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Abstract. Clusters of PCs are an attractive platform for parallel ap-
plications because of their cost effectiveness. We have implemented an
interoperable runtime system called Converse on a cluster of Linux PCs
connected by an inexpensive switched Fast Ethernet. 'This paper presents
our implementation and its performance evaluation. We consider the
question of the performance impact of using inexpensive communication
hardware on real applications, using a large production-quality molecular
dynamics program, NAMD, that runs on this cluster.

1 Introduction

PCs, as commodity components, have always been fairly inexpensive. Over the
past few years, PCs have gained significantly in performance even as their price
continues to drop. As a result PCs make an attractive platform for computa-
tional programs. By connecting many PCs together in a cluster, one can build
a “parallel machine” for a fraction of the cost of dedicated parallel machines
such as the Cray T3E, SGI Origin 2000, or the ASCI Red (a one of a kind ma-
chine built by Intel, for the U.S. Department of Energy). The Beowulf project
[12] exemplifies this cost effective approach to parallel computing. Several earlier
parallel programming systems, such as Linda [1], Charm [2] and PVM [13] also
supported clusters of workstations.

Such commodity clusters can either use commodity communication hard-
ware, such as switched Fast Ethernet, or hardware designed especially for high-
performance computing, such as Myrinet or switches based on the VI Archi-
tecture standard. Significant research has been carried out [10] in improving
communication speeds using such dedicated hardware. Although such hardware
improves communication speeds dramatically, at this point in time it is consid-
erably more expensive. The large number of PCs on peoples’ desks makes PC
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clustering an attractive platform for parallel applications. As most of the com-
pute power available on the desktop typically remains unused (especially after
work hours, but even during the workday, since most user applications do not re-
quire much computational power) parallel applications can be deployed on such
platforms without significant up-front costs. Such environments typically have
only commodity communication hardware.

The questions that arise in this context are: Is a PC cluster with commodity
communication hardware a viable parallel platform? What is the extent of com-
munication performance loss with such hardware? And, most importantly, what
is the impact on real applications of this low communication performance? We
attempt to answer these questions in this paper.

As a part of a large collaborative research project, we are developing a parallel
molecular dynamics program, called NAMD [6,9]. Although the program runs
on dedicated parallel machines at the national centers, we needed a platform we
could use continuously. We have built a cluster of 32 Intel processors (16 2-way
SMP nodes), connected by a 100 Mbps switched Fast Ethernet. We ported the
Converse [5] run-time system to this platform. In this paper, we first describe
the Converse port, and its raw communication performance. We then examine
the impact of communication performance on a production application, NAMD.
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Fig. 1. Cost and Performance of systems with and without specialized communication
hardware

The broader issue that this study raises is whether special purpose com-
munication hardware is necessary for cost-effective performance on various ap-
plications. In general, the answer to this question depends on the number of
processors to be used, and the characteristics of the application. Figure 1 shows
a schematic plot of time-to-completion for an application versus the cost of the
hardware, for (a) a simple system using commodity hardware (such as switched



Ethernet) and (b) a more expensive one using specialized communication hard-
ware (such as Myrinet switches). On one processor, clearly both systems perform
equally, but (b) costs more. On a very large number of processors, for most ap-
plications, (b) will perform better when comparing identical cost configurations.
Somewhere in the middle, the curves cross over. The last section of our paper
studies the factors that affect this crossover point.

2 Converse on the Linux cluster

Converse is a run-time framework that we have developed to simplify imple-
mentations of new parallel languages, and to support interoperability among
them. Converse has a component based architecture, including modules for inter-
process communication, user-level threads, prioritized scheduling, and load bal-
ancing. Using a common scheduler for entities across different parallel para-
digms/languages, such as threads, handlers, and data-driven objects, Converse
allows multiple language modules to interoperate concurrently. Its component ar-
chitecture allows one to put together run-time systems for new languages quickly,
without losing performance. Converse supports portability, and is available on
major parallel machines and clusters of Unix workstations.

For the cluster of PCs, we adapted the workstations version of Converse. As
we did not want to limit the number of PCs connected in a cluster, we use the
connection-less UDP protocol. The user’s message is divided into fixed-size pack-
ets. As UDP packet delivery is not guaranteed, we implement a window-based
flow-control protocol. To deal with the fact that there are two SMP processors
on each PC, we use a single socket per PC. A producer-consumer queue is used
for each processor to store its incoming messages. Since there is exactly one
producer and one consumer, this queue is implemented without using any locks.
Messages between two processors within the PC are transmitted using the shared
memory, avoiding the socket.

2.1 Communication Performance

To analyze the raw communication performance of our implementation, we used
a simple ping-pong program. The results are shown in Figure 2. A short mes-
sage takes about 250usec. for its application-to-application delivery across the
network. The incremental cost for each additional byte is approximately 130
nanoseconds, leading to the bandwidth of about 7.4 MB/sec (59 Mbits/sec).
The communication bandwidth attained in this benchmark is also shown in the
same Figure, as a function of message size. Figure 2 indicates that we attain
half the peak bandwidth for 2 KB messages. Similar data for large messages is
shown in Figure 3. We believe that our implementation can be further optimized
to some extent, but we expect the attained bandwidth to be limited to about
10 MB/sec.

To compare this performance with a dedicated parallel machine, we present
Converse communication performance on the ASCI Red machine in Figure 4.
Latency of around 45usec, and bandwidth of 50 MB/sec is attained.
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Fig. 2. Raw message time (one-way) and bandwidth for the ping-pong benchmark on
the Linux cluster.
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Fig. 3. Raw message time (one-way) and bandwidth for large messages on the Linux
cluster.
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Fig. 4. Raw message time (one-way) and bandwidth for the ping-pong benchmark on
the ASCI-Red.

On PC clusters, Myrinet based communication systems (such as FM [§],
which was one of the earliest) provide a much higher performance compared
with our switched Ethernet implementation. One of the fastest, for example, is
BIP [10], which supports a less than 5usec. latency, and 120 MB /sec bandwidth.
So, while it is still important to try improving the performance on the commodity
hardware, it is worthwhile asking whether this big a disparity in communication
performance renders parallel applications infeasible. To answer this question, we
turn to a study of a full-fledged application.

3 Parallel Molecular Dynamics: NAMD

Molecular dynamics programs simulate the motions of molecules by repeatedly
computing the forces on all the atoms and numerically integrating the equations
of motion. Our users are interested in using molecular dynamics simulation to
study the behavior of biochemically significant molecules such as proteins, mem-
branes and DNA. Typical simulations are composed of one thousand to one hun-
dred thousand atoms, and require simulation times of hundreds of picoseconds.
Since the numerical characteristics of such simulations mandate timesteps of the
order of one femtosecond, a complete simulation requires several hundred thou-
sand timesteps. Each timestep requires several CPU-seconds of computation,
so sequential simulations would require weeks or months to complete. Parallel
simulation is almost mandatory for such simulations, but parallelizing the in-
tegration algorithm is complicated since each timestep must be completed on
every processor before the next timestep can begin. Therefore, efficient parallel
simulation requires parallelizing operations within a single timestep which only
requires a few seconds to compute sequentially.

NAMD is a parallel molecular dynamics program, designed to be scalable [6].
It is implemented using Charm-++ [7] and Converse. It uses aggressive paral-



lelization strategies, and an object-based load balancing strategy that relies on
run-time measurements for accurate remapping of objects. NAMD is a rela-
tively irregular program, with thousands of concurrent objects, each representing
widely different computational load, and with complex communication patterns.
It is one of the fastest production-quality parallel molecular dynamics program,
and several scientific simulation studies of biomolecules have been conducted
using it. NAMD relies on the message-driven communication model provided by
Converse to adaptively overlap computation with communication. It also uses
the multilingual capabilities of Converse to incorporate the DPMTA PVM-based
full-electrostatics library from Duke University [11].

The current version of NAMD is optimized to run efficiently on dedicated
parallel machines. This required optimizing the communication so that each
timestep can be completed in less than a second on machines with hundreds of
processors. The parallel molecular dynamics algorithm has the following outline:

1. Distribute atom positions from owning processors to several other processors
which must compute atom forces.

. Compute forces based on incoming atom positions.

. Return forces to processors which own those atoms.

. Update atom positions based on incoming forces.

. Return to the first step.

T o= W N

NAMD uses a hybrid spatial/force decomposition scheme. Atoms are not
owned by processors, but by objects called patches, which are distributed among
the processors. Each patch is responsible for the atoms in a cubical region of
the simulation space. Each patch sends requests to a set of compute objects,
which compute the forces exerted on the atoms of that patch by other atoms in
the simulation. Unlike in a pure spatial decomposition scheme, a compute object
may reside on a different processor from its associated patches, in which case the
atom positions from a remote patch are stored in a prozy patch. This minimizes
communication for the case where several compute objects on a processor are
accessing the patch data; the atom positions are sent to the processor only once
per timestep, and the returned forces from each compute are combined and sent
as a single message.

Allowing compute objects to reside on any processor, independently of where
its patches reside, provides two important capabilities. First, NAMD can utilize
parallel machines with more processors than patches. Second, compute objects
can be shifted around to achieve good load balance. NAMD uses a run-time,
measurement-based load balancing algorithm, that measures how much compu-
tation time each compute object consumes, and then periodically rebalances the
compute objects to minimize idle time while simultaneously keeping communi-
cation overhead small.

NAMD is a production-quality application currently being used for several
simulations. It is freely distributed. More details are available at the NAMD web
site: http://www.ks.uiuc.edu/Research/namd/namd.html.



3.1 NAMD performance

NAMD has achieved its design goal of scalable performance on large parallel ma-
chines. For example, it yielded a speedup of over 180 using 220 processors. Effi-
cient scalability to large numbers of processors required us to carefully optimize
communication patterns in the program. These communication optimizations
have had the unintended side effect of producing good speedups on smaller ma-
chines with relatively poor communication performance, such as the Linux/Fast
Ethernet cluster.

Once Converse was ported to the cluster, NAMD was ported relatively ef-
fortlessly. Table 1 shows the performance of NAMD on the PC cluster (400MHz
Pentium IT), and compares it with its performance on two dedicated parallel ma-
chine, the Cray T3E (450MHz Alpha) and the Intel ASCI Red (200MHz Pentium
Pro). Despite the irregular and dynamic nature of the parallel computation, the
adaptive load balancing strategies and prioritized scheduling techniques in Con-
verse lead to speed up of about 14.7 on 16 processors of this dedicated machine.
The speedup using the cluster is about 12.2 on 16 processors, and 19.9 on 32
processors. Thus, in spite of the huge communication penalty, one is able to
derive useful speedups on this cluster.

There are two separate conclusions one can derive from this experience.
Firstly, it is clear that an existing network, not designed for parallel process-
ing, can be used profitably for parallel applications. The second question is more
subtle: is the investment in extra communication hardware worthwhile? Given
NAMD performance on dedicated parallel machines, we expect the speedup
would be around 28 on 32 PEs using specialized communication hardware. This
represents about forty percent increase in performance over the Linux cluster
performance on 32 processors. The current cost of additional communication
hardware is between 25 to 40 percent of the cost of the PCs themselves. So,
additional hardware may be a worthwhile investment. However, on 16 or fewer
processors, additional hardware is clearly not cost effective. Even on 32 proces-
sors, planned optimizations will narrow the gap further. Another implication of
this result is that although it is intellectually challenging to improve the raw
communication cost, the effort will not lead to a commensurate performance
improvement in real applications.

Furthermore, the execution times point out another advantage the clusters
have over dedicated machines. The latest processor technology can be quickly in-
tegrated into a cluster, whereas a dedicated parallel machine is somewhat slower
in incorporating newer processors. Although the ASCI Red used the fastest Intel
processors available when it was designed, they are now less than half the speed
of commonly available Linux machines.

4 A Controlled Benchmark

For our molecular dynamics program, we observed that beyond twenty proces-
sors, extra communication hardware becomes cost effective. However, we cannot



Processors
1| 2| 4| 8| 16| 20| 24| 30| 32

T3E |Time 6.12]3.10{1.60(0.810 0.397
Speedup (1.97)|3.89(7.54| 14.9 30.3

ASCI Red|Time 28.0| 13.9|7.24|3.76| 1.91 1.01
Speedup|| 1.0] 2.01|3.87|7.45| 14.7 27.9

LINUX |Time 12.34| 6.42|3.28|1.69| 1.01| 0.85| 0.74| 0.65| 0.62
Speedup| 1.0| 1.92|3.77|7.30{12.21{14.51|16.68|18.98|19.90

Table 1. Execution time (sec./timestep) for ER-ERE (36,573 atoms, 12A cutoff).
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Fig.5. NAMD Speedup, adjusted for communication cost.



generalize this observation to all application. The crossover point will depend
on the characteristics of the particular application. More specifically, it depends
on the communication load and how it scales with the number of processors in
a given application.

To examine the effect of communication performance on the overall perfor-
mance, and its relationship to the cost of the entire system, we studied a simple,
well-controlled benchmark. The program used for the study is Jacobi relaxation
using a five point stencil. The data for this program is a square array, which
is partitioned across all the processors. Thus, each processor itself has a square
piece of the array, assuming the total number of processors is a square. In each
iteration, a processor sends the boundary elements (either a row or a column)
to each neighboring processor. Thus, except for the processors on the boundary,
each processor sends and receives four messages in each iteration. As the amount
of computation per processor is proportional to the size of its partition, while
the communication is proportional to the size of its boundary, we can control
the computation to communication ratio by varying the size of the data array.

To compare the performance of this program on an architecture with fast
communication hardware, we used the following procedure. First, we ran the
program on the Cray T3E. To account for differences in absolute processor speed
between the T3E and the Linux cluster, we compare speedups rather than ab-
solute speeds. Thus, we are assuming that by using a more expensive commu-
nication hardware with Linux, we would be able to achieve speedups similar to
those on a tightly coupled machine (T3E). To compare cost performance, we
now plot the speedups as a function of cost. For concreteness, we assume that
specialized communication hardware will cost fifty percent more than the cost
of each processor with only commodity communications. The speedups for each
problem size are plotted in Figure 6. Rather than plotting speedup against num-
ber of processors, the x-axis of these plots is cost, where cost = # of processors
x scale factor. For example, the cost of two processor with commodity commu-
nications is 2.0, and the cost of two processor with specialized communications
is 3.0.

For an application group deciding between building PC cluster with or with-
out a high-cost communication network, can we draw any lessons from these
experiments? Consider how the performance of Jacobi behaves in Figure 6 as
the number of processors increases. A simple analysis shows that for 16 proces-
sors, each processor sends an average of 3 messages per iteration (48 messages
total). For 25 processors, the above analysis gives almost the same number of
messages, an average of 3.2 messages per iteration (80 messages total). For the
grids examined, each message is only a few hundred bytes long. We know from
the communication studies in earlier sections that for these messages, the «
component (per message cost) dominates over the 3 component (per byte cost),
so the communication time is determined by the number of messages. For a
fixed grid size the computation scales perfectly with the number of processors.
Therefore the computation to communication ratio decreases, making expen-



p hardware +— i hardware +—
ommodity hardwaie ~+— ommodity hardwage -
14 i
12 12
10 10
Q [-§
3 3
g 8 § 8
Q Q
2] [
6 6
4 A 4
IS N— B A
2 - SEE—— 2b
L
0 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Cost Cost
16
Specialized hardware +—
Commodity hardware -+-
14
12
10
aQ
3
4 8
Q
0]
6
4 o
7
2
0

5 10 15 20 25 30 35 40
Cost

Fig. 6. Speedup versus cost for the Jacobi benchmark (Top left : 240x240 grid, Top
right: 360x360 grid, Bottom: 480x480 grid)



sive communication hardware a more desirable alternative to larger numbers of
Processors.

Consider also the three problem sizes shown in Figure 6. Each problem size
represents a different “application” with different computation to communica-
tion ratios. Clearly, the crossover point depends on the computation to commu-
nication ratio. As the grid size increases, the computation time increases. As
described above, the communication time for these grid sizes is determined by
the number of messages. Since the number of messages is fixed as the grid size
changes, the communication time remains constant. Therefore the speed of com-
munication hardware becomes a less significant factor in program performance,
and the crossover point shifts to the right.

In general, one must study how the number of messages, m, and the number
of bytes communicated per processor, n, varies as a function of the total number
of processors used, p. Let us assume these characteristics are given by functions
m(p) and n(p) respectively. Also, let a; and s be the per message costs on the
commodity and special-purpose hardware respectively. Similarly, let 5; and (s
be the per byte cost of communication.

For applications like Jacobi, the computation scales perfectly. So, if T, is the
computation time on 1 processors, the computation time on p processors will be
T./p.

Let r be the fractional cost of communication hardware per processor, so that
the communication hardware cost per processor = r * (cost per node). Given a
fixed budget, one has a choice of spending it on p; processors or po = p1/(1+7)
processors with expensive communication hardware.

Now that we are comparing equal cost configurations, the total time to com-
pletion, Tiotq; for each can be calculated, as

Tiotar = o1 x m(p1) + B1 * n(p1) + Z—f (1)
and
Tiotal = a2 x m(p2) + B2 * n(p2) + p_: (2)
Te(1+7)

(3)

Equations 1 and 3 clearly show the tradeoff involved: although the commu-
nication terms (a2 and 3 terms) are smaller for the expensive architecture, the
computation time may increase because we can afford only fewer processors.
The important point is that the switch-over critically depends on the nature of
the functions m(p) and n(p), which can only be characterized through careful
analysis of the particular application.

For application where the computation time itself does not scale well, due to
load imbalances, critical path effects, or algorithmic overheads, a more refined
analysis must be conducted to determine the crossover point. In such situations
the crossover point will be pushed in favor of communication hardware, due to
the higher efficiency attained on fewer processors.

= ag * m(p2) + B2 x n(p2) + >
1



5 Conclusion

A PC cluster is indeed a cost-effective platform for parallel applications. How-
ever, the question of whether to use special-purpose communication hardware
(such as Myrinet) turns out to be somewhat complex. Our experience with
NAMD, a production-quality molecular dynamics program, demonstrated that
commodity hardware (such as switched 100Mb/sec Fast Ethernet) is adequate
to provide good speedups up to 16 processors. Although the speedup on 32
processors was around 20 with the cluster, as compared with 28 on a dedicated
parallel machine, one must take the cost of additional communication hardware
into account. We showed a simple method for cost-performance analysis that
can be used to decide whether to go for high-cost communication hardware. The
crossover point beyond which it becomes profitable to deploy such hardware was
seen to depend on specific communication-related characteristics of the applica-
tion. Once the communication scaling behavior of the application is understood,
one can simply plug in the appropriate values in expressions given in the paper,
to determine which configuration will be appropriate for a given budget.

Success attained by the Avalon project [14], with a cluster of Alpha work-
stations connected by relatively inexpensive Fast Ethernet, indicates that for
several applications one may be able to benefit by using commodity communica-
tion hardware. Of course, with the emergence of VI Architecture standard, and
results such as those presented in this paper, coupled with growing popularity
of clusters, the cost of special purpose hardware itself may drop substantially.
However, this will be offset by further reductions in microprocessor costs. A
careful cost analysis may still be needed in the future.

The Converse system itself is neutral with respect to communication technol-
ogy. Converse runs on almost all available communication hardware, including
ATM, shared Ethernet, switched Ethernet, and Myrinet. So, programs written
using Converse will be able to exploit any emerging technology.
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