Branch and Bound Based Load Balancing for
Parallel Applications

Shobana Radhakrishnan, Robert K. Brunner and Laxmikant V. Kalé
{rdhkrshn,rbrunner,kale}@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Ave. Urbana, IL 61801

Abstract. Many parallel applications are highly dynamic in nature.
The computation and communication patterns change either slowly on
abruptly during the course of computations. An adaptive load balancing
strategy is needed for such applications. We are exploring an approach
based on multi-partition object-based decomposition, supported by ob-
ject migration, for solving this problem. For a large class of applications
that require such load balancing, the load varies relatively slowly (or
infrequently) over time. It is then feasible to spend significant amount
of computation time towards arriving at a close-to-optimal mapping of
objects to processors. To utilize this opportunity, it is necessary to de-
velop an object mapping strategy that can produce increasingly better
solutions continuously. We present an optimal-seeking branch-and-bound
based strategy that satisfies this requirement. They strategy takes as in-
put a object communication graph, specifying the computation time for
each object and the number and size of messages it sends to any other
object. The strategy then continuously produces a stream of successively
better mappings of objects to processors. One can stop the strategy from
execution at any point, and take its current best solution as the new
mapping. When communication costs are significant, we show that this
strategy performs substantially better than several random and intelli-
gent greedy strategies.

1 Introduction

Development of efficient parallel applications becomes difficult when they are ei-
ther irregular or dynamic or both. In an irregular application, the computational
costs of its subcomponents cannot be predicted accurately. Other applications
are dynamic, and the computational costs of their subcomponents change over
time. In either case, performance problems manifest themselves in the form of
load imbalances. Although such imbalances are typically small and tolerable
while running applications on a small number of processors, they often become
major performance drains on systems with hundreds of processors. As the com-
putational science and engineering community attempts to tackle a wider range
of problems using parallel machines, and as the number of processors available
for such simulations increases with technology, this problem of adapting pro-
gram behavior to unpredictability and dynamic variations becomes much more
important.

A solution to this problem that we have been exploring involves breaking the
problem into a large number of chunks, such that the total number of chunks is
significantly larger than the number of available processors. In fact, the size of
a chunk can be decided independently of the number of processors, by using the
criteria of keeping the communication overhead within a pre-specified bound. A
system that supports data driven objects, (in our case, Charm++ [3]) is used to
implement each chunk as an independent object. Thus, these objects send mes-
sages to other objects, in contrast to an MPI program (for example), which direct
messages to specific processors. As a result, the runtime system is free to move
the objects from one processor to another, without disturbing the application.
The Charm++ system supports such migration of objects with automatic for-
warding of messages, and with automatic minimization of forwarding overhead.
With these prerequisites, namely the multi-chunk object-based decomposition,
and object migration, all that one needs is a load balancing strategy that will
decide when and where to move objects.

Even in irregular and dynamic programs, one can find a basis for predicting
future events. Just as in sequential programs one can rely on the principal of
locality, in a parallel program one can utilize the principal of ”temporal persis-
tence of computation and communication patterns”. In irregular computations,
each subcomponent’s computation time may be unpredictable a priori, but once
the program starts executing, each component will persist in its behavior over
the iterations of the program. In dynamic applications, the behavior of a com-
ponent changes, but even here, either the behavior changes slowly over time (as
in molecular dynamics applications [4], where the load may shift slowly as the
atoms move) or abruptly but infrequently, (as in adapting refinement strategies).
In either case, it is a reasonable heuristic to assume such a persistence of behav-
ior, over some horizon in the future. This is not unlike the idea of using caches
based on the principal of locality and working sets. Although the program may
jump out of its working set from time to time, the caching technique, which as-
sume that the data referenced in the recent past will continue to be referenced,
still pay great performance dividends.

Based on the above performance prediction principle, we have developed a
framework that facilitates development of such strategies. The framework pro-
vides automatic measurement of computation times and automatic tracing of
communication events of a parallel object program. A load balancing strategy
can tap into this framework, obtain the necessary data, and decide to migrate
some objects to new processors. The framework also facilitates implementation
of such decisions by providing mechanisms to migrate individual objects. The
framework is broad enough to admit a wide variety of strategies.

Within the context of this framework, we are engaged in developing a suite
of load balancing strategies, and applying them in a variety of applications. It
is clear that different class of applications will require different load balancing
strategies. For example, for applications running on multi-user workstation clus-
ters, the strategies must adapt to the extraneous load presented by the jobs of
other users [2]. On a dedicated parallel machine, some applications may change
their behavior so rapidly that only a highly localized, continuously monitoring
receiver-initiated strategy will suffice. In other contexts, periodic rebalancing
may be acceptable, as long as it is done often enough. Here, a balancer based on
a quick heuristic is necessary, because otherwise the frequent nature of the load
balancing will make the cost of the decision itself a substantial drain on per-
formance. However, there exists a significant class of applications, where only
periodic, infrequent rebalancing is necessary.

As an example, our experience with molecular dynamics for biophysical sim-
ulations shows that the load balance stays relatively stable over several hours as
the atoms slowly migrate over domain boundaries. In such a situation, spending
as much as a few minutes on deciding a new mapping is not that expensive. The
question is whether it is possible to produce a higher quality solution, beyond
what simple heuristic strategies can produce, by expending more computation
time. The problem of optimum mapping is NP-hard. So, even with minutes of
time on a parallel machine it typically will not be possible to find the optimal
solution. One thus appears to be stuck between the bimodal choice of a low-
cost low-quality heuristic method on one hand, and unrealistic optimum-finding
algorithms on the other hand. This paper presents a branch-and-bound based
strategy that fills in the middle ground: depending on the available computation
time, it can produce a continuum of solutions from the simple heuristic ones to
provably optimal ones.

In the next section, we describe the object model that our framework and the
branch-and-bound strategy are based on. The algorithm itself, along with several
key optimizations, are described in the next section. Section 4 describes the
performance attained by the new strategy, and compares it with some heuristic
strategies. The branch-and-bound algorithm itself is implemented as a parallel
Charm++ program, so as the utilize all the available compute power for load
balancing. This parallelization, as well as the incorporation of the strategy in the
run-time framework, and its application to benchmark programs is described in
section 5.

2 The Object Model

Efficient communication and work-load balancing are prerequisites to utilizing
the full performance of parallel and distributed systems. In such high-performance
applications it is critical to be able to balance the load, comprised of both com-
putation and communication. Thus, a load balancer tries to achieve an optimal
distribution of load across processors in such a way that the task can complete
in the least possible time.

This section describes how our algorithm approaches the load balancing prob-
lem, by modeling parallel applications as a collections of computation objects
which communicate among themselves. Communication costs between objects
are modeled based on the characteristics of the particular machine, and objects
on the same processor are assumed to exchange data for free. Furthermore, the
load balancer has the freedom to reassign these objects to any processors to
optimize program performance.

The objects that are to be balanced are represented as a network of commu-
nicating entities in the form of a directed graph. Graph-based models have been
used earlier for the task allocation problem [1]. (Also, Metis [5] provides a graph
based partitioning scheme that is meant for partioning large, million-element
unstructured meshes.) The vertices in the graph represent the computation cost
of the objects to be balanced and the edges represent a pair (number of mes-
sages, total bytes sent) of each communication. Since it is a directed graph, each
pair of edges may have zero, one or two edges connecting them but if more than
one, they are in opposite directions. If both the sending and receiving entities
are assigned to the same processor, the model assumes that no time is required
for communication; otherwise, the sender and receiver pay:

Tsend = Asend - Nmessages + Bsend - Npytes

Treceive = Creceive - Nmessages + Breceive - N bytes

In addition to migratable objects and communication patterns, our object
model also includes the following features:

1. Non-migratable Objects: Non-migratable objects are objects which must
remain on particular processors throughout their lifetime. The load balancers
still considers their computation and communication cost, but does not have
the freedom to move them.

2. Proxy Communication: This refers to a kind of communication where
several objects require data from a particular object. Should the receiving
objects be placed on the same processor, a single message may supply the
data to all of the receivers. We have implemented this by adding an attribute,
the proxy-id, for each message arc. While calculating the communication
cost resulting from the assignment of an object to a processor, we ignore the
cost if some message from this sending object to another object residing on
the same processor as the object being currently assigned having the same
proxy-id has already been accounted for.

3. Background load: In some applications, a significant amount of work may
not be easily attributed to any object, although the total time spent which
is not accounted for by objects can be determined. The load balancers can
take this time into account while distributing objects.

Given this kind of input about the load and the processors, the load bal-
ancer tries to achieve an optimal load distribution within a limited search time.
This object model provides enough information to implement a variety of load
balancing algorithms.

3 Branch and Bound Algorithm

This section describes the algorithm for load balancing we implemented based on
the branch and bound strategy for solving search problems. Here the problem of
finding a good load distribution for the processors is modeled as an optimization
problem. While the greedy algorithm leads to a local optimum at each step and
therefore may lead to a suboptimal overall distribution, the branch and bound
algorithm always leads to the optimal distribution. appreciably.

The algorithm uses a “state” data structure to store a partial mapping deci-
sion, and its consequences. A state contains the following components.

— cost[p]: for each processor p, cost[p] is the sum of the computation costs of
all the objects assigned to that processor and the communication cost due
to the interaction of these objects with those residing on other processors.

— mapli] for each object i mapli] represents the processor to which is has been
assigned in the state under consideration. (may be -1 for unassigned objects).

— lowerBound: This is the maximum of all the cost[p] values

— nextObject: This is the next object to be considered for assignment

— stepsLeft: This is an integer that indicates the number of unassigned objects
in this state.

— minRemaining[p]: This indicates the potential additional cost that the pro-
cessor p would incur for sure in any solution that extends the current state.

— totalCost: This is simply the sum of all costs[p]

Except the first two arrays, all others are derivable from these, but have
been added as part of the state itself as their values are required often and it
computationally less expensive to maintain them this way.

The pseudocode for the branch and bound algorithm is given below:

Initialization:

- Initialize state S to empty (no object is assigned yet)
— Define the initial upperBound using a greedy algorithm
- Assign, in S, all non-migratable objects to

their current processors

- Search(S)

search(S)
x = nextObject(S)
for each processor p (between 0 and P-1)
copy S into S1
assign x to p in S1
if S1 is viable (lowerBound(S1) < current upperBound)
if S1 is a complete mapping
replace current UpperBound with S1
else
search(S1)
else (S1 is not viable. Prune (i.e. ignore) it.

The recursive call to search in this simple recursive formulation can be re-
placed by (a) parallel search via creation of an object to search under S1 or (b)
a best-first formulation, where the next best state is selected for exploration at
each stage. Both of these variants have been implemented in our framework.
Termination of the algorithm: To provide the flexible tradeoff between deci-
sion time and solution-quality, we limit the algorithm to a caller-specified time
limit. Although this does not let the algorithm pursue all possible states, our
optimized algorithm still gives the solution quite close to optimal as compared
to the other algorithms we have implemented.

3.1 Optimizations

The following optimizations have been implemented in the load balancer, im-
proving its speed beyond the basic scheme described above.

Sorting objects before assignment: The objects are ordered in decreasing
sequence of their computation costs for assignment. Thus, the heavier objects
are assigned at higher levels of the search tree.

Search ordering: In the simple recursive formulation, at each node, the children
are ordered in decreasing order of their lowerBounds. I.e. the child that assigns
the new object to the least loaded processor is considered first.

Greedy Initial Estimate: Instead of starting from a default initial state and
then updating with the first solution obtained, thereafter pruning states based on
this, we have used a quickly obtained greedy estimate as the initial lower bound
which has led to pruning more states and thereby a faster implementation.
Symmetry: If all the processors have identical communication and computation
capacities, then any processor with no assigned objects is equivalent to another
such processor. This reduces the branching factor of the tree at the top levels.
Future-Cost Estimates: Instead of just using the costs so far of the pro-
cessors to arrive at the lowerBound, we also use an estimate of future cost
(minRemaining[p]), which leads to effective pruning. When an object i is being
assigned to processor p, its computation cost is incremented by the computation
cost of i. The cost is also updated by adding the cost incurred due to messages
sent between i and objects that have already been assigned to any processor
other than p. Now, in order to get the estimate of the minimum remaining cost

on processor p due to the additional knowledge of the assignment of i to p, we
add the minimum of the computation and communication costs of each unas-
signed object j that communicates with i. This is the additional cost that this
processor will incur, irrespective of whether j is assigned to p or not. (when j
is finally assigned to some processor, this component is subtracted from minRe-
maining[p]). The lower bound of a state is then computed as the maximum of
cost[p] + minRemaining[p] over all P.

Greedy Heuristic: Switching from using computation cost to communication
cost of objects when the number of assigned objects exceed L/2 while obtaining
the greedy estimate. This is because, as we are considering the objects in de-
creasing order of their computation cost, we expect the communication cost to
become a more predominant factor when we come to this. Using this heuristic
has helped in making the greedy solution a better one to start with and thereby
leads to elimination of a greater number of states. Other greedy variants are
worth exploring in future.

The following ideas were also explored, but found to be non-productive.

Narrowing the search space: As suggested by Wah and Yu [6], one could
narrow the search space by aiming for a solution guaranteed to be within a
small percentage (say 2%) of the optimal. This is accomplished by comparing
the lower bound to 0.98 x upperBound in the pruning step. In the context of
our strategy, which uses a fixed time limit, such a narrowing may seem to be
even more beneficial, as it allows the search to “sample” a larger portion of the
search space. However, in almost all the runs we conducted, with using 1, 2 and
4 percent tolerance, we found no improvement in solution quality within fixed
time.
Refinment: Due to time constraints applied to the branch-and-bound algo-
rithm, it will not necessarily give the exact optimal solution. We attempted
applying refinement (See the performance section for a description of “refine-
ment”). to the solution found by branch-and-bound so that the efficiency of this
could be improved further. As the solutions for the cases we investigated were
already close enough to the optimal, we observed that the refinement did not
improve the efficiency of the obtained solution significantly.

4 Performance Results

In this section, we compare the branch and bound load balancer with four other
algorithms. These algorithms include:

1. Greedy: This algorithm uses the greedy heuristic of Section 3.1, without
performing the branch and bound search.

2. Random: Objects are randomly distributed among the processors.

3. Greedy-Refine: The greedy algorithm is run to obtain an initial distribu-
tion, and then a refinement procedure is applied. The refinement procedure
looks at each processor with a load above the average by a certain threshold,
and moves objects from them to underloaded processors, without making
them overloaded, until no further movement is possible.

4. Random-Refine: The refinement procedure is applied to the solution found
with the random algorithm.

4.1 Load balancer performance

Table 1 shows the results obtained when runs were made of the sequential im-
plementation of the branch and bound strategy using a recursive method for
various cases: In all cases, the same object graph is used, with 100 objects, and
with a randomly generated computation cost and communication volumes. The
efficiency refers to the ratio of the time that a sequential execution of the ob-
jects would take versus a parallel execution of the same. As can be observed,
even when run just to a limited time(not investigating the entire search tree),
the branch and bound strategy gives the most efficient solution among the algo-
rithms implemented, even though it often pays a higher communication overhead
(see Figure 1).

It can be inferred from the results that the efficiency of the solution for each
algorithm decreases as the communication overhead increases. This is because
the maximum efficiency we can achieve ideally itself goes down with increase in
the communication overhead. For all the cases, branch and bound gives the best
solution as compared to the others.

We also monitored the quality of solution as a function of time spent by the
load balancer. As expected, the quality increases with more search, but at some
time it stabilizes to an optimum value. It can be verified from small problem
instances, that the time beyond this point, spent on proving the optimality of
the solution, is huger compared with the time spent in obtaining the solution.
This is consistent with observations in the OR community regarding hard search
problems.

We also compared the efficiencies of the solution obtained by considering
the communication cost versus one without considering it. We found that for a
run with random-refine strategy, while considering communication cost led to
an efficiency of about 39 percent, not considering it gave one with efficiency
of about 33 percent. Thus, as we had expected, the efficiency increases while
communication cost is considered. We have also noticed that the refinement
applied after getting a solution, does not require much computation time, but
can give a much better solution in many cases. For example, in most cases
the refine applied to greedy takes about lsec more and gives an improvement
of about 10percent on an average. For random the time taken is more but the
improvement it gives is also more. For example for case 3, it gives an improvement
of about 17 percent, taking about 1 sec more than pure random.

4.2 Parallel Branch-and-bound

We have implemented a parallel version of the branch-and-bound algorithm, as
described in the section above. A “grain-size” parameter is used in the parallel
search, which is the depth of the node in the search tree below which the search
switches from parallel(spawning objects) to sequential(plain recursive) mode.

cost(microseconds)

Case #|Procs.|Comm.||Greedy|Greedy-|Random|Random-|Branch &
Cost Refine Refine | Bound

1 9 0l 99.7 99.7 69.1 69.1 99.8

2 20 0|| 98.4 98.4 57.5 57.5 99.4

3 9 120|| 51.4 55.6 58.5 68.6 81.0

4 20 120} 28.8 31.7 50.6 67.7 78.4

5 9 250(| 34.4 37.0 484 55.9 64.4

6 20 250|| 26.3 28.5 41.2 44.7 60.1

7 9 300|| 37.1 40.9 46.0 50.9 60.3

8 20 300|| 26.7 30.0 39.1 42.1 56.2

9 9 400|| 44.2 52.2 41.8 50.5 54.6

10 20 400|| 21.2 24.0 35.4 36.9 49.6

11 9 500(26.9 28.9 38.4 46.4 49.5

12 20 500|| 27.4 30.0 32.3 42.3 43.7

13 9 600|| 29.9 34.7 35.4 41.7 44.3

14 20 600|| 13.6 14.2 29.6 38.0 39.5

15 9 700|| 20.9 22.2 32.9 38.4 41.1

Table 1. Efficiency
Average communication cost per processor
25000000 -~
20000000 -+
15000000
10000000
5000000 -
OGreedy
@ Greedy-Refine
O l T T T T T T T 1 DRandOm

1 2 3 45 6 7 8 91011
case index

12 13 14 15

ORandom-refine
B Branch and bound

Fig. 1. Average Communication Cost Per Processor

Efficiency

120 -

100 1

80 1

OGreedy

B Greedy-Refine
ORandom

_ ORandom-refine

r | 5 s @ Branch and bound

@
o
I

Efficiency (%)

40

20 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case index

Fig. 2. Efficiency

This grainsize control is useful to amortize the cost of parallel object creation.
A parallel search allows us to search a P-fold larger search space within the
same time limit using P processors, which are available anyway. Quantitative
measurements of effectiveness of parallel search are difficult due to the non-
complete search used in a time-limited procedure. We plan to study this issue
further in the context of large applications.

4.3 Application in Parallel Program

All the above results were for runs made of the different algorithms implemented
using simulated data. We have also integrated the branch and bound strategy
with a parallel benchmark program and the load balancing framework described
in the introduction. The program used is similar to a ring program. A certain
number of concurrent objects are created (this number can be specified at the
command line). These perform computation and communicate with each other
in a pre-determined fashion. The computation time is generated randomly at
run time. The communication pattern is as follows. The i’th object sends a pre-
defined sized message to the (i+1)th object(mod the number of objects) and also
to every third element from then on. Using automatic load and communication
measurement provided by the framework, the branch-and-bound strategy suc-
cessfully redistributed objects to processors with improved performance. More
extensive quantitative studies are being conducted.

References

1.

2.

P. M. A. Sloot A. Schoneveld, J. F. de Ronde. Preserving locality for optimal
parallelism in task allocation. In HPCN, pages 565-574, 1997.

Robert K. Brunner and Laxmikant V. Kalé. Adapting to load on workstation clus-
ters. In The Seventh Symposium on the Frontiers of Massively Parallel Computation,
pages 106-112. IEEE Computer Society Press, February 1999.

L. V. Kalé and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175-213. MIT Press, 1996.

Laxmikant Kalé, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy,
Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus
Schulten. NAMD2: Greater scalability for parallel molecular dynamics. Journal
Computational Physics, 1998. In press.

George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme for
irregular graphs. In Proceedings of Supercomputing ’96, Pittsburg, PA, November
1996.

B. W. Wah and C. F. Yu. Stochastic modeling of branch-and-bound algorithms with
best-first search. IEEE Transactions on Software Engineering, 11:922-934, 1985.
Chengzhong Xu and Francis C. M. Lau. Load Balancing In Parallel Computers
Theory and Practice. Kluwer Academic Publishers, 1997.

