or custom biases that compute system forces. See section 9.3.1 for details.

This component returns a number (in Å) whose range is determined by the chosen boundary
conditions. For instance, if the z axis is used in a simulation with periodic boundaries, the returned
value ranges between −bz/2 and bz/2, where bz is the box length along z.

Component distanceXY: projection of a distance on a plane. The distanceXY {...}
block defines a distance projected on a plane, and accepts the same options as distanceZ, i.e.
main, ref, either ref2 or axis, and oneSiteSystemForce. It returns the norm of the projection
of the distance vector between main and ref onto the plane orthogonal to the axis. The axis is
defined using the axis parameter or as the vector joining ref and ref2 (see distanceZ above).

Component distanceDir: distance unit vector between two groups. The
distanceDir {...} block defines a distance unit vector component, which accepts the same op-
tions as distance, group1 and group2. It returns a 3-dimensional unit vector d = (dx, dy, dz),
with |d| = 1. dx, dy and dz all lie within the [−1 : 1] interval.

Component angle: angle between three groups. The angle {...} block defines an angle,
and contains the three blocks group1, group2 and group3, defining the three groups. It returns an
angle (in degrees) within the interval [0 : 180].

Component dihedral: torsional angle between four groups. The dihedral {...} block
defines a torsional angle, and contains the blocks group1, group2, group3 and group4, defining
the four groups. It returns an angle (in degrees) within the interval [−180 : 180]. The colvar
module calculates all the distances between two angles taking into account periodicity. For instance,
reference values for restraints or range boundaries can be defined by using any real number of choice.

• oneSiteSystemForce < (dihedral) Measure system force on group 1 only? >
Acceptable Values: boolean
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Default Value: no
Description: If this is set to yes, the system force is measured along a vector field (see
equation (24) in section 9.3.1) that only involves atoms of group1. See section 9.3.1 for an
example.

Component coordnum: coordination number between two groups. The coordnum {...}
block defines a coordination number (or number of contacts), which calculates the function (1 −
(d/d0)n)/(1 − (d/d0)m), where d0 is the “cutoff” distance, and n and m are exponents that can
control its long range behavior and stiffness [26]. This function is summed over all pairs of atoms
in group1 and group2:

C(group1, group2) =
∑

i∈group1

∑
j∈group2

1− (|xi − xj |/d0)n

1− (|xi − xj |/d0)m
(13)

This colvar component accepts the same options as distance, group1 and group2. In addition to
them, it recognizes the following options:

• cutoff < (coordnum) “Interaction” distance (Å) >
Acceptable Values: positive decimal
Default Value: 4.0
Description: This number defines the switching distance to define an interatomic contact:
for d� d0, the switching function (1− (d/d0)n)/(1− (d/d0)m) is close to 1, at d = d0 it has
a value of n/m (1/2 with the default n and m), and at d� d0 it goes to zero approximately
like dm−n. Hence, for a proper behavior, m must be larger than n.

• expNumer < (coordnum) Numerator exponent >
Acceptable Values: positive even integer
Default Value: 6
Description: This number defines the n exponent for the switching function.

• expDenom < (coordnum) Denominator exponent >
Acceptable Values: positive even integer
Default Value: 12
Description: This number defines the m exponent for the switching function.

• cutoff3 < (coordnum) Reference distance vector (Å) >
Acceptable Values: “(x, y, z)” triplet of positive decimals
Default Value: (4.0, 4.0, 4.0)
Description: The three components of this vector define three different cutoffs d0 for each
direction. This option is mutually exclusive with cutoff.

• group2CenterOnly < (coordnum) Use only group2’s center of mass >
Acceptable Values: boolean
Default Value: off
Description: If this option is on, only contacts between the atoms in group1 and the
center of mass of group2 are calculated. By default, the sum extends over all pairs of atoms
in group1 and group2.
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This component returns a dimensionless number, which ranges from approximately 0 (all inter-
atomic distances much larger than the cutoff) to Ngroup1 ∗Ngroup2 (all distances within the cutoff),
or Ngroup1 if group2CenterOnly is used. As a recommendation, at least one between group1 and
group2 should be of limited size (unless group2CenterOnly is used), because the size of the loop
over all pairs grows with the product of the sizes of group1 and group2.

Component hBond: hydrogen bond between two atoms. The hBond {...} block defines a
hydrogen bond, implemented as a coordination number (eq. 13) between the donor and the acceptor
atoms. Therefore, it accepts the same options cutoff (with a different default value of 3.3 Å),
expNumer (with a default value of 6) and expDenom (with a default value of 8). Unlike coordnum,
it requires two atom numbers, acceptor and donor, to be defined. It returns an adimensional
number, with values between 0 (acceptor and donor far outside the cutoff distance) and 1 (acceptor
and donor much closer than the cutoff).

Component rmsd: root mean square displacement (RMSD) with respect to a reference
structure. The block rmsd {...} defines the root mean square replacement (RMSD) of a group
of atoms with respect to a reference structure. For each set of coordinates {x1(t),x2(t), . . .xN (t)},
the colvar component rmsd calculates the optimal rotation U{xi(t)}→{x(ref)

i } that best superimposes
the coordinates {xi(t)} onto a set of reference coordinates {x(ref)

i }. Both the current and the
reference coordinates are centered on their centers of geometry, xcog(t) and x(ref)

cog . The root mean
square displacement is then defined as:

RMSD({xi(t)}, {x(ref)
i }) =

√√√√ 1
N

N∑
i=1

∣∣∣U (xi(t)− xcog(t))−
(
x(ref)

i − x(ref)
cog

)∣∣∣2 (14)

The optimal rotation U{xi(t)}→{x(ref)
i } is calculated within the formalism developed in reference [15],

which guarantees a continuous dependence of U{xi(t)}→{x(ref)
i } with respect to {xi(t)}. The options

for rmsd are:

• atoms < (rmsd) Atom group >
Acceptable Values: atoms {...} block
Description: Defines the group of atoms of which the RMSD should be calculated.

• refPositions < (rmsd) Reference coordinates >
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with refPositionsFile sets the reference
coordinates to be compared with. The list should be as long as the atom group atoms. This
option is independent from that with the same keyword within the atoms {...} block.

• refPositionsFile < (rmsd) Reference coordinates file >
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with refPositions sets the PDB file name
for the reference coordinates to be compared with. The format of the PDB file is the same as
that provided by refPositionsFile within the atoms {...} block, but is independent from
that with the same keyword within the atoms {...} block.
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• refPositionsCol < (rmsd) PDB column to use >
Acceptable Values: X, Y, Z, O or B
Default Value: O
Description: If refPositionsFile is defined, and the file contains all the atoms in the
topology, this option sets which PDB field is used to select the reference coordinates for
atoms. Otherwise, this field is ignored.

• refPositionsColValue < (rmsd) Value in the PDB column >
Acceptable Values: positive decimal
Description: If defined, this value identifies in the PDB column refPositionsCol of the
file refPositionsFile which atom positions are to be read. Otherwise, all positions with a
non-zero value will be read.

This component returns a positive real number (in Å).

Component eigenvector: projection of the atomic coordinates on a vector. The block
eigenvector {...} defines the projection of the coordinates of a group of atoms (or more precisely,
their deviations from the reference coordinates) onto a vector in R3n, where n is the number of
atoms in the group. The computed quantity is the total projection:

p({xi(t)}, {x(ref)
i }) =

(
n∑

i=1

v2
i

)−1 n∑
i=1

vi ·
(
U(xi(t)− xcog(t))− (x(ref)

i − x(ref)
cog )

)
, (15)

where, as in the rmsd component, U is the optimal rotation matrix, xcog(t) and x(ref)
cog are the

centers of geometry of the current and reference positions respectively, and vi are the components
of the vector for each atom. Example choices for (vi) are an eigenvector of the covariance matrix
(essential mode), or a normal mode of the system. It is assumed that

∑
i vi = 0: otherwise, the

colvars module centers the vi automatically when reading them from the configuration.
As in the rmsd component, available options are atoms, refPositions or refPositionsFile,

refPositionsCol and refPositionsColValue. In addition, the following are recognized:

• vector < (eigenvector) Vector components >
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with vectorFile sets the values of the vector
components.

• vectorFile < (eigenvector) PDB file containing vector components >
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with vector sets the name of a PDB file
where the vector components will be read from the X, Y, and Z fields. Note: The PDB file
has limited precision and fixed point numbers: in some cases, the vector may not be accurately
represented, and vector should be used instead.

• vectorCol < (eigenvector) PDB column used to tag participating atoms >
Acceptable Values: O or B
Default Value: O
Description: Analogous to atomsCol.
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• vectorColValue < (eigenvector) Value used to tag participating atoms in the PDB file >

Acceptable Values: positive decimal
Description: Analogous to atomsColValue.

This component returns a number (in Å), whose value ranges between the smallest and largest abso-
lute positions in the unit cell during the simulations (see also distanceZ). Due to the normalization
in eq. 15, this range does not depend on the number of atoms involved.

Component gyration: radius of gyration. The block gyration {...} defines the parameters
for calculating the radius of gyration of a group of atomic positions {x1(t),x2(t), . . .xN (t)} with
respect to their center of geometry, xcog(t):

Rgyr =

√√√√ 1
N

N∑
i=1

|xi(t)− xcog(t)|2 (16)

This component must contain one atoms {...} block to define the atom group, and returns a
positive number, expressed in Å.

Component orientation: orientation with respect to a reference structure. The block
orientation {...} returns the same optimal rotation used in the rmsd component to superimpose
the coordinates {xi(t)} onto a set of reference coordinates {x(ref)

i }. Such component returns a four
dimensional vector q = (q0, q1, q2, q3), with

∑
i q

2
i = 1; this quaternion expresses the optimal rota-

tion {xi(t)} → {x(ref)
i } according to the formalism in reference [15]. The quaternion (q0, q1, q2, q3)

can also be written as (cos(θ/2), sin(θ/2)u), where θ is the angle and u the normalized axis of
rotation; for example, a rotation of 90◦ around the z axis should be expressed as “(0.707, 0.0,
0.0, 0.707)”. The script quaternion2rmatrix.tcl provides Tcl functions for converting to and
from a 4× 4 rotation matrix in a format suitable for usage in VMD.

The component accepts all the options of rmsd: atoms, refPositions, refPositionsFile and
refPositionsCol, in addition to:

• closestToQuaternion < (orientation) Reference rotation >
Acceptable Values: “(q0, q1, q2, q3)” quadruplet
Default Value: (1.0, 0.0, 0.0, 0.0) (“null” rotation)
Description: Between the two equivalent quaternions (q0, q1, q2, q3) and
(−q0,−q1,−q2,−q3), the closer to (1.0, 0.0, 0.0, 0.0) is chosen. This simplifies
the visualization of the colvar trajectory when samples values are a smaller subset of all
possible rotations. Note: this only affects the output, never the dynamics.

Hint: stopping the rotation of a protein. To stop the rotation of an elongated macro-
molecule in solution (and use an anisotropic box to save water molecules), it is possible to define
a colvar with an orientation component, and restrain it throuh the harmonic bias around the
identity rotation, (1.0, 0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is
affected, and not its internal degrees of freedom. The user should also take care that the macro-
molecule is composed by a single chain, or disable wrapAll otherwise.
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Component orientationAngle: angle of rotation with respect to a reference structure.
The block orientationAngle {...} accepts the same options as rmsd and orientation (atoms,
refPositions, refPositionsFile and refPositionsCol), but it returns instead the angle of
rotation ω between the current and the reference positions. This angle is expressed in degrees
within the range [0◦:180◦].

Component alpha: α-helix content of a protein segment. The block alpha {...} defines
the parameters to calculate the helical content of a segment of protein residues. The α-helical
content across the N + 1 residues N0 to N0 +N is calculated by the formula:

α
(
C(N0)

α ,O(N0),C(N0+1)
α ,O(N0+1), . . .N(N0+5),C(N0+5)

α ,O(N0+5), . . .N(N0+N),C(N0+N)
α

)
= (17)

1
2(N − 2)

N0+N−2∑
n=N0

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
+

1
2(N − 4)

N0+N−4∑
n=N0

hbf
(
O(n),N(n+4)

)
,

(18)

where the score function for the Cα − Cα − Cα angle is defined as:

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
=

1−
(
θ(C(n)

α ,C(n+1)
α ,C(n+2)

α )− θ0

)2
/ (∆θtol)

2

1−
(
θ(C(n)

α ,C(n+1)
α ,C(n+2)

α )− θ0

)4
/ (∆θtol)

4
, (19)

and the score function for the O(n) ↔ N(n+4) hydrogen bond is defined through a hBond colvar
component on the same atoms. The options recognized within the alpha {...} block are:

• residueRange < (alpha) Potential α-helical residues >
Acceptable Values: “<Initial residue number>-<Final residue number>”
Description: This option specifies the range of residues on which this component should
be defined. The colvar module looks for the atoms within these residues named “CA”, “N”
and “O”, and raises an error if any of those atoms is not found.

• psfSegID < (alpha) PSF segment identifier >
Acceptable Values: string (max 4 characters)
Description: This option sets the PSF segment identifier for the residues specified in
residueRange. This option need not be provided when non-PSF topologies are used by
NAMD.

• hBondCoeff < (alpha) Coefficient for the hydrogen bond term >
Acceptable Values: positive between 0 and 1
Default Value: 0.5
Description: This number specifies the contribution to the total value from the hydrogen
bond terms. 0 will disable the hydrogen bond terms, 1 will disable the angle terms.

• angleRef < (alpha) Reference Cα − Cα − Cα angle >
Acceptable Values: positive decimal
Default Value: 88◦

Description: This option sets the reference angle used in the score function (19).
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• angleTol < (alpha) Tolerance in the Cα − Cα − Cα angle >
Acceptable Values: positive decimal
Default Value: 15◦

Description: This option sets the angle tolerance used in the score function (19).

• hBondCutoff < (alpha) Hydrogen bond cutoff >
Acceptable Values: positive decimal
Default Value: 3.3 Å
Description: Equivalent to the cutoff option in the hBond component.

• hBondExpNumer < (alpha) Hydrogen bond numerator exponent >
Acceptable Values: positive integer
Default Value: 6
Description: Equivalent to the expNumer option in the hBond component.

• hBondExpDenom < (alpha) Hydrogen bond denominator exponent >
Acceptable Values: positive integer
Default Value: 8
Description: Equivalent to the expDenom option in the hBond component.

This component returns positive values, always comprised between 0 (lowest α-helical score)
and 1 (highest α-helical score).

9.2.2 Linear and polynomial combinations of components

Any set of components can be combined within a colvar, provided that they return the same
type of values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of
its components. Linear or polynomial combinations (following equation (12)) can be obtained by
setting the following parameters, which are common to all components:

• componentCoeff < (any component) Coefficient of this component in the colvar >
Acceptable Values: decimal
Default Value: 1.0
Description: Defines the coefficient by which this component is multiplied (after being
raised to componentExp) before being added to the sum.

• componentExp < (any component) Exponent of this component in the colvar >
Acceptable Values: integer
Default Value: 1
Description: Defines the power at which the value of this component is raised before being
added to the sum. When this exponent is different than 1 (non-linear sum), system forces
and the Jacobian force are not available, making the colvar unsuitable for ABF calculations.

Example: To define the average of a colvar across different parts of the system, simply define
within the same colvar block a series of components of the same type (applied to different atom
groups), and assign to each component a componentCoeff of 1/N .
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9.2.3 Defining atom groups

Each component depends on one or more atom groups, which can be defined by different methods
in the configuration file. Each atom group block is initiated by the name of the group itself within
the component block, followed by the instructions to the colvar module on how to select the atoms
involved. Here is an example configuration, for an atom group called myatoms, which makes use of
the most common keywords:

# atom group definition
myatoms {

# add atoms 1, 2 and 3 to this group (note: numbers start from 1)
atomNumbers {

1 2 3
}
# add all the atoms with occupancy 2 in the file atoms.pdb
atomsFile atoms.pdb
atomsCol O
atomsColValue 2.0
# add all the C-alphas within residues 11 to 20 of segments "PR1" and "PR2"
psfSegID PR1 PR2
atomNameResidueRange CA 11-20
atomNameResidueRange CA 11-20

}

For any atom group, the available options are:

• atomNumbers < (atom group) List of atom numbers >
Acceptable Values: space-separated list of positive integers
Description: This option adds to the group all the atoms whose numbers are in the list.
Atom numbering starts from 1.

• atomNumbersRange < (atom group) Atoms within a number range >
Acceptable Values: <Starting number>-<Ending number>
Description: This option adds to the group all the atoms whose numbers are within the
range specified. It can be used multiple times for the same group. Atom numbering starts
from 1. May be repeated.

• atomNameResidueRange < (atom group) Named atoms within a range of residue numbers
>
Acceptable Values: <Atom name> <Starting residue>-<Ending residue>
Description: This option adds to the group all the atoms with the provided name, within
residues in the given range. May be repeated for as many times as the values of psfSegID.

• psfSegID < (atom group) PSF segment identifier >
Acceptable Values: space-separated list of strings (max 4 characters)
Description: This option sets the PSF segment identifier for of atomNameResidueRange.
Multiple values can be provided, which can correspond to different instances of
atomNameResidueRange, in the order of their occurrence. This option is not needed when
non-PSF topologies are used by NAMD.
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• atomsFile < (atom group) PDB file name for atom selection >
Acceptable Values: string
Description: This option selects atoms from the PDB file provided and adds them to the
group according to the value in the column atomsCol. Note: the set of atoms PDB file
provided must match the topology.

• atomsCol < (atom group) PDB column to use for the selection >
Acceptable Values: X, Y, Z, O or B
Default Value: O
Description: This option specifies which column in atomsFile is used to determine the
atoms to be included in the group.

• atomsColValue < (atom group) Value in the PDB column >
Acceptable Values: positive decimal
Description: If defined, this value in atomsCol identifies of atomsFile which atoms are to
be read; otherwise, all atoms with a non-zero value will be read.

• dummyAtom < (atom group) Dummy atom position (Å) >
Acceptable Values: (x, y, z) triplet
Description: This option makes the group a virtual particle at a fixed position in space.
This is useful e.g. to make colvar components, that normally calculate functions of the group’s
center of mass, use an absolute reference position. If specified, disableForces is also turned
on, the center of mass position is (x, y, z) and zero velocities and system forces are reported.

• centerReference < (atom group) Ignore the translations of this group >
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the center of geometry of this group is centered on a refer-
ence frame, determined either by refPositions or refPositionsFile. This transformation
occurs before any colvar component has access to the coordinates of the group: hence, only
the recentered coordinates are available to the colvars. Note: the derivatives of the colvars
with respect to the translation are usually neglected (except by rmsd and eigenvector).

• rotateReference < (atom group) Ignore the rotations of this group >
Acceptable Values: boolean
Default Value: off
Description: If this option is on, this group is rotated around its center of geometry, to
optimally superimpose to the positions given by refPositions or refPositionsFile. This
is done before recentering the group, if centerReference is also defined. The algorithm
used is the same employed in the orientation colvar component [15]. Forces applied by the
colvars to this group are rotated back to the original frame prior being applied. Note: the
derivatives of the colvars with respect to the rotation are usually neglected (except by rmsd
and eigenvector).

• refPositions < (atom group) Reference positions (Å) >
Acceptable Values: space-separated list of (x, y, z) triplets
Description: If either centerReference or rotateReference is on, these coordinates are
used to determine the center of mass translation and the optimal rotation, respectively. In
the latter case, the list must also be of the same length as this atom group.
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• refPositionsFile < (atom group) File with reference positions >
Acceptable Values: UNIX filename
Description: If either centerReference or rotateReference is on, the coordinates from
this file are used to determine the center of geometry translation and the optimal rotation
between them and the current coordinates of the group. This file can either i) contain as
many atoms as the group (in which case all of the ATOM records are read) or ii) a larger
number of atoms (in which case atoms will be selected according to refPositionsCol). In a
typical application, the second format is used by providing the value of atomsFile.

• refPositionsCol < (atom group) Column to use in the PDB file >
Acceptable Values: X, Y, Z, O or B
Default Value: O
Description: Like atomsCol for atomsFile, indicates which column to use to identify the
atoms in refPositionsFile.

• refPositionsColValue < (atom group) Value in the PDB column >
Acceptable Values: positive decimal
Description: Analogous to atomsColValue, but applied to refPositionsCol.

• refPositionsGroup < (atom group) Use an alternate group do perform roto-translational
fitting >
Acceptable Values: Block refPositionsGroup { ... }
Default Value: This group itself
Description: If either centerReference or rotateReference is defined, this keyword
allows to define an additional atom group, which is used instead of the current one to calculate
the translation or the rotation to the reference positions. For example, it is possible to use
all the backbone heavy atoms of a protein to set the reference frame, but only involve a more
localized group in the colvar’s definition.

• disableForces < (atom group) Don’t apply colvar forces to this group >
Acceptable Values: boolean
Default Value: off
Description: If this option is on, all the forces applied from the colvars to the atoms in
this group are ignored. The applied forces on each colvar are still written to the trajectory
file, if requested. In some cases it may be desirable to use this option in order not to perturb
the motion of certain atoms. Note: when used, the biasing forces are not applied uniformly:
a non-zero net force or torque to the system is generated, which may lead to undesired trans-
lations or rotations of the system.

Note: to minimize the length of the NAMD standard output, messages in the atom group’s con-
figuration are not echoed by default. This can be overcome by the boolean keyword verboseOutput
within the group.

Recommendations for using atom groups. When defining the atom groups for a collective
variable, these guidelines should be followed to avoid inconsistencies and performance losses:

• In simulations with periodic boundary conditions, NAMD maintains the coordinates of all
the atoms within a molecule contiguous to each other (i.e. there are no spurious “jumps” in
the molecular bonds). The colvar module relies on this when calculating a group’s center
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of mass, but this condition may fail when the group spans different molecules: in that case,
writing the NAMD output files wrapAll or wrapWater could produce wrong results when a
simulation run is continued from a previous one. There are however cases in which wrapAll
or wrapWater can be safely applied:

i) the group has only one atom;

ii) it has all its atoms within the same molecule;

iii) it is used by a colvar component which does not access its center of mass and uses instead
only interatomic distances (coordnum, hBond, alpha);

iv) it is used by a colvar component that ignores the ill-defined Cartesian components of
its center of mass (such as the x and y components of a membrane’s center of mass by
distanceZ).

In the general case, the user should determine, according to which type of calculation is being
performed, whether wrapAll or wrapWater can be enabled.

• While NAMD spreads the calculation of most interaction terms over many computational
nodes, the colvars calculation is not parallelized. Therefore, the extra load on the first node,
where the colvars module is executed, should be maintained lower than that of any other
node. In most cases the extra load is negligible, but with some specific configurations it may
end up affecting the parallel performance of NAMD. As a general guideline, an atom group
should include a large fraction of the whole system only when necessary to capture the degrees
of freedom of interest.

9.2.4 Statistical analysis of individual collective variables

When the global keyword analysis is defined in the configuration file, calculations of statistical
properties for individual colvars can be performed. At the moment, several types of time correlation
functions, running averages and running standard deviations are available.

• corrFunc < (colvar) Calculate a time correlation function? >
Acceptable Values: boolean
Default Value: off
Description: Whether or not a time correlaction function should be calculated for this
colvar.

• corrFuncWithColvar < (colvar) Colvar name for the correlation function >
Acceptable Values: string
Description: By default, the auto-correlation function (ACF) of this colvar, ξi, is cal-
culated. When this option is specified, the correlation function is calculated instead with
another colvar, ξj , which must be of the same type (scalar, vector, or quaternion) as ξi.

• corrFuncType < (colvar) Type of the correlation function >
Acceptable Values: velocity, coordinate or coordinate p2
Default Value: velocity
Description: With coordinate or velocity, the correlation function Ci,j(t) =
〈O (ξi(t0), ξj(t0 + t))〉 is calculated between the variables ξi and ξj , or their velocities. O(ξi, ξj)
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is the scalar product when calculated between scalar or vector values, whereas for quater-
nions it is the cosine between the two corresponding rotation axes. With coordinate p2, the
second order Legendre polynomial, (3 cos(θ)2 − 1)/2, is used instead of the cosine.

• corrFuncNormalize < (colvar) Normalize the time correlation function? >
Acceptable Values: boolean
Default Value: on
Description: If enabled, the value of the correlation function at t = 0 is normalized to 1;
otherwise, it equals to 〈O (ξi, ξj)〉.

• corrFuncLength < (colvar) Length of the time correlation function >
Acceptable Values: positive integer
Default Value: 1000
Description: Length (in number of points) of the time correlation function.

• corrFuncStride < (colvar) Stride of the time correlation function >
Acceptable Values: positive integer
Default Value: 1
Description: Number of steps between two values of the time correlation function.

• corrFuncOffset < (colvar) Offset of the time correlation function >
Acceptable Values: positive integer
Default Value: 0
Description: The starting time (in number of steps) of the time correlation function
(default: t = 0). Note: the value at t = 0 is always used for the normalization.

• corrFuncOutputFile < (colvar) Output file for the time correlation function >
Acceptable Values: UNIX filename
Default Value: <name>.corrfunc.dat
Description: The time correlation function is saved in this file.

• runAve < (colvar) Calculate the running average and standard deviation >
Acceptable Values: boolean
Default Value: off
Description: Whether or not the running average and standard deviation should be cal-
culated for this colvar.

• runAveLength < (colvar) Length of the running average window >
Acceptable Values: positive integer
Default Value: 1000
Description: Length (in number of points) of the running average window.

• runAveStride < (colvar) Stride of the running average window values >
Acceptable Values: positive integer
Default Value: 1
Description: Number of steps between two values within the running average window.

• runAveOutputFile < (colvar) Output file for the running average and standard deviation
>
Acceptable Values: UNIX filename
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Default Value: <name>.runave.dat
Description: The running average and standard deviation are saved in this file.

9.3 Biasing and analysis methods

All of the biasing and analysis methods implemented (abf, harmonic, histogram and
metadynamics) recognize the following options:

• name < (colvar bias) Identifier for the bias >
Acceptable Values: string
Default Value: <type of bias><bias index>
Description: This string is used to identify the bias or analysis method in output messages
and to name some output files.

• colvars < (colvar bias) Collective variables involved >
Acceptable Values: space-separated list of colvar names
Description: This option selects by name all the colvars to which this bias or analysis will
be applied.

9.3.1 Adaptive Biasing Force calculations

For a full description of the Adaptive Biasing Force method, see reference [17]. For details about
this implementation, see references [23] and [?]. When publishing work that makes use of this
functionality, please cite references [17] and [?].

ABF is based on the thermodynamic integration (TI) scheme for computing free energy profiles.
The free energy as a function of a set of collective variables ξ = (ξi)i∈[1,n] is defined from the
canonical distribution of ξ, P(ξ):

A(ξ) = − 1
β

lnP(ξ) +A0 (20)

In the TI formalism, the free energy is obtained from its gradient, which is generally calculated
in the form of the average of a force F ξ exerted on ξ, taken over an iso-ξ surface:

∇ξA(ξ) = 〈−F ξ〉ξ (21)

Several formulae that take the form of (21) have been proposed. This implementation relies
partly on the classic formulation [11], and partly on a more versatile scheme originating in a work
by Ruiz-Montero et al. [39], generalized by den Otter [18] and extended to multiple variables by
Ciccotti et al. [14]. Consider a system subject to constraints of the form σk(x) = 0. Let (vi)i∈[1,n]

be arbitrarily chosen vector fields (R3N → R3N ) verifying, for all i, j, and k:

vi ·∇x ξj = δij (22)
vi ·∇x σk = 0 (23)

then the following holds [14]:

∂A

∂ξi
= 〈vi ·∇x V − kBT∇x · vi〉ξ (24)
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where V is the potential energy function. vi can be interpreted as the direction along which the
force acting on variable ξi is measured, whereas the second term in the average corresponds to the
geometric entropy contribution that appears as a Jacobian correction in the classic formalism [11].
Condition (22) states that the direction along which the system force on ξi is measured is orthogonal
to the gradient of ξj , which means that the force measured on ξi does not act on ξj .

Equation (23) implies that constraint forces are orthogonal to the directions along which the
free energy gradient is measured, so that the measurement is effectively performed on unconstrained
degrees of freedom. In NAMD, constraints are typically applied to the lengths of bonds involv-
ing hydrogen atoms, for example in TIP3P water molecules (parameter rigidBonds, section ??).
(parameter rigidBonds, section 5.4.1).

In the framework of ABF, Fξ is accumulated in bins of finite size, δξ, thereby providing an
estimate of the free energy gradient according to equation (21). The biasing force applied along
the colective variables to overcome free energy barriers is calculated as:

FABF = ∇x Ã(ξ) (25)

where ∇x Ã denotes the current estimate of the free energy gradient at the current point ξ in
the collective variable subspace.

As sampling of the phase space proceeds, the estimate ∇x Ã is progressively refined. The biasing
force introduced in the equations of motion guarantees that in the bin centered around ξ, the forces
acting along the selected collective variables average to zero over time. Eventually, as the undelying
free energy surface is canceled by the adaptive bias, evolution of the system along ξ is governed
mainly by diffusion. Although this implementation of ABF can in principle be used in arbitrary
dimension, a higher-dimension collective variable space is likely to result in sampling difficulties.
Most commonly, the number of variables is one or two.

ABF requirements on collective variables

1. Only linear combinations of colvar components can be used in ABF calculations.

2. Availability of system forces is necessary. The following colvar components can be used
in ABF calculations: distance, distance xy, distance z, dihedral, gyration, rmsd and
eigenvector.

3. Mutual orthogonality of colvars. In a multidimensional ABF calculation, equation (22) must
be satisfied for any two colvars ξi and ξj . Various cases fulfill this orthogonality condition:

• ξi and ξj are based on non-overlapping sets of atoms.

• atoms involved in the force measurement on ξi do not participate in the definition of
ξj . This can be obtained using the option oneSiteSystemForce of the distance and
dihedral components (example: Ramachandran angles φ, ψ).

• ξi and ξj are orthogonal by construction. Useful cases are the sum and difference of two
components, or distance z and distance xy using the same axis.

4. Mutual orthogonality of components: when several components are combined into a colvar, it
is assumed that their vectors vi (equation (24)) are mutually orthogonal. The cases described
for colvars in the previous paragraph apply.
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5. Orthogonality of colvars and constraints: equation 23 can be satisfied in two simple ways,
if either no constrained atoms are involved in the force measurement (see point 3 above) or
pairs of atoms joined by a constraint bond are part of an atom group which only intervenes
through its center (center of mass or geometric center) in the force measurement. In the latter
case, the contributions of the two atoms to the left-hand side of equation 23 cancel out. For
example, all atoms of a rigid TIP3P water molecule can safely be included in an atom group
used in a distance component.

Parameters for ABF

The following parameters can be set in the ABF configuration block (in addition to generic bias
parameters such as colvars):

• fullSamples < (ABF) Number of samples in a bin prior to application of the ABF >
Acceptable Values: positive integer
Default Value: 200
Description: To avoid nonequilibrium effects in the dynamics of the system, due to large
fluctuations of the force exerted along the reaction coordinate, ξ, it is recommended to apply
the biasing force only after a reasonable estimate of the latter has been obtained.

• hideJacobian < (ABF) Remove geometric entropy term from calculated free energy gradi-
ent? >
Acceptable Values: boolean
Default Value: no
Description: In a few special cases, most notably distance-based variables, an alternate
definition of the potential of mean force is traditionally used, which excludes the Jacobian
term describing the effect of geometric entropy on the distribution of the variable. This re-
sults, for example, in particle-particle potentials of mean force being flat at large separations.
Setting this parameter to yes causes the output data to follow that convention, by remov-
ing this contribution from the output gradients while applying internally the corresponding
correction to ensure uniform sampling. It is not allowed for colvars with multiple components.

• outputFreq < (ABF) Frequency (in timesteps) at which ABF data files are refreshed >
Acceptable Values: positive integer
Default Value: Colvar module restart frequency
Description: The files containing the free energy gradient estimate and the sampling
histogram (and the PMF if the calculation is one-dimensional) are written on disk at the
given time interval.

• inputPrefix < (ABF) Filename prefix for reading ABF data >
Acceptable Values: list of strings
Description: If this parameter is set, for each item in the list, ABF tries to read a gradient
and a sampling files named <inputPrefix>.grad and <inputPrefix>.count. This is done
at startup and sets the initial state of the ABF algorithm. The data from all provided files
is combined appropriately. Also, the grid definition (min and max values, width) need not
be the same that for the current run. This command is useful to piece together data from
simulations in different regions of collective variable space, or change the colvar boundary
values and widths. Note that it is not recommended to use it to switch to a smaller width, as

113



that will leave some bins empty in the finer data grid. This option is NOT compatible with
reading the data from a restart file (colvarsInput option of the NAMD config file).

• applyBias < (ABF) Apply the ABF bias? >
Acceptable Values: boolean
Default Value: yes
Description: If this is set to no, the calculation proceeds normally but the adaptive
biasing force is not applied. Data is still collected to compute the free energy gradient. This
is mostly intended for testing purposes, and should not be used in routine simulations.

ABF also depends on parameters from collective variables to define the grid on which free energy
gradients are computed. In the direction of each colvar, the grid ranges from lowerBoundary to
upperBoundary, and the bin width (grid spacing) is set by the width parameter.

Output files

The ABF bias produces the following files, all in multicolumn ASCII format:

• <outputName>.grad: current estimate of the free energy gradient (grid), in multicolumn;

• <outputName>.count: total number of samples collected, on the same grid;

• <outputName>.pmf: only for one-dimensional calculations, integrated free energy profile or
PMF.

If several ABF biases are defined concurrently, their name is inserted to produce unique filenames
for output, as in <outputName>.abf1.grad. This should not be done routinely and could lead to
meaningless results: only do it if you know what you are doing!

If the colvar space has been partitioned into sections (windows) in which independent ABF sim-
ulations have been run, the resulting data can be merged using the inputPrefix option described
above (a NAMD run of 0 steps is enough).

Reconstructing a multidimensional free energy surface

If a one-dimensional calculation is performed, the estimated free energy gradient is automatically
integrated and a potential of mean force is written under the file name <outputName>.pmf, in a
plain text format that can be read by most data plotting and analysis programs (e.g. gnuplot).

In dimension 2 or greater, integrating the discretized gradient becomes non-trivial. The stan-
dalone utility abf integrate is provided to perform that task. abf integrate reads the gradient
data and uses it to perform a Monte-Carlo (M-C) simulation in discretized collective variable space
(specifically, on the same grid used by ABF to discretize the free energy gradient). By default, a
history-dependent bias (similar in spirit to metadynamics) is used: at each M-C step, the bias at
the current position is incremented by a preset amount (the hill height). Upon convergence, this
bias counteracts optimally the underlying gradient; it is negated to obtain the estimate of the free
energy surface.

abf integrate is invoked using the command-line:

integrate <gradient_file> [-n <nsteps>] [-t <temp>] [-m (0|1)]
[-h <hill_height>] [-f <factor>]
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The gradient file name is provided first, followed by other parameters in any order. They are
described below, with their default value in square brackets:

• -n: number of M-C steps to be performed; by default, a minimal number of steps is chosen
based on the size of the grid, and the integration runs until a convergence criterion is satisfied
(based on the RMSD between the target gradient and the real PMF gradient)

• -t: temperature for M-C sampling (unrelated to the simulation temperature) [500 K]

• -m: use metadynamics-like biased sampling? (0 = false) [1]

• -h: increment for the history-dependent bias (“hill height”) [0.01 kcal/mol]

• -f: if non-zero, this factor is used to scale the increment stepwise in the second half of the
M-C sampling to refine the free energy estimate [0.5]

Using the default values of all parameters should give reasonable results in most cases.

abf integrate produces the following output files:

• <gradient file>.pmf: computed free energy surface

• <gradient file>.histo: histogram of M-C sampling (not usable in a straightforward way
if the history-dependent bias has been applied)

• <gradient file>.est: estimated gradient of the calculated free energy surface (from finite
differences)

• <gradient file>.dev: deviation between the user-provided numerical gradient and the ac-
tual gradient of the calculated free energy surface. The RMS norm of this vector field is used
as a convergence criteria and displayed periodically during the integration.

Note: Typically, the “deviation” vector field does not vanish as the integration converges. This
happens because the numerical estimate of the gradient does not exactly derive from a potential,
due to numerical approximations used to obtain it (finite sampling and discretization on a grid).

9.3.2 Metadynamics calculations

Many methods have been introduced in the past that make use of an artificial energy term, that
changes and adapts over time, to reconstruct a potential of mean force from a conventional molec-
ular dynamics simulation [24, 22, 47, 16, 31, 25]. One of the most recent, metadynamics, was
first designed as a step-wise algorithm, which may be roughly described as an “adaptive umbrella
sampling” [31], and was later made continuous over time [26]. This implementation provides only
he latter version, which is the most commonly used.

In metadynamics, the external potential on the colvars ξ = (ξ1, ξ2, . . . , ξNcv) is:

Vmeta(ξ) =
t′<t∑

t′=δt,2δt,...

W

Ncv∏
i=1

exp

(
−(ξi − ξi(t′))2

2δ2ξi

)
, (26)

that is, Vmeta is a history-dependent potential, which acts on the current values of the colvars ξ and
depends parametrically on the previous values of the colvars. It is constructed as a sum of Ncv-
dimensional repulsive Gaussian “hills” with a height W : their centers are located at the previously
explored configurations (ξ(δt), ξ(2δt), . . .), and they extend by approximately 2δξi

in the direction
of the i-th colvar.
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As the system evolves according to the underlying potential of mean force A(ξ) incremented
by the metadynamics potential Vmeta(ξ), new hills will tend to accumulate in the regions with a
lower effective free energy Ã(ξ) = A(ξ) + Vmeta(ξ). That is, the probability of having a given
system configuration ξ∗ being explored (and thus, a hill being added there) is proportional to
exp

(
−Ã(ξ∗)/κBT

)
, which tends to a nearly flat histogram when the simulation is continued until

the system has deposited hills across the whole free energy landscape. In this situation, −Vmeta(ξ) is
a good approximant of the free energy A(ξ), and the only dependence on the specific conformational
history ξ(δt), ξ(2δt), . . . is by an irrelevant additive constant:

A(ξ) ' −Vmeta(ξ) +K (27)

Provided that the set of collective variables fully describes the relevant degrees of freedom, the
accuracy of the reconstructed profile is a function of the ratio between W and δt [10]. For the
optimal choice of δξi

and Dξi
, the diffusion constant of the variable ξi, see reference [10]. As a rule

of thumb, the very upper limit for the ratio W/δt is given by κBT/τξ, where τξ is the longest among
ξ’s correlation times. In the most typical conditions, to achieve a good statistical convergence the
user would prefer to keep W/δt much smaller than κBT/τξ.

Given ∆ξ the extension of the free energy profile along the colvar ξ, and A∗ = A(ξ∗) the
highest free energy that needs to be sampled (e.g. that of a transition state), the upper bound
for the required simulation time is of the order of Ns(ξ) = (A∗∆ξ)/(W2δξ) multiples of δt. When
several colvars ξ are used, the upper bound amounts to Ns(ξ1)×Ns(ξ2)× . . .×Ns(ξNcv)× δt.

In metadynamics runs performed with this module, the parameter δξi
for each hill (eq. 26) is

chosen as half the width of the corresponding colvar ξi, while all the other parameters must be
provided within the metadynamics {...} block. In addition to the colvars option to list the
variable to which this bias is applied, the block accepts the following options:

• name < (metadynamics) Name of this metadynamics instance >
Acceptable Values: string
Default Value: “meta” + rank number
Description: This option sets the name for this metadynamics instance. While in general
it is not advisable to use more than one metadynamics bias, this allows to distinguish each
bias from the others in the output.

• hillWeight < (metadynamics) Height of each hill (kcal/mol) >
Acceptable Values: positive decimal
Default Value: 0.01
Description: This option sets the height W of the hills that are added during this run.
Note: in most applications, this and each colvar’s width are the only parameters that the
user needs to choose carefully: the following options are meant for the more specific cases.

• newHillFrequency < (metadynamics) Frequency of hill creation >
Acceptable Values: positive integer
Default Value: 100
Description: This option sets the number of steps (proportional to δt) after which a new hill
is added to the history-dependent potential. Each new hill acts on the colvars ξ immediately
after being added.

• hillWidth < (metadynamics) Relative width of the hills >
Acceptable Values: positive decimal
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Default Value:
√

2π/2
Description: Along each colvar, the width of each Gaussian hill (2δξi

) is given by the
product between this number and the colvar’s width. To get a smoother free energy profile for
a given metadynamics configuration, decrease width and increase hillWidth in proportion.
Note: when useGrids is on (default in most cases), values smaller than 1 should be avoided
to avoid discretization errors.

• useGrids < (metadynamics) Interpolate the hills with grids >
Acceptable Values: boolean
Default Value: on
Description: This option discretizes all hills on two grids (storing their total energy and
gradients, respectively). These grids are defined by lowerBoundary, upperBoundary and
width for each colvar, and the aggregated forces are used (as opposed to summing over all
the individual hills). Such grids are written to the state file. Currently, this is not implemented
for non-scalar variables (distanceDir or orientation).

• gridsUpdateFrequency < (metadynamics) Frequency of update of the grids >
Acceptable Values: positive integer
Default Value: newHillFrequency
Description: When useGrids is on, all the newly created hills are projected onto the two
grids every gridsUpdateFrequency steps.

• dumpFreeEnergyFile < (metadynamics) Periodically save the PMF >
Acceptable Values: boolean
Default Value: on
Description: When useGrids and this option are on, the PMF is written every
colvarsRestartFrequency steps to the file <outputName>.pmf. If there is more than one
metadynamics bias active, the name of this bias is included in the file name. Note: mul-
tidimensional PMFs can only be obtained with one metadynamics instance applied to all the
colvars, and not with multiple instances each applied to a single colvar.

• saveFreeEnergyFile < (metadynamics) Keep all the PMF files >
Acceptable Values: boolean
Default Value: off
Description: When dumpFreeEnergyFile and this option are on, the step number is
included in the file name. Activating this option can be useful to follow more closely the
convergence of the simulation, by comparing PMFs separated by short times.

• rebinGrids < (metadynamics) Recompute the grids when reading a state file >
Acceptable Values: boolean
Default Value: off
Description: By default, the grid’s boundaries and widths are saved in the state file, and
override those in the configuration file. To force a manual change of the grid’s parameters,
this option can be used to project the grids read from a state file onto new grids, and use them
in the following. See instead expandBoundaries in the colvars to have the grid boundaries
be automatically expanded for certain colvars.

• keepHills < (metadynamics) Write each individual hill to the state file >
Acceptable Values: boolean
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Default Value: off
Description: When useGrids and this option are on, newly created hills are also saved
to the state file in their analytical form, in addition to the grids. This makes it possible to
use later the analytical Gaussians for rebinGrids. If only the time history of the hills is of
interest, but the grid won’t be changed, writeHillsTrajectory gives a much more compact
output.

• multipleReplicas < (metadynamics) Multiple replicas metadynamics >
Acceptable Values: boolean
Default Value: off
Description: If this option is on, multiple (independent) replica of the
same system can be simulated at the same time, and share the same hills [37].
This is achieved by letting each replica save its newly created hills to the file
“<outputName>.colvars.<name>.<replicaID>.hills”: its path is communicated to
the other replicas through the file replicaFilesRegistry, shared by all replicas. Every
replicaUpdateFrequency steps, each replica reads the new hills created by the other replicas
and adds them to its own. Note: This option cannot be used in conjunction with useGrids.

• replicaID < (metadynamics) Set the identifier for this replica >
Acceptable Values: string
Description: If multipleReplicas is on, this option sets a unique identifier for this replica.
Hence, when simulating with more than one replica, different colvars configuration files with
different values for this option should be used.

• replicaFilesRegistry < (metadynamics) Multiple replicas database file >
Acceptable Values: UNIX filename
Default Value: “<name>.replica files.txt”
Description: If multipleReplicas is on, this option sets the path to a replica index file.
The paths to files containing another replica’s new hills are appended to this file. Every
replicaUpdateFrequency steps during a simulation, each replica reads the hills stored in
each of those files (except those saved by this replica).

• replicaUpdateFrequency < (metadynamics) Multiple replicas update frequency >
Acceptable Values: positive integer
Default Value: newHillFrequency
Description: If multipleReplicas is on, this option sets the number of steps between
updates of the list of hills created by other replicas.

• writeHillsTrajectory < (metadynamics) Write a log of new hills >
Acceptable Values: boolean
Default Value: on
Description: If this option is on, a logfile is written by the metadynamics bias, with the
name “<outputName>.colvars.<name>.hills.traj”, which can be useful to follow the
time series of the hills. When multipleReplicas is on, its name changes to
“<outputName>.colvars.<name>.<replicaID>.hills.traj”.

118



9.3.3 Harmonic restraints and Steered Molecular Dynamics

The harmonic restraint is defined by a harmonic {...} block, which may contain (in addition to
the standard option colvars) the following keywords:

• forceConstant < (harmonic) Harmonic force constant (kcal/mol) >
Acceptable Values: positive decimal
Default Value: 1.0
Description: This defines the constant for the harmonic potential. To ensure consistency
for multidimensional restraints, it is scaled by the square of the specific width for each colvar
involved (which is 1 by default), so that all colvars are internally rendered dimensionless and
of comparable size. For instance, a force constant of 10 kcal/mol acting on a dihedral colvar
with a width of 2 degrees will amount effectively to 2.5 kcal/mol×degree−2.

• centers < (harmonic) Initial harmonic restraint centers >
Acceptable Values: space-separated list of colvar values
Description: The centers (equilibrium values) of the restraint are entered here. The
number of values must be the number of requested colvars. Each value is a decimal number
if the corresponding colvar returns a scalar, a “(x, y, z)” triplet if it returns a unit vector
or a vector, and a “(q0, q1, q2, q3)” quadruplet if it returns a rotational quaternion. If a
colvar has periodicities or symmetries, its closest image to the restraint center is considered
when calculating the harmonic potential.

• targetCenters < (harmonic) Steer the restraint centers towards these targets >
Acceptable Values: space-separated list of colvar values
Description: When defined, the current centers will be moved towards these values during
the simulation. By default, the centers are moved over a total of targetNumSteps steps by a
linear interpolation, in the spirit of Steered MD. If targetNumStages is set to a nonzero value,
the change is performed in discrete stages, lasting targetsNumSteps steps each. This second
mode may be used to sample successive windows in the context of an Umbrella Sampling
simulation. The intermediate values will be evolved by taking into account periodicities or
symmetries (the closest image of the target is assumed for each colvar) and intrinsic constraints
to the colvar value. For example, when moving the restraint center of a dihedral, the total
movement in a single run will be at most 180◦ (a rotation of 210◦ will be interpreted as one
of -150◦); if a complete 360◦ turn of a dihedral is desired, multiple runs (at least two) with
different targets should be used. When continuing a simulation run, the centers specified in
the configuration file <colvarsConfig> will be overridden by those saved in the restart file
<colvarsInput>. To perform Steered MD in an arbitrary space of colvars, it is sufficient to
use this option and enable outputAppliedForce within each of the colvars involved.

• targetForceConstant < (harmonic) Change the force constant towards this value >
Acceptable Values: positive decimal
Description: When defined, the current forceConstant will be moved towards this
value during the simulation. Time evolution of the force constant is dictated by the
targetForceExponent parameter (see below). By default, the force constant is changed
smoothly over a total of targetNumSteps steps. This is useful to introduce or remove re-
straints in a progressive manner. If targetNumStages is set to a nonzero value, the change is
performed in discrete stages, lasting targetsNumSteps steps each. This second mode may be
used to compute the conformational free energy change associated with the restraint, within
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the FEP or TI formalisms. For convenience, the code provides an estimate of the free energy
derivative for use in TI. A more complete free energy calculation (particularly with regard
to convergence analysis), while not handled by the colvars module, can be performed by
post-processing the colvars trajectory, if colvarsTrajFrequency is set to a suitably small
value. It should be noted, however, that restraint free energy calculations may be handled
more efficiently by an indirectly route, through the determination of a PMF for the restrained
coordinate.[?]

• targetForceExponent < Exponent in the time-dependence of the force constant >
Acceptable Values: decimal equal to or greater than 1.0
Default Value: 1.0
Description: Sets the exponent, α, in the function used to vary the force constant as a
function of time. The force is varied according to a coupling parameter λ, raised to the power
α: kλ = k0 + λα(k1 − k0), where k0, kλ, and k1 are the initial, current, and final values
of the force constant. The parameter λ evolves linearly from 0 to 1, either smoothly or in
targetNumStages discrete stages. When the initial value of the force constant is zero, an
exponent greater than 1.0 distributes the effects of introducing the restraint more smoothly
over time than a linear dependence.

• targetNumSteps < (harmonic) Number of steps for steering >
Acceptable Values: positive integer
Description: Defines the number of steps required to move the restraint centers (or force
constant) towards the values specified with targetCenters or targetForceConstant. After
the target values have been reached, the centers (resp. force constant) are kept fixed.

• targetNumStages < (harmonic) Number of stages for steering >
Acceptable Values: non-negative integer
Default Value: 0
Description: If non-zero, sets the number of stages in which the restraint centers or force
constant are changed to their target values. If zero, the change is continuous.

Tip: A complex set of restraints can be applied to a system, by defining several colvars, and
applying one or more harmonic restraints to different groups of colvars. In some cases, dozens of
colvars can be defined, but their trajectory may not be relevant: it may be wise then to disable
outputValue for them, and leave it enabled only for the “relevant” colvars.

9.3.4 Multidimensional histograms

The histogram feature is used to record the distribution of a set of collective variables in the form
of a N-dimensional histogram. It functions as a “collective variable bias”, and is invoked by adding
a histogram block to the colvars configuration file.

In addition to common parameters such as colvars, a histogram block may define the following
parameter:

• outputFreq < (histogram) Frequency (in timesteps) at which the histogram file is refreshed
>
Acceptable Values: positive integer
Default Value: Colvar module restart frequency
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Description: The file containing histogram data is written on disk at the given time
interval.

Like the ABF and metadynamics biases, histogram uses parameters from the colvars to define
its grid. The grid ranges from lowerBoundary to upperBoundary, and the bin width is set by the
width parameter.
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10 Alchemical Free Energy Methods1

Alchemical free energy calculations model the physically impossible but computationally realizable
process of gradually mutating a subset of atoms of a system from one state to another, through
a series of intermediate steps. Two alternative methods for alchemical calculation of free energies
from molecular dynamics simulation are available in NAMD: Free energy perturbation (FEP) and
thermodynamic integration (TI).

10.1 Theoretical Background

Free energy differences can be obtained through four different routes: (i) probability densities,
(ii) free energy perturbation, (iii) thermodynamic integration, or (iv) nonequilibrium work ap-
proaches [13]. Within NAMD, alchemical transformations are modeled following the second and
the third routes, both of which rely upon the use of a general extent parameter often referred to
as the coupling parameter [6, 34, 27, 28] for the description of chemical changes in the molecular
systems between the reference and the target states.

10.1.1 The dual–topology paradigm

In a typical alchemical transformation setup involving the alteration of one chemical species into an
alternate one in the course of the simulation, the atoms in the molecular topology can be classified
into three groups, (i) a group of atoms that do not change during the simulation — e.g. the
environment, (ii) the atoms describing the reference state, a, of the system, and (iii) the atoms
that correspond to the target state, b, at the end of the alchemical transformation. The atoms
representative of state a should never interact with those of state b throughout the MD simulation.
Such a setup, in which atoms of both the initial and the final states of the system are present in
the molecular topology file — i.e. the psf file — is characteristic of the so–called “dual topology”
paradigm [20, 36, 2]. The hybrid Hamiltonian of the system is a function of the general extent
parameter, λ, which connects smoothly state a to state b. In the simplest case, such a connection
may be achieved by linear combination of the corresponding Hamiltonians:

H(x,px;λ) = H0(x,px) + λHb(x,px) + (1− λ)Ha(x,px) (28)

where Ha(x,px) describes the interaction of the group of atoms representative of the reference
state, a, with the rest of the system. Hb(x,px) characterizes the interaction of the target topology,
b, with the rest of the system. H0(x,px) is the Hamiltonian describing those atoms that do not
undergo any transformation during the MD simulation.

For instance, in the point mutation of an alanine side chain into that of glycine, by means
of a free energy calculation — either free energy perturbation or thermodynamic integration, the
topology of both the methyl group of alanine and the hydrogen borne by the Cα in glycine co–exist
throughout the simulation (see Figure 7), yet without actually seeing each other.

The energy and forces are defined as a function of λ, in such a fashion that the interaction of the
methyl group of alanine with the rest of the protein is effective at the beginning of the simulation,
i.e. λ = 0, while the glycine Cα hydrogen atom does not interact with the rest of the protein, and
vice versa at the end of the simulation, i.e. λ = 1. For intermediate values of λ, both the alanine

1The features described in this section were contributed by Surjit B. Dixit, Christophe Chipot (Nancy Université,
Université Henri Poincaré, France), Floris Buelens (Institute of Structural and Molecular Biology, University of
London, Birkbeck, UK), and Christopher Harrison (University of Illinois, Urbana, IL USA).
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Figure 7: Dual topology description for an alchemical simulation. Case example of the mutation
of alanine into serine. The lighter color denotes the non–interacting, alternate state.

and the glycine side chains participate in nonbonded interactions with the rest of the protein, scaled
on the basis of the current value of λ. It should be clearly understood that these side chains never
interact with each other.

It is noteworthy that end points of alchemical transformations carried out in the framework of
the dual–topology paradigm have been shown to be conducive to numerical instabilities from molec-
ular dynamics simulations, often coined as “end–point catastrophes”. These scenarios are prone
to occur when λ becomes close to 0 or 1, and incoming atoms instantly appear where other parti-
cles are already present, which results in a virtually infinite potential as the interatomic distance
tends towards 0. Such “end–point catastrophes” can be profitably circumvented by introducing
a so–called soft–core potential [5, 33], aimed at a gradual scaling of the short–range nonbonded
interactions of incoming atoms with their environment, as shown in Equation 29. What is really
being modified is the value of a coupling parameter (λLJ or λelec) that scales the interactions —
i.e., if set to 0, the latter are off; if set to 1, they are on — in lieu of the actual value of λ provided
by the user.

VNB(rij) = λLJεij

( Rmin
ij

2

r2ij + δ(1− λLJ)

)6

−

(
Rmin

ij
2

r2ij + δ(1− λLJ)

)3
+ λelec

qiqj
ε1rij

(29)

It is also worth noting that the free energy calculation does not alter intermolecular bonded
potentials, e.g. bond stretch, valence angle deformation and torsions, in the course of the simulation.
In calculations targeted at the estimation of free energy differences between two states characterized
by distinct environments — e.g. a ligand, bound to a protein in the first simulation, and solvated
in water, in the second — as is the case for most free energy calculations that make use of a
thermodynamic cycle, perturbation of intramolecular terms may, by and large, be safely avoided [7].
This property is controlled by the alchDecouple keyword described in

10.1.2 Free Energy Perturbation

Within the FEP framework [6, 12, 13, 21, 29, 34, 45, 46, 48], the free energy difference between
two alternate states, a and b, is expressed by:
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∆Aa→b = − 1
β

ln 〈exp {−β [Hb(x,px)−Ha(x,px)]}〉a (30)

Here, β−1 ≡ kBT , where kB is the Boltzmann constant, T is the temperature. Ha(x,px) and
Hb(x,px) are the Hamiltonians describing states a and b, respectively. 〈· · · 〉a denotes an ensemble
average over configurations representative of the initial, reference state, a.
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Figure 8: Convergence of an FEP calculation. If the ensembles representative of states a and b
are too disparate, equation (30) will not converge (a). If, in sharp contrast, the configurations of
state b form a subset of the ensemble of configurations characteristic of state a, the simulation is
expected to converge (b). The difficulties reflected in case (a) may be alleviated by the introduction
of mutually overlapping intermediate states that connect a to b (c). It should be mentioned that
in practice, the kinetic contribution, T (px), is assumed to be identical for state a and state b.

Convergence of equation (30) implies that low–energy configurations of the target state, b,
are also configurations of the reference state, a, thus resulting in an appropriate overlap of the
corresponding ensembles — see Figure 8. Transformation between the two thermodynamic states
is replaced by a series of transformations between non–physical, intermediate states along a well–
delineated pathway that connects a to b. This pathway is characterized by the general extent
parameter [6, 27, 28, 34], λ, that makes the Hamiltonian and, hence, the free energy, a continuous
function of this parameter between a and b:

∆Aa→b = − 1
β

N∑
i=1

ln 〈exp {−β [H(x,px;λi+1)−H(x,px;λi)]}〉i (31)

Here, N stands for the number of intermediate stages, or “windows” between the initial and
the final states — see Figure 8.

10.1.3 Thermodynamic Integration

An alternative to the perturbation formula for free energy calculation is Thermodynamic Integration
(TI). With the TI method, the free energy is given as [28, 44, 19]:

∆A =
∫ 1

0

〈
∂H(x,px;λ)

∂λ

〉
λ

dλ (32)

In the multi-configuration thermodynamic integration approach [44] implemented in NAMD,
〈∂H(x,px;λ)/∂λ 〉λ, the ensemble average of the derivative of the internal energy with respect to λ,
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is collected for a series of discrete λ values and written to tiOutFile. These values are analyzed by
the separately distributed script NAMD ti.pl, which performs the integration of individual energy
components and reports back the total ∆A values for the transformation.

10.2 Implementation of the free energy methods in NAMD

The procedures implemented in NAMD are particularly adapted for performing free energy cal-
culations that split the λ reaction path into a number of non–physical, intermediate states, or
“windows”. Separate simulations can be started for each window. Alternatively, the Tcl scripting
ability of NAMD can be employed advantageously to perform the complete simulation in a single
run. An example, making use of such a script, is supplied at the end of this section.

The following keywords can be used to run alchemical free energy calculations, whether FEP
or TI.

• alchOn < Is an alchemical transformation to be performed? >
Acceptable Values: on or off
Default Value: off
Description: Turns on alchemical transformation methods in NAMD.

• alchType < Which method is to be employed for the alchemical transformation? >
Acceptable Values: fep or ti
Default Value: ti
Description: Turns on Hamiltonian scaling and ensemble averaging for alchemical FEP or
TI.

• alchLambda < Current value of the coupling parameter >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The coupling parameter value determining the progress of the perturbation
for FEP or TI.

• alchLambda2 < Forward projected value of the coupling parameter >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The lambda2 value corresponds to the coupling parameter to be used for sam-
pling in the next window. The free energy difference between alchLambda2 and alchLambda
is calculated. Through simulations at progressive values of alchLambda and alchLambda2 the
total free energy difference may be determined.

• alchEquilSteps < Number of equilibration steps in a window, prior to data collection >
Acceptable Values: positive integer less than numSteps or run
Default Value: 0
Description: In each window alchEquilSteps steps of equilibration can be performed
before ensemble averaging is initiated. The output also contains the data gathered during
equilibration and is meant for analysis of convergence properties of the alchemical free energy
calculation.

• alchFile < pdb file with perturbation flags >
Acceptable Values: filename
Default Value: coordinates
Description: pdb file to be used for indicating the status of all atoms pertaining to the
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system, with respect to the alchemical transformation. If this parameter is not declared
specifically, then the pdb file specified by coordinates is utilized for this information.

• alchCol < Column in the alchFile that carries the perturbation flag >
Acceptable Values: X, Y, Z, O or B
Default Value: B
Description: Column of the pdb file to use for retrieving the status of each atom, i.e. a flag
that indicates which atom will be perturbed in the course of the alchemical transformation.
A value of -1 in the specified column indicates that the atom will vanish as λ moves from 0
to 1, whereas a value of 1 indicates that it will grow.

• alchOutFreq < Frequency of free energy output in time–steps >
Acceptable Values: positive integer
Default Value: 5
Description: Every alchOutFreq number of MD steps, the output file alchOutFile is
updated by dumping energies that are used for ensemble averaging. This variable could be
set to 1 to include all the configurations for ensemble averaging. Yet, it is recommended
to update alchOutFile energies at longer intervals to avoid large files containing highly
correlated data, unless a post–treatment, e.g. Bennett’s acceptance ratio (BAR) [3] or simple
overlap sampling (SOS) [32], is to be performed.

• alchOutFile < Alchemical free energy output filename >
Acceptable Values: filename
Default Value: outfilename
Description: An output file named alchOutFile, containing the FEP energies, or
tiOutFile, containing the TI derivatives, dumped every alchOutFreq steps.

• alchVdwShiftCoeff < Soft-core van der Waals radius-shifting coefficient >
Acceptable Values: positive decimal
Default Value: 5
Description: This is a radius-shifting coefficient of λ that is used to construct the modified
vdW interactions during alchemical free energy calculations. Providing a positive value for
alchVdWShiftCoeff ensures that the vdW potential is finite everywhere for small values of λ,
which significantly improves the accuracy and convergence of FEP and TI calculations, and
also prevents overlapping particles from making the simulation unstable. During FEP and
TI, assuming λ = 0 denotes an absence of interaction, the interatomic distances used in the
Lennard-Jones potential are shifted according to [5, 33]: r2 → r2 + alchVdWShiftCoeff ×
(1− λ)

• alchElecLambdaStart < Value of λ to introduce electrostatic interactions >
Acceptable Values: positive decimal
Default Value: 0.5
Description: In order to avoid the so–called “end-point catastrophes”, it is crucial to
avoid situations where growing particles overlap with existing particles with an unbounded
interaction potential, which would approach infinity as the interaction distance approaches
zero [5, 13]. One possible route for avoiding overlap of unbounded electrostatic poten-
tials consists of allowing a bounded (soft-core) vdW potential, using a positive value of
alchVdWShiftCoeff, to repel first all overlapping particles at low values of λ. As λ increases,
once the particles are repelled, it becomes safe to turn on FEP or TI electrostatics.
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Figure 9: Relationship of user-defined λ to coupling of electrostatic or vdW interactions to a
simulation, given specific values of alchElecLambdaStart or alchVdwLambdaEnd.

In the current implementation, the electrostatic interactions of an exnihilated, or appearing,
particle are linearly coupled to the simulation over the λ value range of alchElecLambdaStart
– 1.0. At λ values less than or equal to the user-defined value of alchElecLambdaStart,
electrostatic interactions of the exnihilated particle are fully decoupled from the simulation.
Coupling of electrostatic interactions then increases linearly for increasing values of λ until
λ=1.0, at which point electrostatic interactions of the exnihilated particle are fully coupled
to the simulation.

For annihilated, or vanishing, particles the electrostatic interactions are linearly decoupled
from the simulation over the λ value range of 0 – (1.0 - alchElecLambdaStart). At λ=0
electrostatic interactions are fully coupled to the simulation, and then linearly decreased with
increasing λ such that at λ values greater than or equal to (1.0 - alchElecLambdaStart)
electrostatic interactions are completely decoupled from the simulation. Two examples, shown
in Figure 9, describe the relationship between the user-defined value of λ and the coupling of
electrostatic or vdW interactions to the simulation.

• alchVdwLambdaEnd < Value of λ to cancel van der Waals interactions >
Acceptable Values: positive decimal
Default Value: 1.0
Description: If the alchElecLambdaStart option is used, it may also be desirable to
separate the scaling of van der Waals and electrostatic interactions. alchVdwLambdaEnd sets
the value of λ above which all vdW interactions are fully enabled for exnihilated particles.

For an exnihilated particle, vdW interactions are fully decoupled at λ=0. The coupling of
vdW interactions to the simulation is then increased with increasing values of λ such that at
values of λ greater than or equal to alchVdwLambdaEnd the vdW interactions of the exnihilated
particle are fully coupled to the simulation.
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For an annihilated particle, vdW interactions are completely coupled to the simulation at λ=0.
This coupling linearly decreases for λ values between 1.0 and (1 - alchVdwLambdaEnd). For λ
values greater than or equal to (1 - alchVdwLambdaEnd), vdW interactions of the annihilated
particle are fully decoupled from the simulation.

• alchDecouple < Disable scaling of nonbonded interactions within alchemical partitions >
Acceptable Values: on or off
Default Value: off
Description: With alchDecouple set to on, only nonbonded interactions of perturbed,
incoming and outgoing atoms with their environment are scaled, while interactions within
the subset of perturbed atoms are preserved. On the contrary, if alchDecouple is set to
off, interactions within the perturbed subset of atoms are also scaled and contribute to the
cumulative free energy. In most calculations, intramolecular annihilation free energies are not
particularly informative, and decoupling ought to be preferred. Under certain circumstances,
it may, however, be desirable to scale intramolecular interactions, provided that the latter are
appropriately accounted for in the thermodynamic cycle [13].

10.3 Examples of input files for running alchemical free energy calculations

The first example illustrates the use of Tcl scripting for running an alchemical transformation with
the FEP feature of NAMD. In this calculation, λ is changed continuously from 0 to 1 by increments
of δλ = 0.1.

alch On
alchType fep
alchFile ion.fep
alchCol X
alchOutfile ion.fepout
alchOutFreq 5
alchEquilSteps 5000

set Lambda0 0.0
set dLambda 0.1

while {$Lambda0 <= 1.0} {
alchLambda $Lambda0
set Lambda0 [expr \$Lambda0 + \$dLambda]
alchLambda2 $Lambda0
run 10000
}

Enable alchemical simulation module
Set alchemical method to FEP
File containing the information about grow-
ing/shrinking atoms described in column X.
Output file containing the free energy.
Frequency at which fepOutFreq is updated.
Number of equilibration steps per λ–state.

Starting value of λ.
Increment of λ, i.e. δλ.

Tcl script to increment λ:
(1) set lambda value;
(2) increment λ;
(3) set lambda2 value;
(4) run 10,000 MD steps.

The user should be reminded that by setting run 10000, 10,000 MD steps will be performed,
which includes the preliminary fepEquilSteps equilibration steps. This means that here, the
ensemble average of equation (31) will be computed over 5,000 MD steps.

Alternatively, λ–states may be declared explicitly, avoiding the use of Tcl scripting:
alchLambda 0.0
alchLambda2 0.1
run 10000

(1) set alchLambda value;
(2) set alchLambda2 value;
(3) run 10,000 MD steps.

This option is generally preferred to set up windows of diminishing widths as λ → 0 or 1 —
a way to circumvent end–point singularities caused by appearing atoms that may clash with their
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surroundings.
The following second input is proposed for the measuring via TI the free energy of a particle

insertion.

alch On # Enable alchemical simulation module
alchType ti # Set method to thermodynamic integration
alchFile ion.alch.pdb # PDB file with perturbation flags
alchCol B # Perturbation flags in Beta column
alchOutfile ion.ti.out
alchOutFreq 5
alchEquilSteps 5000

alchVdWShiftCoeff 1 # Enable soft-core vdW potential
alchElecLambdaStart 0.1 # Introduce electrostatics for lambda > 0.1
alchLambda 0
run 10000
alchLambda 0.00001
run 10000
alchLambda 0.0001
run 10000
alchLambda 0.001
run 10000
alchLambda 0.01
run 10000

set Lambda 0.1

while {$Lambda <= 0.9} {
alchLambda $Lambda
run 10000
set Lambda [expr $Lambda + 0.1]

}

alchLambda 0.99
run 10000
alchLambda 0.999
run 10000
alchLambda 0.9999
run 10000
alchLambda 0.99999
run 10000
alchLambda 1
run 10000

Robust sampling of the free energy of particle insertion is enabled by the use of soft-core van
der Waals scaling with the alchVdWShiftCoeff parameter, delayed introduction of electrostatics
with a non-zero alchElecLambdaStart value, and very gradual scaling of λ towards its end points.
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10.4 Description of a free energy calculation output

10.4.1 Free Energy Perturbation

When running FEP, the alchOutFile contains electrostatic and van der Waals energy data calcu-
lated for alchLambda and alchLambda2, written every alchOutFreq steps. The column dE is the
energy difference of the single configuration, dE avg and dG are the instantaneous ensemble average
of the energy and the calculated free energy at the time step specified in column 2, respectively.
The temperature is specified in the penultimate column. Upon completion of alchEquilSteps
steps, the calculation of dE avg and dG is restarted. The accumulated net free energy change is
written at each lambda value and at the end of the simulation.

Whereas the FEP module of NAMD supplies free energy differences determined from equa-
tion (30), the wealth of information available in alchOutFile may be utilized profitably to explore
different routes towards the estimation of ∆A. Both BAR and SOS methods, which combine
advantageously direct and reverse transformations to improve convergence and accuracy of the
calculation, represent relevant alternatives to brute–force application of the FEP formula [32].

Within the SOS framework, the free energy difference between states λi and λi+1 is expressed
as:

exp(−β∆Ai→i+1) =

〈
exp

{
−β

2
[H(x,px;λi+1)−H(x,px;λi)]

}〉
i〈

exp
{
−β

2
[H(x,px;λi)−H(x,px;λi+1)]

}〉
i+1

(33)

and can be readily used with the statistical information provided by the forward and the backward
runs.

10.4.2 Thermodynamic Integration

When running TI free energy calculations, the elec dU/dl and vdW dU/dl values reported in
tiOutFile are the derivatives of the internal energy with respect to λ — i.e. ∂U

∂λ for electro-
statics and, van der Waals, respectively. dU/dl values are averages over the last tiOutFreq steps.
Cumulative averages for each component are reported alongside in the avg columns.

The electrostatics and vdW are separated following a partition scheme — that is, the “appear-
ing” and the “disappearing” atoms are accounted for separately. “Partition 1” contains those atoms
whose interactions are switched up as λ increases — i.e. flagged with 1 in the alchFile. “Partition
2” represents those atoms whose interactions are switched down as λ increases — i.e. flagged with
-1. ∆A values for each component are obtained by integrating from λ = 0 to 1 using the respective
ELEC / VDW LAMBDA listed for each partition after the title.

Analysis is handled by the NAMD ti script, available from

http://www.ks.uiuc.edu/Research/namd/utilities/

Although the output format of NAMD ti.pl may appear to lend itself easily to interpretation
of the individual contributions to the free energy total (elec and vdW for each partition), this is
rarely appropriate as these values are path-dependent. For example, an output such as

|-----------------------------------------------|
| | elec | vdW | Subtotal |
|-----------------------------------------------|
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Figure 10: Sample TI data (log(
〈

∂U
∂λ

〉
) against λ). The blue shaded area shows the integral with

fine sampling close to the end point. The red area shows the difference when λ values are more
sparse. In this example, insufficient sampling before λ '0.1 can result in a large overestimation of
the integral. Beyond '0.2, sparser sampling is justified as dE/dλ is not changing quickly.

| Part. 1 | -0.5748 | -6.3452 | -6.9200 |
| Part. 2 | 0.5391 | 4.9387 | 5.4778 |
|-----------------------------------------------|
| Subtotal| 0.6048 | 0.3293 | -12.3978 |
|-----------------------------------------------|
Total deltaG for transition lambda 0 -> 1: -12.3978

may encourage interpretations along the lines of ”the free energy for switching on the van der Waals
interactions for the atoms of partition 1 was -6.35kcal/mol”. This is only correct in the very narrow
context of the simulation setup and parameters used in this case and is not informative in a broader
sense.

The choice of λ values will depend on the application, but in general it is important to examine
the shape of the curve to ensure that sampling is adequate to give a good estimate of the integral. In
particular, it will be necessary to sample more finely towards the end points in order to accurately
account for the strong repulsive van der Waals forces encountered when inserting particles into a
system (see Figure 10).
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11 Accelerated Sampling Methods

11.1 Locally enhanced sampling

Locally enhanced sampling (LES) [38, 41, 42] increases sampling and transition rates for a portion
of a molecule by the use of multiple non-interacting copies of the enhanced atoms. These enhanced
atoms experience an interaction (electrostatics, van der Waals, and covalent) potential that is
divided by the number of copies present. In this way the enhanced atoms can occupy the same
space, while the multiple instances and reduces barriers increase transition rates.

11.1.1 Structure generation

To use LES, the structure and coordinate input files must be modified to contain multiple copies of
the enhanced atoms. psfgen provides the multiply command for this purpose. NAMD supports
a maximum of 15 copies, which should be sufficient.

Begin by generating the complete molecular structure and guessing coordinates as described
in Sec. 4. As the last operation in your script, prior to writing the psf and pdb files, add the
multiply command, specifying the number of copies desired and listing segments, residues, or
atoms to be multiplied. For example, multiply 4 BPTI:56 BPTI:57 will create four copies of the
last two residues of segment BPTI. You must include all atoms to be enhanced in a single multiply
command in order for the bonded terms in the psf file to be duplicated correctly. Calling multiply
on connected sets of atoms multiple times will produce unpredictable results, as may running other
commands after multiply.

The enhanced atoms are duplicated exactly in the structure—they have the same segment,
residue, and atom names. They are distinguished only by the value of the B (beta) column in the
pdb file, which is 0 for normal atoms and varies from 1 to the number of copies created for enhanced
atoms. The enhanced atoms may be easily observed in VMD with the atom selection beta != 0.

11.1.2 Simulation

In practice, LES is a simple method used to increase sampling; no special output is generated. The
following parameters are used to enable LES:

• les < is locally enhanced sampling active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not LES is active.

lesFactor < number of LES images to use >
Acceptable Values: positive integer equal to the number of images present
Description: This should be equal to the factor used in multiply when creating the
structure. The interaction potentials for images is divided by lesFactor.

• lesReduceTemp < reduce enhanced atom temperature? >
Acceptable Values: on or off
Default Value: off
Description: Enhanced atoms experience interaction potentials divided by lesFactor.
This allows them to enter regions that would not normally be thermally accessible. If this
is not desired, then the temperature of these atoms may be reduced to correspond with the
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reduced potential. This option affects velocity initialization, reinititialization, reassignment,
and the target temperature for langevin dynamics. Langevin dynamics is recommended with
this option, since in a constant energy simulation energy will flow into the enhanced degrees
of freedom until they reach thermal equilibrium with the rest of the system. The reduced
temperature atoms will have reduced velocities as well, unless lesReduceMass is also enabled.

• lesReduceMass < reduce enhanced atom mass? >
Acceptable Values: on or off
Default Value: off
Description: Used with lesReduceTemp to restore velocity distribution to enhanced atoms.
If used alone, enhanced atoms would move faster than normal atoms, and hence a smaller
timestep would be required.

•

• lesFile < PDB file containing LES flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify the LES image number of each atom. If this parameter
is not specified, then the PDB file containing initial coordinates specified by coordinates is
used.

• lesCol < column of PDB file containing LES flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify the LES image number of each atom.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). A value of 0 in this column indicates
that the atom is not enhanced. Any other value should be a positive integer less than
lesFactor.

11.2 Replica exchange simulations

The lib/replica/ directory contains Tcl scripts that implement replica exchange for NAMD, using
a Tcl server and socket connections to drive a separate NAMD process for every replica used in the
simulation. Replica exchanges and energies are recorded in the potenergy.dat, realtemp.dat, and
targtemp.dat files written in the output directory. These can be viewed with, e.g., “xmgrace -nxy
....potenergy.dat” There is also a script to load the output into VMD and color each frame
according to target temperature. An example simulation folds a 66-atom model of a deca-alanine
helix in about 10 ns.

This implementation is designed to be modified by the user to implement exchanges of pa-
rameters other than temperature or via other temperature exchange methods. The scripts should
provide a good starting point for any simulation method requiring a number of loosely interacting
systems.

replica exchange.tcl is the master Tcl script for replica exchange simulations, it is run in
tclsh outside of NAMD and takes a replica exchange config file as an argument:

tclsh ../replica_exchange.tcl fold_alanin.conf
tclsh ../replica_exchange.tcl restart_1.conf
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replica exchange.tcl uses code in namd replica server.tcl, a general script for driving NAMD
slaves, and spawn namd.tcl, a variety of methods for launching NAMD slaves.

show replicas.vmd is a script for loading replicas into VMD; first source the replica exchange
conf file and then this script, then repeat for each restart conf file or for example just do “vmd -e
load all.vmd”. This script will likely destroy anything else you are doing in VMD at the time,
so it is best to start with a fresh VMD. clone reps.vmd provides the clone reps commmand to
copy graphical representation from the top molecule to all other molecules.

A replica exchange config file should define the following Tcl variables:

• num replicas, the number of replica simulations to use,

• min temp, the lowest replica target temperature,

• max temp, the highest replica target temperature,

• steps per run, the number of steps between exchange attempts,

• num runs, the number of runs before stopping (should be divisible by runs per frame ×
frames per restart).

• runs per frame, the number of runs between trajectory outputs,

• frames per restart, the number of frames between restart outputs,

• namd config file, the NAMD config file containing all parameters, needed for the simulation
except seed, langevin, langevinDamping, langevinTemp, outputEnergies, outputname,
dcdFreq, temperature, bincoordinates, binvelocities, or extendedSystem, which are
provided by replica exchange.tcl,

• output root, the directory/fileroot for output files,

• psf file, the psf file for show replicas.vmd,

• initial pdb file, the initial coordinate pdb file for show replicas.vmd,

• fit pdb file, the coodinates that frames are fit to by show replicas.vmd (e.g., a folded
structure),

• server port, the port to connect to the replica server on, and

• spawn namd command, a command from spawn namd.tcl and arguments to launch NAMD
jobs.

The lib/replica/example/ directory contains all files needed to fold a 66-atom model of a
deca-alanine helix:

• alanin base.namd, basic config options for NAMD,

• alanin.params, parameters,

• alanin.psf, structure,

• unfolded.pdb, initial coordinates,
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• alanin.pdb, folded structure for fitting in show replicas.vmd,

• fold alanin.conf, config file for replica exchange.tcl script,

• restart 1.conf, config file to continue alanin folding another 10 ns, and

• load all.vmd, load all output into VMD and color by target temperature.

The fold alanin.conf config file contains the following settings:

set num_replicas 8
set min_temp 300
set max_temp 600
set steps_per_run 1000
set num_runs 10000
set runs_per_frame 10
set frames_per_restart 10
set namd_config_file "alanin_base.namd"
set output_root "output/fold_alanin" ; # directory must exist
set psf_file "alanin.psf"
set initial_pdb_file "unfolded.pdb"
set fit_pdb_file "alanin.pdb"
set namd_bin_dir /Projects/namd2/bin/current/Linux64
set server_port 3177
set spawn_namd_command \

[list spawn_namd_ssh "cd [pwd]; [file join $namd_bin_dir namd2] +netpoll" \
[list beirut belfast] ]

11.3 Random acceleration molecular dynamics simulations

The ”lib/ramd” directory stores the tcl scripts and the example files for the implementation of the
Random Acceleration Molecular Dynamics (RAMD) simulation method in NAMD. The RAMD
method can be used to carry out molecular dynamics (MD) simulations with an additional randomly
oriented acceleration applied to the center of mass of one group of atoms (referred below as ”ligand”)
in the system. It can, for example, be used to identify egress routes for a ligand from a buried protein
binding site. Since its original implementation in the ARGOS (ref 1, 2) program, the method has
been also implemented in AMBER 8 (ref 3), and CHARMM (ref 4). The first implementation of
RAMD in NAMD using a tcl script (available as supplementary material in ref 6) provided only
limited functionality compared to the AMBER 8 implementation.

In the current implementation, the RAMD method can be performed in 2 flavors: (i) ”pure
RAMD simulations” in which the randomly-oriented acceleration is applied continuously, and (ii)
”combined RAMD-MD simulations” in which RAMD steps alternate with standard MD steps.
Additional information is found in the README file in the ”lib/ramd” directory. The user is
encouraged to carefully read this information before starting production runs.

The three required scripts are stored in ”lib/ramd/scripts”: (i) ramd–4.0.tcl defines the sim-
ulation parameters and passes them from the NAMD configuration file to the main script, (ii)
”ramd–4.0 script.tcl” adds the randomly oriented force and performs all related computations, and
(iii) ”vectors.tcl” was borrowed from VMD and defines the vector operations used.
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Two examples for running the scripts are included in the directory ”lib/ramd/examples”. The
user is encouraged to read the ”README.examples” file provided in the same directory.

In order to turn RAMD on, the line ”source /path/to/your/files/ramd–4.0.tcl” should be in-
cluded in the NAMD configuration file. Unless the user decides to store the scripts at a different
location, the path ”/path/to/your/files” should point to the ”lib/ramd/scripts” directory. Other-
wise, the user should make sure that the directory ”/path/to/your/files” stores all three scripts
described above.

The specific RAMD simulation parameters to be provided in the NAMD configuration file (listed
below) should be preceded by the keyword ”ramd”. The default values for these parameters are
only given as guidance. They are likely not to be suitable for other systems than those the scripts
were tested on.

• ramd debugLevel < Set debug level of RAMD >
Acceptable Values: integer value
Default Value: 0
Description: Activates verbose output if set to an integer greater than
0. Should be used only for testing purposes because the very dense output
is full of information only relevant for debugging.

ramd mdStart < Start RAMD-MD with MD or RAMD? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies if combined RAMD-MD simulation starts with MD or
RAMD steps; ignored if pure RAMD simulation is performed. Should be set to
"yes" if initial MD steps are desired.

• ramd ramdSteps < Set number steps in RAMD block >
Acceptable Values: positive integer
Default Value: 50
Description: Specifies the number of steps in 1 RAMD block; the simulations
are evaluated every ’ramdSteps’ steps.

• ramd mdSteps < Set number steps in MD block >
Acceptable Values: positive integer
Default Value: 0
Description: Specifies the number of steps in 1 standard MD block;
in combined RAMD-MD simulations, the RAMD blocks are evaluated every
’ramdSteps’, the MD blocks every ’mdSteps’ steps. Default of 0 gives pure
RAMD simulation.

• ramd accel < Set acceleration energy >
Acceptable Values: positive decimal
Default Value: 0.25
Description: Specifies acceleration in kcal/mol*A*amu to be applied during
RAMD step.

• ramd rMinRamd < Set threshold for distance traveled RAMD >
Acceptable Values: positive decimal
Default Value: 0.01
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Description: Specifies a threshold value for the distance in Angstroms
traveled by the ligand in 1 RAMD block. In pure RAMD simulations the
direction of the acceleration is changed if the ligand traveled less than
’rMinRamd’ Åin the evaluated block. In combined RAMD-MD simulations, a
switch from a RAMD block to a standard MD block is applied if the ligand
traveled more than ’rMinRamd’ Åin the evaluated block.

• ramd rMinMd < Set threshold for distance traveled in MD >
Acceptable Values: positive decimal
Description: Specifies a threshold value for the distance, in Angstroms,
traveled by accelerated atoms in 1 standard MD block. In combined RAMD-MD
simulations, a switch from a standard MD block to a RAMD block is applied
according to the criteria described in the note below. Required if ’mdStep’
is not 0; ignored if ’mdSteps’ is 0.

• ramd forceOutFreq < Set frequency of RAMD forces output >
Acceptable Values: positive integer, Must be divisor of both ramdSteps and
mdSteps
Default Value: 0
Description: Every ’forceOutFreq’ steps, detailed output of forces will
be written.

• ramd maxDist < Set center of mass separation >
Acceptable Values: positive decimal
Default Value: 50
Description: Specifies the distance in Angstroms between the the centers
of mass of the ligand and the protein when the simulation is stopped.

• ramd firstProtAtom < First index of protein atom >
Acceptable Values: positive integer
Default Value: 1
Description: Specifies the index of the first protein atom.

• ramd lastProtAtom < Last index of protein atom >
Acceptable Values: positive atom
Description: Specifies the index of the last protein atom.

• ramd firstRamdAtom < First index of ligand atom >
Acceptable Values: positive integer
Description: Specifies the index of the first ligand atom.

• ramd lastRamdAtom < Last index of ligand atom >
Acceptable Values: positive integer
Description: Specifies the index of the last ligand atom.

• ramd ramdSeed < Set RAMD seed >
Acceptable Values: positive integer
Default Value: 14253
Description: Specifies seed for the random number generator for generation
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of acceleration directions. Change this parameter if you wish to run
different trajectories with identical parameters.

Note: In combined RAMD-MD simulations, RAMD blocks alternate with standard MD blocks
(’ramdSteps’ and ’mdSteps’ input parameters). The switches between RAMD and MD blocks are
decided based on the following parameters: (i) ’d’ = the distance between the protein and ligand
centers of mass, (ii) ’dr’ = the distance traveled by the ligand in 1 RAMD block, and (iii) ’dm’
= the distance traveled by the ligand in 1 MD block. A switch from RAMD to MD is applied
if ’dr’ ¿ ’rRamdMin’. A switch from MD to RAMD is applied if: (i) ’dm’ ¡ ’rMdMin’ and ’d’ ¿
0 (acceleration direction is kept from previous RAMD block), (ii) if ’dm’ ¡ ’rMdMin’ and ’d’ ¡ 0
(acceleration direction is changed), (iii) if ’dm’ ¿ ’rMdMin’ and ’d’ ¡ 0 (acceleration direction is
changed). In all other case, a switch is not applied.
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12 Runtime Analysis

12.1 Pair interaction calculations

NAMD supportes the calculation of interaction energy calculations between two groups of atoms.
When enabled, pair interaction information will be calculated and printed in the standard output
file on its own line at the same frequency as energy output. The format of the line is PAIR
INTERACTION: STEP: step VDW FORCE: fx fy fz ELECT FORCE: fx fy fz. The displayed force is the
force on atoms in group 1 and is units of kcal/mol/Å.

For trajectory analysis the recommended way to use this set of options is to use the NAMD Tcl
scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD prints the energy
without performing any dynamics.

• pairInteraction < is pair interaction calculation active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether pair interaction calculation is active.

• pairInteractionFile < PDB file containing pair interaction flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify atoms to use for pair interaction calculations. If this
parameter is not specified, then the PDB file containing initial coordinates specified by
coordinates is used.

• pairInteractionCol < column of PDB file containing pair interaction flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify which atoms to use for pair interaction
calculations. This parameter may specify any of the floating point fields of the PDB file,
either X, Y, Z, occupancy, or beta-coupling (temperature-coupling).

• pairInteractionSelf < compute within-group interactions instead of bewteen groups >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute bonded and nonbonded interactions only
for atoms within group 1.

• pairInteractionGroup1 < Flag to indicate atoms in group 1? >
Acceptable Values: integer
Description:

• pairInteractionGroup2 < Flag to indicate atoms in group 2? >
Acceptable Values: integer
Description: These options are used to indicate which atoms belong to each interac-
tion group. Atoms with a value in the column specified by pairInteractionCol equal to
pairInteractionGroup1 will be assigned to group 1; likewise for group 2.
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12.2 Pressure profile calculations

NAMD supports the calculation of lateral pressure profiles as a function of the z-coordinate in the
system. The algorithm is based on that of Lindahl and Edholm (JCP 2000), with modifications to
enable Ewald sums based on Sonne et al (JCP 122, 2005).

The simulation space is partitioned into slabs, and half the virial due to the interaction between
two particles is assigned to each of the slabs containing the particles. This amounts to employing
the Harasima contour, rather than the Irving-Kirkwood contour, as was done in NAMD 2.5. The
diagonal components of the pressure tensor for each slab, averaged over all timesteps since the
previous output, are recorded in the NAMD output file. The units of pressure are the same as in
the regular NAMD pressure output; i.e., bar.

The total virial contains contributions from up to four components: kinetic energy, bonded
interactions, nonbonded interactions, and an Ewald sum. All but the Ewald sums are computed
online during a normal simulation run (this is a change from NAMD 2.5, when nonbonded contri-
butions to the Ewald sum were always computed offline). If the simulations are performed using
PME, the Ewald contribution should be estimated using a separate, offline calculation based on
the saved trajectory files. The nonbonded contribution using a cutoff different from the one used
in the simulation may also be computed offline in the same fashion as for Ewald, if desired.

Pressure profile calculations may be performed in either constant volume or constant pressure
conditions. If constant pressure is enabled, the slabs thickness will be rescaled along with the unit
cell; the dcdUnitCell option will also be switched on so that unit cell information is stored in the
trajectory file.

NAMD 2.6 now reports the lateral pressure partitioned by interaction type. Three groups are
reported: kinetic + rigid bond restraints (referred to as “internal”, bonded, and nonbonded. If
Ewald pressure profile calculations are active, the Ewald contribution is reported in the nonbonded
section, and no other contributions are reported.

NAMD 2.6 also permits the pressure profile to be partitioned by atom type. Up to 15 atom
groups may be assigned, and individual contribution of each group (for the “internal” pressures)
and the pairwise contributions of interactions within and between groups (for the nonbonded and
bonded pressures) are reported in the output file.

• pressureProfile < compute pressure profile >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute kinetic, bonded and nonbonded (but not
reciprocal space) contributions to the pressure profile. Results will be recorded in the NAMD
output file in lines with the format PRESSUREPROFILE: ts Axx Ayy Azz Bxx Byy Bzz ...
, where ts is the timestep, followed by the three diagonal components of the pressure tensor
in the first slab (the slab with lowest z), then the next lowest slab, and so forth. The output
will reflect the pressure profile averaged over all the steps since the last output.

NAMD also reports kinetic, bonded and nonbonded contributions separately, using the
same format as the total pressure, but on lines beginning with PPROFILEINTERNAL,
PPROFILEBONDED, and PPROFILENONBONDED.

• pressureProfileSlabs < Number of slabs in the spatial partition >
Acceptable Values: Positive integer
Default Value: 10
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Description: NAMD divides the entire periodic cell into horizontal slabs of equal thickness;
pressureProfileSlabs specifies the number of such slabs.

• pressureProfileFreq < How often to output pressure profile data >
Acceptable Values: Positive integer
Default Value: 1
Description: Specifies the number of timesteps between output of pressure profile data.

• pressureProfileEwald < Enable pressure profile Ewald sums >
Acceptable Values: on or off
Default Value: off
Description: When enabled, only the Ewald contribution to the pressure profile will be
computed. For trajectory analysis the recommended way to use this option is to use the
NAMD Tcl scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD
prints the pressure profile without performing any dynamics.

The Ewald sum method is as described in Sonne et al. (JCP 122, 2005). The number of k
vectors to use along each periodic cell dimension is specified by the pressureProfileEwaldn
parameters described below.

• pressureProfileEwaldX < Ewald grid size along X >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileEwaldY < Ewald grid size along Y >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileEwaldZ < Ewald grid size along Z >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileAtomTypes < Number of atom type partitions >
Acceptable Values: Positive integer
Default Value: 1
Description: If pressureProfileAtomTypes is greater than 1, NAMD will calculate the
separate contributions of each type of atom to the internal, bonded, nonbonded, and total
pressure. In the case of the internal contribution, there will be n pressure profile data sets
reported on each PPROFILEINTERNAL line, where n is the number of atom types. All the
partial pressures for atom type 1 will be followed by those for atom type 2, and so forth.
The other three pressure profile reports will contain n(n + 1)/2 data sets. For example, if
there are n = 3 atom types, the six data sets arising from the three inter-partition and the
three intra-partition interactions will be reported in the following order: 1–1, 1–2, 1–3, 2–2,
2–3, 3–3. The total pressure profile, reported on the PRESSUREPROFILE line, will contain the
internal contributions in the data sets corresponding to 1–1, 2–2, etc.
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• pressureProfileAtomTypesFile < Atom type partition assignments >
Acceptable Values: PDB file
Default Value: coordinate file
Description: If pressureProfileAtomTypes is greater than 1, NAMD will assign atoms
to types based on the corresponding value in pressureProfileAtomTypesCol. The type for
each atom must be strictly less than pressureProfileAtomTypes!

• pressureProfileAtomTypesCol < pressureProfileAtomTypesFile PDB column >
Acceptable Values: PDB file
Default Value: B
Description:

Here is an example snippet from a NAMD input that can be used to compute the Ewald
component of the pressure profile. It assumes that the coordinates were saved in the dcd file
pp03.dcd) every 500 timesteps.

Pme on
PmeGridSizeX 64
PmeGridSizeY 64
PmeGridSizeZ 64

exclude scaled1-4
1-4scaling 1.0

switching on
switchdist 9
cutoff 10
pairlistdist 11

pressureProfile on
pressureProfileSlabs 30
pressureProfileFreq 100
pressureProfileAtomTypes 6
pressureProfileAtomTypesFile atomtypes.pdb
pressureProfileEwald on
pressureProfileEwaldX 16
pressureProfileEwaldY 16
pressureProfileEwaldZ 16

set ts 0
firstTimestep $ts

coorfile open dcd pp03.dcd
while { [coorfile read] != -1 } {

incr ts 500
firstTimestep $ts
run 0
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}
coorfile close
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13 Translation between NAMD and X-PLOR configuration pa-
rameters

NAMD was designed to provide many of the same molecular dynamics functions that X-PLOR
provides. As such, there are many similarities between the types of parameters that must be
passed to both X-PLOR and NAMD. This section describes relations between similar NAMD and
X-PLOR parameters.

• NAMD Parameter: cutoff
X-PLOR Parameter: CTOFNB
When full electrostatics are not in use within NAMD, these parameters have exactly the
same meaning — the distance at which electrostatic and van der Waals forces are truncated.
When full electrostatics are in use within NAMD, the meaning is still very similar. The
van der Waals force is still truncated at the specified distance, and the electrostatic force is
still computed at every timestep for interactions within the specified distance. However, the
NAMD integration uses multiple time stepping to compute electrostatic force interactions
beyond this distance every stepspercycle timesteps.

• NAMD Parameter: vdwswitchdist
X-PLOR Parameter: CTONNB
Distance at which the van der Waals switching function becomes active.

• NAMD Parameter: pairlistdist
X-PLOR Parameter: CUTNb
Distance within which interaction pairs will be included in pairlist.

• NAMD Parameter: 1-4scaling
X-PLOR Parameter: E14Fac
Scaling factor for 1-4 pair electrostatic interactions.

• NAMD Parameter: dielectric
X-PLOR Parameter: EPS
Dielectric constant.

• NAMD Parameter: exclude
X-PLOR Parameter: NBXMod
Both parameters specify which atom pairs to exclude from non-bonded interactions. The
ability to ignore explicit exclusions is not present within NAMD, thus only positive values of
NBXMod have NAMD equivalents. These equivalences are

– NBXMod=1 is equivalent to exclude=none — no atom pairs excluded,

– NBXMod=2 is equivalent to exclude=1-2 — only 1-2 pairs excluded,

– NBXMod=3 is equivalent to exclude=1-3 — 1-2 and 1-3 pairs excluded,

– NBXMod=4 is equivalent to exclude=1-4 — 1-2, 1-3, and 1-4 pairs excluded,

– NBXMod=5 is equivalent to exclude=scaled1-4 — 1-2 and 1-3 pairs excluded, 1-4 pairs
modified.
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• NAMD Parameter: switching
X-PLOR Parameter: SHIFt, VSWItch, and TRUNcation
Activating the NAMD option switching is equivalent to using the X-PLOR options SHIFt
and VSWItch. Deactivating switching is equivalent to using the X-PLOR option TRUNcation.

• NAMD Parameter: temperature
X-PLOR Parameter: FIRSttemp
Initial temperature for the system.

• NAMD Parameter: rescaleFreq
X-PLOR Parameter: IEQFrq
Number of timesteps between velocity rescaling.

• NAMD Parameter: rescaleTemp
X-PLOR Parameter: FINAltemp
Temperature to which velocities are rescaled.

• NAMD Parameter: restartname
X-PLOR Parameter: SAVE
Filename prefix for the restart files.

• NAMD Parameter: restartfreq
X-PLOR Parameter: ISVFrq
Number of timesteps between the generation of restart files.

• NAMD Parameter: DCDfile
X-PLOR Parameter: TRAJectory
Filename for the position trajectory file.

• NAMD Parameter: DCDfreq
X-PLOR Parameter: NSAVC
Number of timesteps between writing coordinates to the trajectory file.

• NAMD Parameter: velDCDfile
X-PLOR Parameter: VELOcity
Filename for the velocity trajectory file.

• NAMD Parameter: velDCDfreq
X-PLOR Parameter: NSAVV
Number of timesteps between writing velocities to the trajectory file.

• NAMD Parameter: numsteps
X-PLOR Parameter: NSTEp
Number of simulation timesteps to perform.
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14 Sample configuration files

This section contains some simple example NAMD configuration files to serve as templates.
This file shows a simple configuration file for alanin. It performs basic dynamics with no output

files or special features.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# output params
outputname /tmp/alanin
binaryoutput no

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20
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This file is again for alanin, but shows a slightly more complicated configuration. The system
is periodic, a coordinate trajectory file and a set of restart files are produced.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

# output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20
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This file shows another simple configuration file for alanin, but this time with full electrostatics
using PME and multiple timestepping.

# protocol params
numsteps 1000

# initial config
coordinates alanin.pdb
temperature 300K
seed 12345

# periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

# output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

# integrator params
timestep 1.0
fullElectFrequency 4

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

# full electrostatics
PME on
PMEGridSizeX 32
PMEGridSizeY 32
PMEGridSizeZ 32
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This file demonstrates the analysis of a DCD trajectory file using NAMD. The file pair.pdb
contains the definition of pair interaction groups; NAMD will compute the interaction energy and
force between these groups for each frame in the DCD file. It is assumed that coordinate frames
were written every 1000 timesteps. See Sec. 12.1 for more about pair interaction calculations.

# initial config
coordinates alanin.pdb
temperature 0

# output params
outputname /tmp/alanin-analyze
binaryoutput no

# integrator params
timestep 1.0

# force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

# Atoms in group 1 have a 1 in the B column; group 2 has a 2.
pairInteraction on
pairInteractionFile pair.pdb
pairInteractionCol B
pairInteractionGroup1 1
pairInteractionGroup2 2

# First frame saved was frame 1000.
set ts 1000

coorfile open dcd /tmp/alanin.dcd

# Read all frames until nonzero is returned.
while { ![coorfile read] } {

# Set firstTimestep so our energy output has the correct TS.
firstTimestep $ts
# Compute energies and forces, but don’t try to move the atoms.
run 0
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incr ts 1000
}
coorfile close
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15 Running NAMD

NAMD runs on a variety of serial and parallel platforms. While it is trivial to launch a serial
program, a parallel program depends on a platform-specific library such as MPI to launch copies
of itself on other nodes and to provide access to a high performance network such as Myrinet or
InfiniBand if one is available.

For typical workstations (Windows, Linux, Mac OS X, or other Unix) with only ethernet net-
working (hopefully gigabit), NAMD uses the Charm++ native communications layer and the pro-
gram charmrun to launch namd2 processes for parallel runs (either exclusively on the local machine
with the ++local option or on other hosts as specified by a nodelist file). The namd2 binaries for
these platforms can also be run directly (known as standalone mode) for single process runs.

15.1 Individual Windows, Linux, Mac OS X, or Other Unix Workstations

Individual workstations use the same version of NAMD as workstation networks, but running
NAMD is much easier. If your machine has only one processor core you can run the any non-MPI
namd2 binary directly:

namd2 <configfile>

For multicore workstations, Windows and Mac OX X (Intel) released binaries are based on
“multicore” builds of Charm++ that can run multiple threads. These multicore builds lack a
network layer, so they can only be used on a single machine. The Solaris (Sparc and x86-64)
released binaries are based on “smp” builds of Charm++ that can be used with multiple threads
on either a single machine like a multicore build, or across a network. For best performance use
one thread per processor with the +p option:

namd2 +p<procs> <configfile>

For other multiprocessor workstations the included charmrun program is needed to run multiple
namd2 processes. The ++local option is also required to specify that only the local machine is
being used:

charmrun namd2 ++local +p<procs> <configfile>

You may need to specify the full path to the namd2 binary.

15.2 Linux Clusters with InfiniBand Or Other High-Performance Networks

Charm++ provides a special ibverbs network layer that uses InfiniBand networks directly through
the OpenFabrics OFED ibverbs library. This avoids efficiency and portability issues associated
with MPI. Look for pre-built ibverbs NAMD binaries or specify ibverbs when building Charm++.

Writing batch job scripts to run charmrun in a queueing system can be challenging. Since most
clusters provide directions for using mpiexec to launch MPI jobs, charmrun provides a ++mpiexec
option to use mpiexec to launch non-MPI binaries. If ”mpiexec -np procs ...” is not sufficient to
launch jobs on your cluster you will need to write an executable mympiexec script like the following
from TACC:
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#!/bin/csh
shift; shift; exec ibrun $*

The job is then launched (with full paths where needed) as:

charmrun +p<procs> ++mpiexec ++remote-shell mympiexec namd2 <configfile>

For workstation clusters and other massively parallel machines with special high-performance
networking, NAMD uses the system-provided MPI library (with a few exceptions) and standard
system tools such as mpirun are used to launch jobs. Since MPI libraries are very often incompatible
between versions, you will likely need to recompile NAMD and its underlying Charm++ libraries
to use these machines in parallel (the provided non-MPI binaries should still work for serial runs.)
The provided charmrun program for these platforms is only a script that attempts to translate
charmrun options into mpirun options, but due to the diversity of MPI libraries it often fails to
work.

15.3 Linux or Other Unix Workstation Networks

The same binaries used for individual workstations as described above (other than pure “multicore”
builds and MPI builds) can be used with charmrun to run in parallel on a workstation network.
The only difference is that you must provide a “nodelist” file listing the machines where namd2
processes should run, for example:

group main
host brutus
host romeo

The “group main” line defines the default machine list. Hosts brutus and romeo are the two
machines on which to run the simulation. Note that charmrun may run on one of those machines,
or charmrun may run on a third machine. All machines used for a simulation must be of the same
type and have access to the same namd2 binary.

By default, the “rsh” command is used to start namd2 on each node specified in the nodelist
file. You can change this via the CONV RSH environment variable, i.e., to use ssh instead of
rsh run “setenv CONV RSH ssh” or add it to your login or batch script. You must be able
to connect to each node via rsh/ssh without typing your password; this can be accomplished
via a .rhosts files in your home directory, by an /etc/hosts.equiv file installed by your sysadmin,
or by a .ssh/authorized keys file in your home directory. You should confirm that you can run
“ssh hostname pwd” (or “rsh hostname pwd”) without typing a password before running NAMD.
Contact your local sysadmin if you have difficulty setting this up. If you are unable to use rsh
or ssh, then add “setenv CONV DAEMON” to your script and run charmd (or charmd faceless,
which produces a log file) on every node.

You should now be able to try running NAMD as:

charmrun namd2 +p<procs> <configfile>

If this fails or just hangs, try adding the ++verbose option to see more details of the startup
process. You may need to specify the full path to the namd2 binary. Charmrun will start the
number of processes specified by the +p option, cycling through the hosts in the nodelist file as
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many times as necessary. You may list multiprocessor machines multiple times in the nodelist file,
once for each processor.

You may specify the nodelist file with the “++nodelist” option and the group (which defaults
to “main”) with the “++nodegroup” option. If you do not use “++nodelist” charmrun will first
look for “nodelist” in your current directory and then “.nodelist” in your home directory.

Some automounters use a temporary mount directory which is prepended to the path returned
by the pwd command. To run on multiple machines you must add a “++pathfix” option to your
nodelist file. For example:

group main ++pathfix /tmp\_mnt /
host alpha1
host alpha2

There are many other options to charmrun and for the nodelist file. These are documented at
in the Charm++ Installation and Usage Manual available at http://charm.cs.uiuc.edu/manuals/
and a list of available charmrun options is available by running charmrun without arguments.

If your workstation cluster is controlled by a queueing system you will need build a nodelist
file in your job script. For example, if your queueing system provides a HOST FILE environment
variable:

set NODES = ‘cat $HOST_FILE‘
set NODELIST = $TMPDIR/namd2.nodelist
echo group main >! $NODELIST
foreach node ( $nodes )

echo host $node >> $NODELIST
end
@ NUMPROCS = 2 * $#NODES
charmrun namd2 +p$NUMPROCS ++nodelist $NODELIST <configfile>

Note that NUMPROCS is twice the number of nodes in this example. This is the case for
dual-processor machines. For single-processor machines you would not multiply $#NODES by
two.

Note that these example scripts and the setenv command are for the csh or tcsh shells. They
must be translated to work with sh or bash.

15.4 Windows Workstation Networks

These are no longer supported, but NAMD has been reported to compile on Windows HPC Server.

15.5 SGI Altix

Be sure that the MPI DSM DISTRIBUTE environment variable is set, then use the Linux-Itanium-
MPI-Altix version of NAMD along with the system mpirun:

mpirun -np <procs> <configfile>
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15.6 IBM POWER Clusters

Run the MPI version of NAMD as you would any POE program. The options and environment
variables for poe are various and arcane, so you should consult your local documentation for rec-
ommended settings. As an example, to run on Blue Horizon one would specify:

poe namd2 <configfile> -nodes <procs/8> -tasks_per_node 8

15.7 CUDA GPU Acceleration

NAMD only uses the GPU for nonbonded force evaluation. Energy evaluation is done on the
CPU. To benefit from GPU acceleration you should set outputEnergies to 100 or higher in the
simulation config file. Some features are unavailable in CUDA builds, including alchemical free
energy perturbation and non-isotropic (flexible cell) pressure control (the scalar pressure is correct
but the pressure tensor is incorrect).

As this is a new feature you are encouraged to test all simulations before beginning production
runs. Forces evaluated on the GPU differ slightly from a CPU-only calculation, an effect more
visible in reported scalar pressure values than in energies.

To benefit from GPU acceleration you will need a CUDA build of NAMD and a recent high-
end NVIDIA video card. CUDA builds will not function without a CUDA-capable GPU. You will
also need to be running the NVIDIA Linux driver version 195.17 or newer (NAMD 2.7b3 released
binaries are built with CUDA 2.3, but can be built with 3.0 or 3.1 as well).

Finally, the libcudart.so.2 included with the binary (the one copied from the version of CUDA it
was built with) must be in a directory in your LD LIBRARY PATH before any other libcudart.so
libraries. For example:

setenv LD_LIBRARY_PATH ".:$LD_LIBRARY_PATH"
(or LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH"; export LD_LIBRARY_PATH)
./namd2 +idlepoll <configfile>
./charmrun ++local +p4 ./namd2 +idlepoll <configfile>

When running CUDA NAMD always add +idlepoll to the command line. This is needed to
poll the GPU for results rather than sleeping while idle.

Each namd2 process can use only one GPU. Therefore you will need to run at least one process
for each GPU you want to use. Multiple processes can share a single GPU, usually with an increase
in performance. NAMD will automatically distribute processes equally among the GPUs on a node.
Specific GPU device IDs can be requested via the +devices argument on the namd2 command line,
for example:

./charmrun ++local +p4 ./namd2 +idlepoll +devices 0,2 <configfile>

Devices are selected cyclically from those available, so in the above example processes 0 and 2
will share device 0 and processes 1 and 3 will share device 2. One could also specify +devices 0,0,2,2
to cause device 0 to be shared by processes 0 and 1, etc. GPUs with two or fewer multiprocessors
are ignored unless specifically requested with +devices.

While charmrun with ++local will preserve LD LIBRARY PATH, normal charmrun does not.
You can use charmrun ++runscript to add the namd2 directory to LD LIBRARY PATH with the
following executable runscript:
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#!/bin/csh
setenv LD_LIBRARY_PATH "${1:h}:$LD_LIBRARY_PATH"
$*

For example:

./charmrun ++runscript ./runscript +p8 ./namd2 +idlepoll <configfile>

An InfiniBand network is highly recommended when running CUDA-accelerated NAMD across
multiple nodes. You will need either an ibverbs NAMD binary (available for download) or an
MPI NAMD binary (must build Charm++ and NAMD as described above) to make use of the
InfiniBand network.

The CUDA (NVIDIA’s graphics processor programming platform) code in NAMD is completely
self-contained and does not use any of the CUDA support features in Charm++. When building
NAMD with CUDA support you should use the same Charm++ you would use for a non-CUDA
build. Do NOT add the cuda option to the Charm++ build command line. The only changes to
the build process needed are to add –with-cuda and possibly –cuda-prefix ... to the NAMD config
command line.

15.8 Memory Usage

NAMD has traditionally used less than 100MB of memory even for systems of 100,000 atoms. With
the reintroduction of pairlists in NAMD 2.5, however, memory usage for a 100,000 atom system
with a 12A cutoff can approach 300MB, and will grow with the cube of the cutoff. This extra
memory is distributed across processors during a parallel run, but a single workstation may run
out of physical memory with a large system.

To avoid this, NAMD now provides a pairlistMinProcs config file option that specifies the
minimum number of processors that a run must use before pairlists will be enabled (on fewer
processors small local pairlists are generated and recycled rather than being saved, the default is
“pairlistMinProcs 1”). This is a per-simulation rather than a compile time option because memory
usage is molecule-dependent.

Additional information on reducing memory usage may be found at
http://www.ks.uiuc.edu/Research/namd/wiki/index.cgi?NamdMemoryReduction

15.9 Improving Parallel Scaling

While NAMD is designed to be a scalable program, particularly for simulations of 100,000 atoms
or more, at some point adding additional processors to a simulation will provide little or no extra
performance. If you are lucky enough to have access to a parallel machine you should measure
NAMD’s parallel speedup for a variety of processor counts when running your particular simulation.
The easiest and most accurate way to do this is to look at the “Benchmark time:” lines that are
printed after 20 and 25 cycles (usually less than 500 steps). You can monitor performance during
the entire simulation by adding “outputTiming steps” to your configuration file, but be careful to
look at the “wall time” rather than “CPU time” fields on the “TIMING:” output lines produced.
For an external measure of performance, you should run simulations of both 25 and 50 cycles (see
the stepspercycle parameter) and base your estimate on the additional time needed for the longer
simulation in order to exclude startup costs and allow for initial load balancing.
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We provide both standard (UDP) and TCP based precompiled binaries for Linux clusters. We
have observed that the TCP version is better on our dual processor clusters with gigabit ethernet
while the basic UDP version is superior on our single processor fast ethernet cluster. When using
the UDP version with gigabit you can add the +giga option to adjust several tuning parameters.
Additional performance may be gained by building NAMD against an SMP version of Charm++
such as net-linux-smp or net-linux-smp-icc. This will use a communication thread for each process
to respond to network activity more rapidly. For dual processor clusters we have found it that
running two separate processes per node, each with its own communication thread, is faster than
using the charmrun ++ppn option to run multiple worker threads. However, we have observed that
when running on a single hyperthreaded processor (i.e., a newer Pentium 4) there is an additional
15% boost from running standalone with two threads (namd2 +p2) beyond running two processors
(charmrun namd2 ++local +p2). For a cluster of single processor hyperthreaded machines an SMP
version should provide very good scaling running one process per node since the communication
thread can run very efficiently on the second virtual processor. We are unable to ship an SMP
build for Linux due to portability problems with the Linux pthreads implementation needed by
Charm++.

Extremely short cycle lengths (less than 10 steps) will also limit parallel scaling, since the atom
migration at the end of each cycle sends many more messages than a normal force evaluation.
Increasing pairlistdist from, e.g., cutoff + 1.5 to cutoff + 2.5, while also doubling stepspercycle
from 10 to 20, may increase parallel scaling, but it is important to measure. When increasing
stepspercycle, also try increasing pairlistspercycle by the same proportion.

NAMD should scale very well when the number of patches (multiply the dimensions of the
patch grid) is larger or rougly the same as the number of processors. If this is not the case, it may
be possible to improve scaling by adding “twoAwayX yes” to the config file, which roughly doubles
the number of patches. (Similar options twoAwayY and twoAwayZ also exist, and may be used in
combination, but this greatly increases the number of compute objects. twoAwayX has the unique
advantage of also improving the scalability of PME.)

Additional performance tuning suggestions and options are described at
http://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning
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16 NAMD Availability and Installation

NAMD is distributed freely for non-profit use. NAMD 2.7b3 is based on the Charm++ messaging
system and the Converse communication layer (http://charm.cs.uiuc.edu/) which have been
ported to a wide variety of parallel platforms. This section describes how to obtain and install
NAMD 2.7b3.

16.1 How to obtain NAMD

NAMD may be downloaded from http://www.ks.uiuc.edu/Research/namd/. You will be re-
quired to provide minimal registration information and agree to a license before receiving access to
the software. Both source and binary distributions are available.

16.2 Platforms on which NAMD will currently run

NAMD should be portable to any parallel platform with a modern C++ compiler to which Charm
and Converse have been ported. Precompiled NAMD 2.7b3 binaries are available for download for
the following platforms:

• Windows (XP, etc.) on x86 processors

• Mac OS X on PowerPC and Intel processors

• Linux on x86, x86-64, and Itanium processors

• SGI Altix (with MPI)

• AIX on POWER processors (with and without MPI)

• Solaris on Sparc and x86-64 processors

NAMD has been ported to the Cray XT for both Catamount and compute-node Linux, but the
lack of dynamic linking on this platform often results in the need to recompile NAMD after system
upgrades so we are unable to distribute useful binaries.

NAMD has been ported to the IBM Blue Gene L and P, but we do not have regular access to
these machines. Binaries provided by IBM may be available for download from our website.

16.3 Compiling NAMD

We provide complete and optimized binaries for all platforms to which NAMD has been ported. It
should not be necessary for you to compile NAMD unless you wish to add or modify features or to
improve performance by using an MPI library that takes advantage of special networking hardware.

Directions for compiling NAMD are contained in the release notes, which are available from the
NAMD web site http://www.ks.uiuc.edu/Research/namd/ and are included in all distributions.

16.4 Documentation

All available NAMD documentation is available for download without registration via the NAMD
web site http://www.ks.uiuc.edu/Research/namd/.
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1-4scaling parameter, 45

alchCol parameter, 126
alchDecouple parameter, 128
alchElecLambdaStart parameter, 126
alchEquilSteps parameter, 125
alchFile parameter, 125
alchLambda parameter, 125
alchLambda2 parameter, 125
alchOn parameter, 125
alchOutFile parameter, 126
alchOutFreq parameter, 126
alchType parameter, 125
alchVdwLambdaEnd parameter, 127
alchVdwShiftCoeff parameter, 126
alias psfgen command, 35, 39
amber parameter, 24
ambercoor parameter, 24
analysis parameter, 93
angleRef parameter, 104
angleTol parameter, 105
applyBias parameter, 114
atomNameResidueRange parameter, 106
atomNumbers parameter, 106
atomNumbersRange parameter, 106
Atoms moving too fast, 70
atoms parameter, 101
atomsCol parameter, 107
atomsColValue parameter, 107
atomsFile parameter, 107
auto psfgen command, 36
axis parameter, 99

Bad global exclusion count, 70
BerendsenPressure parameter, 65
BerendsenPressureCompressibility parame-

ter, 66
BerendsenPressureFreq parameter, 66
BerendsenPressureRelaxationTime parame-

ter, 66
BerendsenPressureTarget parameter, 66
binaryoutput parameter, 21
binaryrestart parameter, 22
bincoordinates parameter, 21

binvelocities parameter, 21
BOUNDARY energy, 23

callback command, 16
cellBasisVector1 parameter, 53
cellBasisVector2 parameter, 53
cellBasisVector3 parameter, 53
cellOrigin parameter, 53
centerReference parameter, 107
centers parameter, 119
checkpoint command, 17
closestToQuaternion parameter, 103
colvars parameter, 91, 111
colvarsConfig parameter, 91
colvarsInput parameter, 91
colvarsRestartFrequency parameter, 93
colvarsTrajAppend parameter, 93
colvarsTrajFrequency parameter, 93
COMmotion parameter, 58
componentCoeff parameter, 105
componentExp parameter, 105
consexp parameter, 51
consForceFile parameter, 73
consForceScaling parameter, 73
conskcol parameter, 51
conskfile parameter, 51
consref parameter, 51
constantForce parameter, 73
constraints parameter, 51
constraintScaling parameter, 51
coord psfgen command, 39
coordinates parameter, 20
coordpdb psfgen command, 39
coorfile command, 17
corrFunc parameter, 109
corrFuncLength parameter, 110
corrFuncNormalize parameter, 110
corrFuncOffset parameter, 110
corrFuncOutputFile parameter, 110
corrFuncStride parameter, 110
corrFuncType parameter, 109
corrFuncWithColvar parameter, 109
cutoff parameter, 43, 100
cutoff3 parameter, 100
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cwd parameter, 21
cylindricalBC parameter, 55
cylindricalBCAxis parameter, 55
cylindricalBCCenter parameter, 55
cylindricalBCexp1 parameter, 56
cylindricalBCexp2 parameter, 56
cylindricalBCk1 parameter, 56
cylindricalBCk2 parameter, 56
cylindricalBCl1 parameter, 56
cylindricalBCl2 parameter, 56
cylindricalBCr1 parameter, 55
cylindricalBCr2 parameter, 56

DCDfile parameter, 22
DCDfreq parameter, 22
DCDUnitCell parameter, 22
delatom psfgen command, 37
dielectric parameter, 45
disableForces parameter, 108
dummyAtom parameter, 107
dumpFreeEnergyFile parameter, 117

eField parameter, 73
eFieldOn parameter, 73
error message

Atoms moving too fast, 70
Bad global exclusion count, 70

exclude parameter, 45
ExcludeFromPressure parameter, 68
ExcludeFromPressureCol parameter, 68
ExcludeFromPressureFile parameter, 68
expandBoundaries parameter, 95
expDenom parameter, 100
expNumer parameter, 100
extCoordFilename parameter, 89
extendedFluctuation parameter, 97
extendedLagrangian parameter, 97
extendedSystem parameter, 53
extendedTimeConstant parameter, 97
extForceFilename parameter, 89
extForces parameter, 89
extForcesCommand parameter, 89

FFTWEstimate parameter, 47
FFTWUseWisdom parameter, 47
FFTWWisdomFile parameter, 47
first psfgen command, 36
firsttimestep parameter, 58

fixedAtoms parameter, 52
fixedAtomsCol parameter, 52
fixedAtomsFile parameter, 52
fixedAtomsForces parameter, 52
FMA parameter, 48
FMAFFT parameter, 49
FMAFFTBlock parameter, 49
FMALevels parameter, 49
FMAMp parameter, 49
FMAtheta parameter, 49
forceConstant parameter, 119
FullDirect parameter, 48
fullElectFrequency parameter, 59
fullSamples parameter, 113

GPRESSAVG, 23
GPRESSURE, 23
gridsUpdateFrequency parameter, 117
grocoorfile parameter, 27
gromacs parameter, 26
grotopfile parameter, 27
group1 parameter, 98
group2 parameter, 98
group2CenterOnly parameter, 100
guesscoord psfgen command, 39

hBondCoeff parameter, 104
hBondCutoff parameter, 105
hBondExpDenom parameter, 105
hBondExpNumer parameter, 105
hgroupCutoff (Å) parameter, 71
hideJacobian parameter, 113
hillWeight parameter, 116
hillWidth parameter, 116

IMDfreq parameter, 82
IMDignore parameter, 82
IMDon parameter, 81
IMDport parameter, 81
IMDwait parameter, 82
inputPrefix parameter, 113

keepHills parameter, 117

langevin parameter, 61
langevinCol parameter, 61
langevinDamping parameter, 61
langevinFile parameter, 61
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langevinHydrogen parameter, 61
LangevinPiston parameter, 67
LangevinPistonDecay parameter, 67
LangevinPistonPeriod parameter, 67
LangevinPistonTarget parameter, 67
LangevinPistonTemp parameter, 67
langevinTemp parameter, 61
last psfgen command, 36
les parameter, 132
lesCol parameter, 133
lesFactor parameter, 132
lesFile parameter, 133
lesReduceMass parameter, 133
lesReduceTemp parameter, 132
limitdist parameter, 46
LJcorrection parameter, 46
longSplitting parameter, 60
loweAndersen parameter, 63
loweAndersenCutoff parameter, 64
loweAndersenRate parameter, 64
loweAndersenTemp parameter, 64
lowerBoundary parameter, 95
lowerWall parameter, 96
lowerWallConstant parameter, 96

main parameter, 98
margin parameter, 71
margin violations, 69
maximumMove parameter, 57
measure command, 17
mergeCrossterms parameter, 23
mgridforce parameter, 75
mgridforcechargecol parameter, 75
mgridforcecol parameter, 75
mgridforcecont1 parameter, 76
mgridforcecont2 parameter, 76
mgridforcecont3 parameter, 76
mgridforcefile parameter, 75
mgridforcepotfile parameter, 75
mgridforcescale parameter, 75
mgridforcevoff parameter, 76
mgridforcevolts parameter, 75
minBabyStep parameter, 57
minimization parameter, 57
minimize command, 16
minLineGoal parameter, 57
minTinyStep parameter, 57

MISC energy, 23
molly parameter, 60
mollyIterations parameter, 60
mollyTolerance parameter, 60
movingConstraints parameter, 77
movingConsVel parameter, 77
MTSAlgorithm parameter, 60
multipleReplicas parameter, 118
multiply psfgen command, 37
mutate psfgen command, 37

name parameter, 95, 111, 116
newHillFrequency parameter, 116
nonbondedFreq parameter, 59
nonbondedScaling parameter, 45
numsteps parameter, 57

oneSiteSystemForce parameter, 98, 99
OPLS, 46
output command, 16
outputAppliedForce parameter, 96
outputEnergies parameter, 23
outputFreq parameter, 113, 120
outputMomenta parameter, 23
outputname parameter, 21
outputPairlists parameter, 72
outputPressure parameter, 23
outputSystemForce parameter, 96
outputTiming parameter, 24
outputValue parameter, 96
outputVelocity parameter, 96

pairInteraction parameter, 139
pairInteractionCol parameter, 139
pairInteractionFile parameter, 139
pairInteractionGroup1 parameter, 139
pairInteractionGroup2 parameter, 139
pairInteractionSelf parameter, 139
pairlistdist parameter, 70
pairlistGrow parameter, 72
pairlistMinProcs parameter, 71
pairlistShrink parameter, 72
pairlistsPerCycle parameter, 71
pairlistTrigger parameter, 72
parameters parameter, 20
paraTypeCharmm parameter, 20
paraTypeXplor parameter, 20
parmfile parameter, 24
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patch psfgen command, 37
pdb psfgen command, 36
pdbalias atom psfgen command, 39
pdbalias residue psfgen command, 35
PME parameter, 46
PMEGridSizeX parameter, 47
PMEGridSizeY parameter, 47
PMEGridSizeZ parameter, 47
PMEGridSpacing parameter, 47
PMEInterpOrder parameter, 46
PMEProcessors parameter, 47
PMETolerance parameter, 46
PRESSAVG, 23
pressureProfile parameter, 140
pressureProfileAtomTypes parameter, 141
pressureProfileAtomTypesCol parameter, 142
pressureProfileAtomTypesFile parameter,

142
pressureProfileEwald parameter, 141
pressureProfileEwaldX parameter, 141
pressureProfileEwaldY parameter, 141
pressureProfileEwaldZ parameter, 141
pressureProfileFreq parameter, 141
pressureProfileSlabs parameter, 140
print command, 16
psfcontext create psfgen command, 38
psfcontext delete psfgen command, 38
psfcontext eval psfgen command, 38
psfcontext psfgen command, 38
psfcontext reset psfgen command, 38
psfcontext stats psfgen command, 38
psfSegID parameter, 104, 106

ramd accel parameter, 136
ramd debugLevel parameter, 136
ramd firstProtAtom parameter, 137
ramd firstRamdAtom parameter, 137
ramd forceOutFreq parameter, 137
ramd lastProtAtom parameter, 137
ramd lastRamdAtom parameter, 137
ramd maxDist parameter, 137
ramd mdStart parameter, 136
ramd mdSteps parameter, 136
ramd ramdSeed parameter, 137
ramd ramdSteps parameter, 136
ramd rMinMd parameter, 137
ramd rMinRamd parameter, 136

readexclusions parameter, 24
readpsf psfgen command, 39
reassignFreq parameter, 63
reassignHold parameter, 63
reassignIncr parameter, 63
reassignTemp parameter, 63
rebinGrids parameter, 117
ref parameter, 98
ref2 parameter, 98
refPositions parameter, 101, 107
refPositionsCol parameter, 102, 108
refPositionsColValue parameter, 102, 108
refPositionsFile parameter, 101, 108
refPositionsGroup parameter, 108
regenerate psfgen command, 37
reinitvels command, 17
reloadCharges command, 17
replica exchange, 133
replicaFilesRegistry parameter, 118
replicaID parameter, 118
replicaUpdateFrequency parameter, 118
rescaleFreq parameter, 62
rescaleTemp parameter, 63
rescalevels command, 17
resetpsf psfgen command, 38
residue psfgen command, 36
residueRange parameter, 104
restartfreq parameter, 22
restartname parameter, 21
restartsave parameter, 22
rigidBonds parameter, 50
rigidDieOnError parameter, 50
rigidIterations parameter, 50
rigidTolerance parameter, 50
rotateReference parameter, 107
rotConsAxis parameter, 78
rotConsPivot parameter, 78
rotConstraints parameter, 78
rotConsVel parameter, 78
run command, 16
runAve parameter, 110
runAveLength parameter, 110
runAveOutputFile parameter, 110
runAveStride parameter, 110

saveFreeEnergyFile parameter, 117
scnb parameter, 24
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seed parameter, 58
segment psfgen command, 35
selectConstraints parameter, 51
selectConstrX parameter, 52
selectConstrY parameter, 52
selectConstrZ parameter, 52
SMD parameter, 81
SMDDir parameter, 81
SMDFile parameter, 81
SMDk parameter, 81
SMDOutputFreq parameter, 81
SMDVel parameter, 81
source command, 16
sphericalBC parameter, 54
sphericalBCCenter parameter, 54
sphericalBCexp1 parameter, 55
sphericalBCexp2 parameter, 55
sphericalBCk1 parameter, 54
sphericalBCk2 parameter, 55
sphericalBCr1 parameter, 54
sphericalBCr2 parameter, 55
splitPatch parameter, 71
stepspercycle parameter, 71
StrainRate parameter, 68
structure parameter, 20
SurfaceTensionTarget parameter, 68
switchdist parameter, 45
switching parameter, 44

targetCenters parameter, 119
targetForceConstant parameter, 119
targetForceExponent parameter, 120
targetNumStages parameter, 120
targetNumSteps parameter, 120
tclBC parameter, 86
tclBCArgs parameter, 86
tclBCScript parameter, 86
tclForces parameter, 82
tclForcesScript parameter, 82
tCouple parameter, 62
tCoupleCol parameter, 62
tCoupleFile parameter, 62
tCoupleTemp parameter, 62
TEMPAVG, 23
temperature parameter, 58
timestep parameter, 57
TMD parameter, 79

TMDFile parameter, 79
TMDFinalRMSD parameter, 80
TMDFirstStep parameter, 79
TMDInitialRMSD parameter, 80
TMDk parameter, 79
TMDLastStep parameter, 79
TMDOutputFreq parameter, 79
topology psfgen command, 35
TOTAL2 energy, 23
TOTAL3 energy, 23
twoAwayX, 156
twoAwayY, 156
twoAwayZ, 156

units used for output, 23
upperBoundary parameter, 95
upperWall parameter, 96
upperWallConstant parameter, 96
useConstantArea parameter, 65
useConstantRatio parameter, 65
useDPME parameter, 48
useFlexibleCell parameter, 65
useGrids parameter, 117
useGroupPressure parameter, 65
useSettle parameter, 50

vdwForceSwitching parameter, 44
vdwGeometricSigma parameter, 45
vector parameter, 102
vectorCol parameter, 102
vectorColValue parameter, 103
vectorFile parameter, 102
velDCDfile parameter, 22
velDCDfreq parameter, 23
velocities parameter, 20
velocityQuenching parameter, 57

waterModel parameter, 50
width parameter, 95
wrapAll parameter, 54
wrapNearest parameter, 54
wrapWater parameter, 54
writeHillsTrajectory parameter, 118
writepdb psfgen command, 40
writepsf psfgen command, 39

XSTfile parameter, 53
XSTfreq parameter, 53
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zeroMomentum parameter, 58
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