Adapting to Load on Workstation Clusters

Robert K. Brunner
Theoretical Biophysics Group
University of Illinois at Urbana-Champaign
rbrunner@uiuc.edu

Abstract

Desktop workstations represent a largely untapped
source of computational power for parallel computing.
Two of the main problems in wutilizing these worksta-
tions are developing strategies for migrating load so
that partially loaded workstations can contribute CPU
cycles to the computation, and making dynamically mi-
gratable application programs easy to write. This paper
describes object arrays, a construct which makes dy-
namically migratable applications easier to write, and
a simple strategy for migrating load on a workstation
cluster.

1 Introduction

Workstation clusters are emerging as the most cost-
effective platform for parallel computing. The low
price of commodity hardware insures that such systems
achieve excellent price to performance ratios. With
advances in communication technology, and operating
system level innovations to tune communication per-
formance for parallel applications, a group of com-
modity computers with standard LAN hardware can
serve as a high-throughput parallel computer. Several
prominent projects have demonstrated the feasibility of
putting together large collections of workstations into
dedicated clusters. [18]

However, the most compelling argument in favor of
using clusters for parallel computing is that such clus-
ters already exist in individual departments. The work-
stations on individuals’ desks are usually busy only a
fraction of the time in a day; cluster computing offers
the possibility of utilizing this latent computing power
to perform valuable computation.

Even when a laboratory decides to acquire work-
stations as a dedicated computational cluster, the re-
sultant system becomes a hybrid of compute-only and
desktop machines. As an example, the biophysics ap-

Laxmikant V. Kalé
Department, of Computer Science
University of Illinois at Urbana-Champaign
kale@cs.uiuc.edu

plication group we are associated with has gradually
acquired more than twenty HP workstations to serve
primarily as computational machines. Although the
machines spend most of their time performing com-
putations, several also spend some of there time as
compile servers and program development machines.
Several of these workstations are on users’ desks, while
others are in a pool in the computer room. The flexi-
bility offered by such a cluster is tremendously useful.
When new members join the group, they can be given
one of the available workstations from the processor
pool. When a researcher needs to run a job, but his
own workstation is busy, he can run his job on one of
the workstations in the pool.

For running parallel applications, however, such
an environment poses several problems. One of the
most severe problems is the performance impact of the
shared usage on the parallel application. Specifically,
when a parallel application is running on a set of work-
stations, and the performance of one of the worksta-
tions deteriorates due to shared usage, the performance
of the entire parallel application degrades dispropor-
tionately. Mitigating the effects of background load is
the focus of our research.

The next section describes and documents this prob-
lem with performance data from benchmark applica-
tions. Our solution strategy is based on the use of
parallel object-oriented programming. We have added
object-migration capabilities to the Charm++ system,
through a new distributed object type, the object ar-
ray, which is described in section 3. Section 4 describes
a solution strategy for solving the performance deterio-
ration problem, and describes the performance results
obtained using the strategy. The last section concludes
with some comparisons with other migration schemes,
and thoughts for future work.



2 The Problem Documented

A large fraction of parallel applications today are
loosely synchronous: computations on one processor
continually depend on data produced by other proces-
sors. (Not all computations are globally synchronous.
Divide and conquer computations, and the state-space
search computations lead to computations trees, where
the only dependencies are between parent and child
nodes of the tree.) Consider a molecular dynamics
application (such as NAMD [13]) which divides the
simulation volume into cells distributed among various
processors. Computation for each cell may depend only
on data from adjacent cells during a single timestep.
However, over a period of several steps, the data from
a particular cell indirectly affects every other cell in the
simulation. The dependency graph insures that no cell
can proceed more than one step ahead of the slowest
cell in the simulation. Some simulations require collec-
tive operations, such as reductions to compute global
scaling factors, and in those cases the processors are
even more tightly coupled.

In case of such globally synchronous computations,
utilizing a shared workstation cluster presents special
problems. Consider an application running on eight
workstations of a cluster. When the computation be-
gins, all eight workstations are otherwise idle. Let
us further assume that our application can utilize all
eight workstations with one hundred percent efficiency.
Sometime during the parallel run, another user starts a
single processor job (it may be as small as a compilation
or a long-running single-processor computational job).
Now our parallel job is receiving only about half of the
processing power available on this workstation, but the
other seven workstations are still fully committed to
the parallel job. Yet, due to the dependencies among
sub-computations, all the other processors will have to
waste half of their time waiting for results from the
busy processor. Thus, even though we have lost only
1/16th of the total computational power to the out-
side job, the performance of the program drops by fifty
percent! We have observed this effect while running a
parallel molecular dynamics application [13]. To study
this phenomenon further, we implemented an artificial
benchmark that allows us to study the phenomenon
without the complexities of a full-featured code.

Our benchmark is a simple simulation. The com-
putational domain is a two-dimensional square, which
is divided into a uniform two-dimensional grid. The
grid is divided into multiple cells, which are allocated
among the available processors. The problem can be
thought of as a classical heat conduction problem, with
a time-dependent forcing function. One edge of the

square is “heated” according to a predefined func-
tion. During each timestep, the temperatures at all
the points in the grid are updated using a Jacobi re-
laxation scheme: each point on the grid is given the
new value based on the average of all its neighboring
values. The relaxation algorithm is repeated until a
convergence criteria is met. To test the convergence
criteria, a global reduction must be carried out to de-
termine the maximum error. When the maximum error
falls below a preset threshold, the iteration may stop,
and simulation proceeds to the next timestep.

12 T
“jacobi.0.time" —

10 | 1

Iterations per second
=
T
.

0 L L L L L L
50 60 70

30 40
Time (seconds)

Figure 1. Number of iterations per second for
the jacobi benchmark on eight processors.
The cluster is composed of HP 735/125 work-
stations connected by an ATM network.

We ran the Jacobi benchmark on eight otherwise-
idle HP 735/125 workstations communicating over a
100Mbps ATM network. About thirty seconds into the
run, we started a computationally intensive job on one
of the workstations. Figure 1 shows the impact on per-
formance: prior to the onset of the new job, roughly
ten iterations were executed per second. After the job
starts, the number of iterations per second drops to
about seven. Although the total compute power de-
creased only six percent, throughput decreased thirty
percent. We did another experiment in which the re-
duction step was removed from the benchmark. Such
a pattern of neighbor communication without global
reduction is a common occurrence in parallel programs
(such as in explicit methods). In that benchmark, be-
cause the global synchronization is absent, the proces-
sor utilization is much higher. As a result, the impact
of the slowdown of one processor is even higher, lead-
ing to a fifty percent decrease in throughput after the
intrusion of external load.



2.1 Related work

Our system attempts to schedule work to utilize the
processing power of partially available workstations. A
variation of the above problem in the cluster environ-
ment involves a situation where one of the workstations
is available for the parallel computations only as long
as the “owner” is not using it. As soon as interactive
usage of the workstation begins, we wish to move the
computation completely away from that workstation.
Solutions to these problem must address a number of
common sub-problems, including:

1. Where should the load be scheduled?
2. When should load be migrated?

3. How does the application programmer write mi-
gratable code.

A number of researchers have addressed the first
two points. The approaches described in [2] and [14]
concentrate on scheduling applications for heteroge-
neous collections of geographically separated proces-
sors. Slow communications links permit only occa-
sional dynamic migration, so these systems must as-
certain detailed information about each processor to
find a good load distribution.

One approach used on homogeneous clusters is to
migrate the entire process to another processor. Open
files and sockets associated with the process present
technical problems for this approach, which have been
handled by several of the proposed systems. As the im-
age of a Unix (or any operating system in use today)
process is large, it requires significant communication
and consequent delay before a process can be migrated.
An interesting approach, explored by Rousch [16], is to
migrate active memory pages (including the page con-
taining the top of the stack) to the new site, and start-
ing process execution at the new site before all of the
pages are brought in. If the process tries to access one
of these pages, a page fault is trapped and the process
waits for the page. Although this approach reduces
the latency somewhat, the high cost of communication
still remains. Furthermore, another workstation must
be available to accommodate the new process.

A number of researchers are developing libraries of
C++ objects and templates to support distributed par-
allel objects [15]. These use the standard facilities of
C++ to implement several styles of distributed ob-
jects, such as vectors and matrices of arbitrary data
types. The application programmer is provided with
data distribution directives and mathematical opera-
tions to perform common calculations on the data in
parallel, similar to the capabilities provided by HPF.

DOME [1] is one example of such a system, where an
objects data distribution can be changed in response
to load conditions, allowing migration of the work rep-
resented by that data.

Another approach [14] is to simply provide the ap-
plication program with notification that it has to move,
and forcing the user to explicitly move the process
state. These systems work well with master-slave algo-
rithms, where the slaves typically require little state in-
formation to be retained. The slaves simply terminate,
and are recreated elsewhere where the computations
can be repeated.

A few distributed multi-threaded systems allow
threads representing tasks to migrate to different
address spaces of a distributed-memory machine.
UPVM [11] presents a lightweight process model with
a PVM-like message-passing library, which supports
thread migration independently of an object-oriented
framework. PM2 [12] is another migratable-thread sys-
tem, which treats threads as remote procedure calls,
which return some data on completion.

A system, similar to ours in several respects, has
been implemented by Ramkumar [6] in the context of
the ELMO system (ELMO is based on Charm [9, 10]).
As in our approach, ELMO adds object migration to
Charm, but this system implements object migration
without load balancing, mainly for fault-tolerant com-
puting.

The focus of our work chiefly addresses sub-
problems two and three. We present an approach for
obtaining better performance on smaller workstation
networks, where migration can occur efficiently in time
scales on the order of a second. The problem with pro-
grams implemented using PVM or MPI-style commu-
nication is that the programming style does not encour-
age decomposing the application into small, easily mi-
gratable pieces of work. Our object-oriented approach
permits cheap, nearly automatic, migration of just a
portion of a particular processor’s load, and allows
complex communication between objects without the
application programmer having to worry about where
a particular object resides. The system does not need
to know the characteristics of the individual worksta-
tions since it works in a closed-loop fashion. Migrating
too much load is sensed and corrected in the next mi-
gration period, so the program continually converges
toward an optimal load balance. Furthermore, our ap-
proach allows partial utilization of processors running
other tasks. Of course, object arrays would also sim-
plify application development for several of the pro-
gramming systems cited above.



3 Parallel Objects and Object Arrays

In this section we describe object arrays, a mecha-
nism we developed that helps solve the problem iden-
tified above. Object arrays have been implemented
as an extension to an existing parallel object sys-
tem called Charm++. Charm++ [8] is a C++-
based object-oriented message-driven language that
supports encapsulation and multiple inheritance in
parallel objects. Charm++ programs consist of po-
tentially medium grained objects, chares, and object
groups called branch-office chares or BOCs. Charm++
supports dynamic creation of chares, by providing
dynamic (as well as static) load balancing of chare-
creation (seed) messages. Chares interact by sending
messages to each other and via specific information
sharing abstraction. An instance of a BOC has a rep-
resentative (branch) chare on every processor. All the
branches of a single BOC instance share a global ID.
One can send a message to a specific branch chare of
a BOC on a particular processor, or broadcast it to all
its branches. BOCs are useful whenever the program-
mer wants to explicitly control what each processor
is doing, such as when implementing reduction oper-
ations, expressing static load balancing by explicitly
distributing a problem across the processors, and writ-
ing SPMD-style programs. In addition to messages
and BOCs, Charm++ provides information sharing ab-
stractions such as read-only variables, monotonic vari-
ables, write-once variables, accumulators and distrib-
uted tables. Details about these features can be found
in [5].

A Charm++ program consists of C++ code incor-
porating calls to the Charm++ runtime library (i.e. no
language extension to C++). A small interface file lists
which of the C++4 object types are Charm++ message
types, chares or BOCs. It also lists which methods of
those classes can receive Charm-++ messages. Since
most of the program is standard C++, C and Fortran
code can be called just as in a C++ program.

Charm++ is implemented on top of Converse [7].
The Converse runtime system is message-driven. Con-
verse repeatedly selects one of the available messages
from a pool of messages, switches to the context of the
chare to which it is directed, and initiates execution of
the code specified by the message.

3.1 Object Arrays

In addition to chares and BOCs, we have added a
new construct to Charm++, object arrays. An object
array consists of a multi-dimensional collection of data-
driven objects. Messages may be directed to any indi-

vidual element, multicast to a subset of them, or broad-
cast to all elements of the array. An individual element
is specified using its array name and element indices
only. The user does not need to know the processor on
which the element is located, since the system main-
tains the mapping information for each array. Since
the user does not know which processors host which
elements, the run-time system is free to move elements
to improve load balance or to accommodate external
changes in machine load. An earlier implementation of
object arrays in Charm-++ [17] supported movable ob-
ject arrays; however, the mapping had to be specified
by a user-defined mapping function. Although this ap-
proach supported various regular mappings of objects
to processors (for example, periodically realigning the
rows or columns of the array for efficient communica-
tion during different stages of a computation), it was
not under system control, so it did not allow automatic
response to outside conditions. The current implemen-
tation of object arrays is a C++ class library imple-
mented in Charm-++, which supplies a migrate call to
allow remapping by either the user or the runtime sys-
tem.

3.2 Migration

Object migration requires two main mechanisms: a
method of saving the object state on one processor and
moving it to another, and a means of forwarding mes-
sages to the processor to which the object migrates.
Our system depends on user assistance to transfer the
object state. The user provides two methods in an ar-
ray object, a pack-state method and an unpack-state
constructor. A major programming advantage of ob-
ject arrays is that it is much easier to write code to pack
the states of particular objects than to automatically
save the entire state of the program. At migration time,
the pack/unpack routines are automatically called to
transfer the object to the new processor. Message for-
warding is handled automatically by the system. If a
message arrives at a processor only to find that the des-
tination object (element) is not there, the message is
forwarded on to the new location. Each processor has
a map of where objects reside, but this map may be out
of date, so the fallback strategy is to forward messages
to each element’s original host processor. Each proces-
sor is kept informed of the location of each element it
originally hosted, so it can always forward messages to
the element with only one extra hop.



3.3 Object Array API

The object array API is an extension of the standard
Charm++ syntax. The following is a description of the
major routines. The programmer defines an object ar-
ray by creating a class which inherits from the supplied
ArrayElement chare type. The class may supply two
constructors, one that is called at initialization time,
and one that is called after migration and re-creation
on the destination processor. This migrate constructor
is responsible for unpacking the state packed before
migration. The user may also supply a pack method,
although the default behavior is to simply copy the
memory space of the object.

Array instances are typically created at startup (al-
though creation during a run is also possible). Here is
the startup code to create a one-dimensional array of
objects of type Cell:

arrayGroup = ArraylD::CreateArray(array_dim,
ChareIndex(MigrateMap) ,ChareIndex(Cell));

The first parameter is the number of elements in the ar-
ray. The next parameter gives the type for the map 0b-
ject, in this case, the migratable-object map. The next
parameter gives the array element type. The Array1D
object is a Charm+-+ BOC, which takes care of mes-
sage sending and coordinates object creation.

Messages are sent to array elements using the send
method, which is part of the library-supplied Array1D
class:

thisArray->send(msg,send_to,
EntryIndex(Cell,neighbor_data,NeighborMsg)) ;

This send call sends the message object msg of type
NeighborMsg to entry method Cell: :neighbor_data.
The receiving element handles the message just as it
would a normal Charm++ message, by executing an
entry function on the destination processor, with the
message as the parameter.

The ArrayElement base class provides a number of
variables for programmer convenience. As used above,
thisArray is a pointer to the local ArraylD branch.
For the one-dimensional case, thisIndex contains the
element index. Two and three-dimension arrays also
have thisi, thisj, and thisk to give the element co-
ordinates.

4 Solution Strategy and Performance

Once the mechanisms of migration have been im-
plemented, various strategies for migrating load be-
come feasible. Our initial load balancer is a decen-
tralized, application-independent system for detecting

overloaded processors and migrating array elements to
new locations. First, using the facilities available in the
Converse run-time library [7], the load balancer obtains
a measure of processor availability on each processor:
this is essentially the CPU time obtained by a process
during the time interval, divided by the elapsed wall-
clock time. Converse also provides callbacks for when
a processor becomes idle, and just before it resumes
working (due to the receipt of a message). This data
allows the load balancer to compute the CPU time con-
sumed by other processes:

Tother = Twall — Tself_ Tigie

Based on this information, the system decides when
there is a severe load imbalance due to outside load,
and calculates what fraction of the load must migrate
to other processors. During the run, the system auto-
matically keeps track of the time consumed by each ar-
ray element. At migration time, the system selects a set
of elements for migration which most closely match the
desired fraction of the total load. Currently, migrated
elements are distributed evenly to the other processors,
so no global load knowledge is necessary.

Load information is accumulated locally at regular
intervals using a periodic timer callback supplied by the
Converse system. For these experiments, load data is
collected every two seconds, and migration may occur
as soon as the load data indicates idle time.

12

T
“jacobi.0.time" —

10+ 1

Iterations per second
=
T
.

0 L L L L L
0 10 20 40 50 60

30
Time (seconds)

Figure 2. Number of iterations per second for
the jacobi benchmark on eight processors,
with automatic migration.

After implementing this migration strategy, the
benchmark program described in section 2 was run
again. The system automatically detected when a sec-
ond job was started on one of the processors and moved
about half of its load to other processors. The resultant



performance data is shown in figure 2. The data shows
a brief but severe dip when the extra job starts. A few
seconds later, the dip is detected and the system mi-
grates array elements to new nodes. The performance
quickly returns nearly to its initial level.

5 Conclusion

Migration of object arrays has several advantages
over other task migration schemes. Process-migration
methods do not permit fine control of processor load
balance, allowing processors to be occupied or vacated,
with no intermediate state. Data-parallel style C++
libraries offer superior ease of programming for many
scientific applications, but do not permit the applica-
tion programmer to create objects with complex com-
munication patterns and control structures, which are
necessary for irregular applications. Migratable thread
systems do allow complex objects, but since these sys-
tems are usually based on a user-level thread pack-
age, the thread stack size must be selected when the
thread is created, which can result in either running
out of stack space or wasting memory if the stack es-
timate is poor. Furthermore, activating a thread, al-
though much quicker than performing a process con-
text switch, usually takes longer than making a func-
tion call to an object. Migratable threads also require
more complex virtual memory management techniques
to preserve pointers after migration. [11]

Future work with object arrays involves performance
optimizations and improvements in programmer conve-
nience. We are implementing automatic systems which
observe communication patterns among elements (ac-
cording to element index), so the system can au-
tonomously discover communication structure among
elements so that the migration strategy can account for
communication when moving elements. Object arrays
also enable several other capabilities which we will ex-
ploit, such as on-demand evacuation of all tasks from a
processor, automatic adaptation to different processor
speeds, and automatic load balancing of irregular ap-
plications which use object arrays. Programmer conve-
nience will be served by creating libraries to implement
common operations (e.g. reductions). Unlike normal
Charm++ programs, migratable objects present prob-
lems for split-phase operations such as asynchronous
reductions, where the data must be collected from a
moving set of elements. More sophisticated bookkeep-
ing that accounts for migrating data is a necessary com-
ponent of such libraries. Further work will determine
the most efficient rate of migration, and whether the
system should try to balance the load perfectly each
time, or just incrementally improve the load distribu-

tion to more slowly converge on the optimal distribu-
tion.

References

[1] J. N. C. Arabe, A. Beguelin, B. Lowekamp, E. Selig-
man, M. Starkey, and P. Stephan. Dome: Parallel
programming in a heterogeneous multi-user environ-
ment. Technical Report CS-95-137, Carnegie Mellon
University, School of Computer Science, Apr. 1995.

[2] F. Berman and R. Wolski. The AppLeS project: A
status report. In Proceedings of the 8th NEC Research
Symposium, May 1997.

[3] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane,
L. Giannini, and J. Prusakova. High Performance Vir-
tual Machines (HPVM): Clusters with supercomput-
ing apis and performance. In Eighth SIAM Confer-
ence on Parallel Processing for Scientific Computing
(PP97), March 1997.

[4] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel Computing on
the Berkeley NOW. In 9th Joint Symposium on Par-
allel Processing, Kobe, Japan, 1997.

[5] Department of Computer Science,University of Illinois
at Urbana-Champaign, Urbana, IL. The CHARM
(4.5) programming language manual, 1997.

[6] N. Doulas and B. Ramkumar. Task migration in mes-
sage driven systems. In First Annual Workshop on
Message Driven Execution and Charm, Urbana, Illi-
nois, Oct 1994.

[7] L. V. Kalé¢, M. Bhandarkar, N. Jagathesan, S. Kr-
ishnan, and J. Yelon. Converse: An Interoperable
Framework for Parallel Programming. In Proceedings
of the 10th International Parallel Processing Sympo-
sium, pages 212 217, Honolulu, Hawaii, April 1996.

[8] L. V. Kalé and S. Krishnan. Charm++: Parallel Pro-
gramming with Message-Driven Objects. In G. V. Wil-
son and P. Lu, editors, Parallel Programming using
C++, pages 175—213. MIT Press, 1996.

[9] L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gur-
soy. The CHARM Parallel Programming Language
and System: Part I — Description of Language Fea-
tures. IEEE Transactions on Parallel and Distributed
Systems, 1994.

[10] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A.
Saletore. The CHARM Parallel Programming Lan-
guage and System: Part II — The Runtime system.
IEEFE Transactions on Parallel and Distributed Sys-
tems, 1994.

[11] R. B. Konuru, S. W. Otto, and J. Walpole. A mi-
gratable user-level process package for PVM. Journal
of Parallel and Distributed Computing, 40(1):81-102,
Jan. 1997.

[12] R. Namyst and J.-F. Méhaut. PM2: parallel mul-
tithreaded machine. a computing environment for
distributed architectures. In Parallel Computing



[13]

[14]

[15]

[16]

[17]

[18]

(ParCo’95), pages 279-285. Elsevier Science Publish-
ers, September 1995.

M. Nelson, W. Humphrey, A. Gursoy, A. Dalke,
L. Kalé, R. D. Skeel, and K. Schulten. NAMD— A
parallel, object-oriented molecular dynamics program.
J. Supercomputing App., 1996.

J. Pruyne and M. Livny. Parallel processing on dy-
namic resources with CARMI. Lecture Notes in Com-
puter Science, 949:259-77, 1995.

J. V. W. Reynders, P. J. Hinker, J. C. Cummings,
S. R. Atlas, S. Banerjee, W. F. Humphrey, S. R.
Karmesin, K. Keahey, M. Srikan, and M. D. Thol-
burn. Pooma. In G. V. Wilson and P. Lu, editors,
Parallel Programming Using C++, chapter 14, pages
547-587. The MIT Press, 1996.

E. T. Rousch and R. H. Campbell. Fast dynamic
process migration. In ICDCS ’96; Proceedings of the
16th International Conference on Distributed Comput-
ing Systems; May 27-30, 1996, Hong Kong, pages 637—
645, Washington - Brussels - Tokyo, May 1996. IEEE.
Sanjeev Krishnan and L. V. Kalé. A parallel array
abstraction for data-driven objects. In Proc. Paral-
lel Object-Oriented Methods and Applications Confer-
ence, February 1996.

T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. BEOWULF : A
parallel workstation for scientific computation. In In-
ternational Conference on Parallel Processing, Vol.1:
Architecture, pages 11-14, Boca Raton, USA, Aug.
1995. CRC Press.



