
© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

HPC Runtime Software

ET International
Rishi Khan

SC’11

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Current Programming Models

•  Shared Memory Multiprocessing
 OpenMP – fork/join model
 Pthreads – Arbitrary SMP parallelism (but hard to program/

debug)
 Cilk – Work Stealing (only good for recursive parallelism)

•  Distributed Memory Multiprocessing
 MPI – Bulk synchronous Parallelism
 SHMEM, UPC - PGAS

•  Hybrid Models
 MPI + OpenMP (needed to get performance on multi-core,

multi-node systems)
•  Heterogeneous Accelerator Parallelism

 CUDA, OpenCL

2

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Problem Statement

1.  Heterogeneous systems require multiple
languages and programming models

•  e.g. MPI across nodes, OpenMP across cores, OpenCL
across GPUs

2.  Current programming models are based on the
idea of ‘communicating sequential
processes’ (CSP)

•  Difficult to program and debug.
•  Difficult to express dynamic parallelism
•  Does not take advantage of dynamic availability of

resources
•  Extremely hard to exploit programs with irregular and/or global

data accesses

3

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

MPI, OpenMP, OpenCL New Runtime Systems

§  Asynchronous Event-Driven Tasks
§  Dependencies
§  Constraints
§  Resources
§  Active Messages

VS.

§  Communicating Turing Machines
§  Bulk Synchronous
§  Message Passing

T
im

e

T
im

e

Active threads

Waiting

Runtime System Comparisons

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Solution

•  Express program as tasks with runtime dependencies
and constraints
 Data: input arguments
 Control: must run before/after certain tasks
 Resource: locks, CPU or GPU, etc

•  Tasks can run to completion once all runtime
dependencies and constraints are met

•  Runtime system determines which tasks to run based
on runtime resource availability.

•  ETI implements this solution in a technology called
“SWARM”

5

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

•  SWift Adaptive Runtime Machine (SWARM):
 Runtime system for heterogeneous large-scale systems
 Implements an execution model based on specially tagged tasks:

•  Non-preemptible pieces of code.
•  Tagged with dependences, constraints, and resource

demands.
•  Scheduled when all dependencies and constraints are

satisfied.
•  Once scheduled, runs to completion in a non-blocking fashion.
•  These non-blocking tagged tasks are called codelets.

•  Goal:
 Unified runtime system for heterogeneous distributed parallel

systems
 Supplant and synergize the separate abilities of MPI, OpenMP,

and OpenCL.

What is SWARM?

6

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

How does SWARM achieve its goals?

•  Two-level threading system
 First level are heavy-weight and bound to processing resource
 Second level light-weight threads run non-preemptively

•  Object-oriented design which is easily extended to new
architectures and heterogeneous systems
 Working across cores and nodes and heterogeneous devices

•  All runtime resources are accessed through split-phase
non-blocking asynchronous operations
 The result of puts/gets are scheduled later using asynchronous

callbacks

•  Takes a dynamic view of the computation and the
machine
  in contrast to static mapping found in current programming models

7

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Tasks mapped
to resources

CPU CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

GPU

GPU

Enabled Tasks Tasks with Unsatisfied Dependencies

Dependencies
satisfied

Resources in Use

CPU

GPU

SWARM

Resources allocated

Tasks enabled

Available Resources

Resources released

SWARM Execution Overview

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Runtime Resource Access

•  All communication is through asynchronous split-
phase transactions between resources, e.g.:
 Async procedure call: put/get into procedure resources
 Data storage: put/get to storage resource

•  Two basic resource access patterns:
 Producer passes key to consumer

 Producer and consumer know resource key a priori

9

Producer

Consumer

put

key get(key) Callback

Callback data

Producer

Consumer

put(key)

key get(key)
Callback

Callback data

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Motivation - Resource Sharing

•  Allow for access to limited quantities of a resource
 Example: mutex, queue
 Producer “puts”, Consumer “gets”
 Use a put callback to let producer know the operation

completed
 Use a get callback to let consumer know when the resource is

available.

10

P1

P2
queue

put
put

C1

C2

get
get

T1

T2

mutex

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Features

•  Exposing implicit parallelism
•  Manage asynchrony
•  Migration of data structures, work, global control
•  Global namespace
•  Hierarchy of locales for data locality and affinity
•  Runtime Introspection
•  Dynamic Adaptive Runtime System
•  Solution to multicore/multinode problem that is user

transparent to physical parallelism
•  Diversity of scheduling domains & policies of tasks and

resources
•  Readable intermediate representation

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Moving Global Control

while (visited_list)!
{!
 foreach(v in visited_list)!
 foreach(n in neighbors(v))!
 {!
 if (!visited(n)) !
 {!
 new_visited_list[pos++] = n;!
 parent[n] = v;!
 }!
 }!
 }!
 swap_lists(new_visited_list, visited_list);!
}!

Run this at the owner of n.

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM: Key Concepts

•  SWift Adaptive Runtime Machine:
 Unifies across nodes, cores, and accelerators
 Dynamically maps applications needs to available

resources
 Provides expression of asynchronous programs to

maximize performance and hide latency
 Communication and synchronization is implicit in

the task dependencies

13

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Availability Presently

•  Current features
 HAL backends for x86 (32 and 64-bit), POSIX
 Scheduling of codelets
 Create dependencies between codelets
 Basic network support via TCP/IP
 SCALE Codelet IR Language
 API Documentation and Programmers Guide

•  Early Access Release SWARM 0.7.0 available now:
 http://www.etinternational.com/swarm

•  New version by early December
 Full locale support (scheduling and memory)
 Full abstraction of hardware/OS in HAL
 Proper network stack
 Codelet/function symmetry

14

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Future Plans

•  Hardware Support
  Intel MIC, Runnemeade
 GPU, Adapteva

•  Legacy Support
 Work with MPI/OpenMP and other runtimes

•  Via recompilation (e.g. OpenMP)
•  Operate side-by-side (e.g. MPI)
•  Via DLL injection (e.g. OpenCL)

 UPC, SHMEM support
•  Language

 Wrestling with higher level language
•  Detailed language for experts, yet simple for Joe programmer

•  Monitoring and Debugging

15

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Takeaways

•  Contexts Where SWARM helps
  Irregular loads
  Long latency operations
  Resource constraints other than CPU
  Heterogeneous systems

•  Benefits
  Programming Productivity
  Deliver higher throughput and higher performance
  Power efficiency
  Purchase flexibility

•  Key Runtime Concepts
  Asynchronous Split-Phase Resource Access
  Hierarchical Event Driven Scheduling
  Abstraction of resources for unified heterogeneous access

•  Experiences
  SWARM Runtime system
  SWARM SCALE Codelet IR Langauge

16

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Case Studies

•  Mandelbrot

•  Barnes-hut N-body problem

•  Graph500

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Mandelbrot

Mandelbrot

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

du
p

ov
er

 S
er

ia
l

Number of Threads

SWARM

OpenMP Dynamic

OpenMP Static

OpenMP Guided

Ideal

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Barnes-Hut

Barnes-Hut

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

du
p

ov
er

 S
er

ia
l

Number of Threads

Ideal

SWARM

OpenMP

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Graph	 500	 Implementation	 with	 SWARM	

•  Graph500:	 New	 supercomputing	 benchmark	 for	 more	
realistic	 application	 workloads	

•  Ported	 to	 SWARM	 and	 produced	 results	 on	 4	 different	
supercomputers.	

Supercomputer	
Name	 Sandia	 Redsky	 TACC	 Lonestar	 Intel	 Endeavor	 ORNL	 Jaguar	

Processor	 Type	
Nehalem	
X5570	

Westmere	
5680	

Westmere	
X5670	 Cray	 XT5-‐HE	

Processor	 Speed	 2.93	 GHz	 3.33	 GHz	 2.93	 GHz	 2.6	 GHz	

Processors	 per	 Node	 8	 12	 12	 12	

Main	 memory	 size	 12GB/node	 24GB/node	 24GB/node	 16GB/Node	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM/MPI	 Performance	 Comparison	

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%
1100%
1200%
1300%
1400%
1500%

4 8 16 32 64 128 256 512

SW
A

R
M

 S
pe

ed
up

Number of Nodes

Lonestar

Redsky

Endeavor

Jaguar

MPI

Consistent	 speed	 up	 from	 2-‐fold	 to	 14.5-‐fold	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Advantages	 of	 SWARM	 on	 	 	

•  Lower	 type	 overhead	 	
•  Active	 messages	 	 -‐	 fewer	 copies	 and	 round	 trips	
•  Share	 address	 space	 on	 same	 node	
•  Monitor	 and	 allocate	 cache	 utilization	
•  Idle	 threads	 can	 steal	 work	 from	 other	 threads	
•  Effective	 substitute	 for	 MPI	 +	 OpenMP	 +	 Active	 Messages	 –	
All	 in	 one	 package	 with	 lower	 overheads	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM: Key Concepts

•  SWift Adaptive Runtime Machine:
 Unifies across nodes, cores, and accelerators
 Dynamically maps applications needs to available

resources
 Provides expression of asynchronous programs to

maximize performance and hide latency
 Communication and synchronization is implicit in

the task dependencies

23

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Availability Presently

•  Current features
 HAL backends for x86 (32 and 64-bit), POSIX
 Scheduling of codelets
 Create dependencies between codelets
 Basic network support via TCP/IP
 SCALE Codelet IR Language
 API Documentation and Programmers Guide

•  Early Access Release SWARM 0.7.0 available now:
 http://www.etinternational.com/swarm

•  New version by early December
 Full locale support (scheduling and memory)
 Full abstraction of hardware/OS in HAL
 Proper network stack
 Codelet/function symmetry

24

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Future Plans

•  Hardware Support
  Intel MIC, Runnemeade
 GPU, Adapteva

•  Legacy Support
 Work with MPI/OpenMP and other runtimes

•  Via recompilation (e.g. OpenMP)
•  Operate side-by-side (e.g. MPI)
•  Via DLL injection (e.g. OpenCL)

 UPC, SHMEM support
•  Language

 Wrestling with higher level language
•  Detailed language for experts, yet simple for Joe programmer

•  Monitoring and Debugging

25

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Takeaways

•  Contexts Where SWARM helps
  Irregular loads
  Long latency operations
  Resource constraints other than CPU
  Heterogeneous systems

•  Benefits
  Programming Productivity
  Deliver higher throughput and higher performance
  Power efficiency
  Purchase flexibility

•  Key Runtime Concepts
  Asynchronous Split-Phase Resource Access
  Hierarchical Event Driven Scheduling
  Abstraction of resources for unified heterogeneous access

•  Experiences
  SWARM Runtime system
  SWARM SCALE Codelet IR Langauge

26

