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Abstract

With advances in theoretical understanding of physical processes, and availability of
high-performance computers, computational methods in science and engineering have
acquired a new prominence. A multitude of programming languages are being used to
program the diversity of applications in computational science and engineering (CSE).
Programming languages are like toolboxes which are used to construct an engineered
artifact, namely the program. Choosing the right sets of tools can make a significant
impact on the productivity of the software development process, and the quality of the
end product. This survey briefly examines various categories of programming languages
in use today, and the contexts in which they are useful.
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1 Introduction

Programming languages are often considered counterparts to the natural languages used
by humans. Just as we use a natural language, such as English, to communicate with
other humans, the argument goes, we use a programming language to communicate with
the computer. However, this analogy is somewhat limited. Unlike human communication,
the communication with the computer is essentially one-way: we specify a behavior using a
programming language, and the computer executes that behavior.

More appropriately, one can think of a programming language as a toolkit that we use to
construct an engineering artifact, namely the program. In this view, the standard libraries
provided by languages, language compilers, and even the individual features supported by
the language are tools within a well integrated toolbox.

With either metaphor, it is clear that the choice of programming language significantly
affects the quality and speed of our programs, the efforts required to produce them, and
even the software design process itself. In addition, the optimal programming language
may vary from application to application. It is not surprising, therefore, that a panoply of
languages have been designed, and are being used, for programming scientific and engineering
applications.

The emergence of parallel computers, along with the expectation that the computers of
the future will have to be parallel if they are to be orders of magnitude faster than today’s
computers, has fueled development of a new crop of programming languages. Most of these
languages build on existing sequential languages by adding new parallel features to them.

This paper surveys the state of art in programming languages used for scientific and
engineering applications.

2 Sequential languages

In addition to the evolution of traditional programming languages, the last decade has seen a
rise in the use of mathematical modeling languages, scripting languages, and domain specific
languages.

2.1 Traditional Languages: A shift towards C/C++, but FOR-
TRAN holds its own

FORTRAN was one of the first high-level languages developed. Because of its simplicity and
efficiency, it has remained one of the most popular languages for programming scientific and
engineering applications.

FORTRAN-77 has an especially small set of language features, each quite easy to un-
derstand. This set of features is also well-suited for efficient compilation. For example,
use of pointers, and existence of undetectable aliases, which present complex challenges to
compilers for other languages, do not arise in FORTRAN programs. Also, compiler writers
have been working on optimizing FORTRAN compilers for over four decades by now. These
two factors allow FORTRAN compilers to produce code that can run at speeds close to the
highest possible on a given machine.



FORTRAN was developed at a time when assembly language was about the only option
available for programming computers. It supports global variables, arrays, the assignment
statement, simple control constructs, and subroutines. Several initial versions and standards
for the language were consolidated in the '70s, in a standard named FORTRAN 77.

One of the major critiques of FORTRAN has been that it does not facilitate the develop-
ment of modular and maintainable programs, especially when the program had to be large.
As computer science developed further understanding of programming languages, researchers
and practitioners sought to extend FORTRAN to accommodate modern programming lan-
guage features. FORTRAN 90, the resultant standard, supports high-level array operations,
as well as recursive procedures, modules, pointers (but no pointer arithmetic) and dynamic
allocation of memory. The large number of new features has made FORTRAN 90 appear
substantially different from FORTRAN 77, although it was clearly meant as an extension.
Partly as a result of this, and partly because Fortran 90 is still slower than Fortran 77,
FORTRAN 77 continues to remain the most popular version of FORTRAN in use.

C was developed with the intent, at least initially, of supporting systems programming.
In addition to providing access to low-level operations of the machine, C also supports user-
defined data types, unrestricted pointers with pointer arithmetic and recursive procedures.
For a variety of reasons, such as the speed and flexibility of C over its competetitors at
the time, C became the language of choice for many application developers, especially for
applications that were not dominantly numeric.

More recently, use of C++ has become quite widespread. C++ is a superset of C, in
that C++ supports all features of C. Combining ideas of modularity from earlier languages
like SIMULA with the efficient low-level features and well-established syntax of C, C++ is
probably the most widely used language for modern applications, especially those involving
graphical user interfaces.

There has been as slow but steady increase in the use of C/C++ for scientific applications.
This is in part due to a newer generation of programmers, who have been trained in C/C++,
and in part because C++ is believed to encourage development of modular and maintainable
programs, with reusable components. Also, C++ is seen as suitable for expressing complex
but efficient new algorithms, and data structures.

A criticism of C++ has been its poor performance. Not only was C++ seen as much
slower than FORTRAN, it was also seen to be substantially slower than C itself. However,
compiler vendors have started using advanced compiler technology to narrow this gap. Haney
[18] has published results of several benchmarks showing that C++ code was several times
slower than the equivalent C code, which itself was slower than FORTRAN. Arch Robinson,
in an article [28] responding to the above, argues with new benchmarking evidence that better
compilation techniques have narrowed, if not eliminated, the performance gap between C
and C++.

Although the performance of C as well as C++ on small benchmarks remains weak
compared with FORTRAN, there is accumulating evidence that entire applications coded in
C++ often tend to perform better than their FORTRAN counterpart. As an example that I
am personally familiar with, a molecular dynamics program coded in C++ [9] outperformed
a similar program written in FORTRAN. Since the performance in the “inner loops” of
the C++ program cannot be faster than FORTRAN, we infer that the performance gains
of the C++ applications come from more efficient algorithms and data structures. Such
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improvements can also be made in the FORTRAN code itself, but it may be argued that the
C++ language itself encourages programmers to think of more efficient algorithms explicitly.

Java is a recent language that is now being seriously considered for scientific applications.
Although it is currently deployed largely for Internet-based applications, Java as a program-
ming language is independently attractive for CSE applications. It has a familiar C++-like
syntax, but i1s not tied by backward compatibility requirements to low-level languages such
as C. It 1s perceived to be a “clean” object-oriented language, with a small subset of features
of C++. Programmer productivity can be expected to be high when developing Java pro-
grams. One significant limitation of Java for CSE applications at the moment is speed. Java
programs are typically compiled into machine independent byte-code, which is interpreted
by the Java run-time system. Even with technologies such as just-in-time compilation, Java
programs execute a few times slower than the corresponding C programs. As the compi-
lation technology for Java matures, and especially if a few efficiency oriented changes are
made to Java language, native-code compilers for stand-alone applications in Java will be
able to produce efficient code with speeds comparable to C/C++. Under those conditions,
the relatively clean nature of Java should make a larger number of compiler optimizations
possible. Although currently Java exhibits prohibitive performance limitations, it can still
be used in conjunction with C/C++. In this approach, one develops an entire application
in Java, and then reimplements a few performance-critical parts in a more efficient language
such as C++. This is feasible because Java explicitly supports interfaces to C/C++.

2.2 Integrated languages for mathematical modeling

A segment that has grown in popularity in the last decade involves interactive languages
that combine attractive, easy to produce, graphics with powerful support for mathematical
modeling. Typically, a high level programming language is supported, along with packages
for symbolic or algebraic manipulation, matrix operations, and visualization. Examples of
such products include Macsyma, Maple, Mathematica, and Matlab. The emphasis in such
products i1s on ease of use. Typically, speed of execution is slower than direct programming
in a language such as Fortran. System-defined primitives are precompiled and are com-
petetive with the speeds of low-level languages. However, the interactive usage requires the
system to interpret the user’s program, rather than compile it, which slows the execution.
These performance issues are being addressed by the vendors, as the systems mature, and
performance can be expected to improve over time.

2.3 Scripting Languages

Many CSE applications are quite complex, yet provide flexibility for the user to use them in
a variety of contexts. As a result, an individual run of such an application often requires a
considerable amount of “configuration” set up, to customize the application for the particular
simulation at hand. Such setup can be effectively specified via a scripting language. A
scripting language is interpreted, rather than compiled, so a script can interact with a running
program, or can even be changed while the program is running. In addition to controlling
a running program, scripts are often used to pre-process and post-process data. Scripting
languages support variables and simple control structures, and typically allow one to invoke
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application subroutines directly. Two broad categories of scripting languages are in use:
application independent, and application-specific.

Application independent scripting languages, such as Perl, Tcl and Python, can be used
to develop scripts for controlling any application. They support familiar, well-supported
syntax and features. The utility of such scripting languages has increased in recent years
due to the availability of (independently developed) software “components”. Components
are individual programs that carry out a specific data processing task, and are designed to be
useful in a variety of different contexts. A script then serves the purpose of integrating the
disparate components into a single application, and driving the execution of the application.

Application-specific scripting languages are developed “from Scratch” for each individual
application (e.g. scripting language used with the well-known program “XPLOR?”, used for
biomolecular modeling). As a result, their syntax and features can be tailored to the particu-
lar application. Language design is a complex activity, requiring forethought and significant
effort. So, although a well-planned scripting language tuned to a particular application can
be a valuable asset, it is equally true that many scripting languages developed in an ad hoc
manner tend to be a hindrance than help. Given a choice, application independent scripting
languages should be preferred for these reasons.

2.4 Domain Specific Languages and Libraries

Languages that are specially designed for individual application domains can often improve
productivity substantially compared with the use of general-purpose languages. Domain
specific languages may specialize themselves to relatively broad domains such as discrete
event simulations, or relatively narrow ones such as specific kinds of numerical algorithms.

FEllpack [27] is a very high-level language designed to support elliptic boundary value
problems. It incorporates a large collection of solution methods, and is implemented as
an extension to FORTRAN. Typically, users simply specify the equation to be solved, the
boundary data, and the names of the discretization method and the solution method to
be used. The system automatically generates relevant code and links in the appropriate
libraries. If necessary, the system allows the user the flexibility to use low-level FORTRAN
code in parts of the program.

Discrete event simulation applications help in modeling physical systems where events
happen asynchronously over time. Examples of such systems include city traffic, digital
circuits, battlefields, and manufacturing plants. Example of Simulation languages include
GPSS, Simscript, and Modsim. Simulation languages that exploit parallel computers are
described elsewhere in this issue.

Domain specific languages have been developed for several other application domains,
such as VLSI CAD, computer architecture, etc.

Instead of defining new syntax, and a compiler, for a domain-specific language, there is a
new trend towards domain specific GUI based systems (also called problem-solving environ-
ments). These combine advantages of domain specific libraries, and interactive assistance to
the users in defining the computational problem.



3 Parallel Languages

Applications in science and engineering often require large amount the computation power.
Simulations of larger subsystems, with more detail, and for longer durations are almost al-
ways desirable in order to attain better understanding of natural systems, or for analyzing the
performance of engineering designs. So it is not surprising that during the last decade, when
the parallel computers started becoming available commercially, parallel CSE applications
have become increasingly popular.

Historically, CSE applications requiring high-performance used traditional vector super-
computers, such as the powerful line of Cray machines. These machines were typically
programmed using FORTRAN, extended with directives, statements or functions for vector
operations. As parallel supercomputers started surpassing (or incorporating) vector ma-
chines, application developers had to make a transition to this new category of machines.
The parallel machines were substantially different from the vector supercomputers, so the old
programming paradigms had to be discarded or modified. The programming paradigms that
have emerged can be broadly classified as shared-memory models, message passing libraries,
data parallel languages, data-driven approaches, and other novel approaches.

The word “language” usually describes a language with its own syntax, and a compiler
to translate it into machine language. Several new parallel programming paradigms are not
languages in this strict sense. They provide alibrary, with a set of functions that can be called
by user programs (their “Application Programming Interface”, or API). However, using a
library for writing parallel programs can sometimes dramatically change the programming
paradigm — the style in which a parallel algorithm is expressed. For brevity, in this article
we use the word “language” broadly to denote such libraries as well.

3.1 Programming for Shared Memory Multiprocessors

Shared memory symmetric multiprocessors are becoming ubiquitous. One can find them on
desktops as 2-processor or 4-processor PCs, or workstations with up to 64 processors. One
of the programming models used for programming such machines may be broadly called
shared memory programming. In this paradigm, the user program creates a number of
processes (also called kernel threads, or light-weight processes), their number being equal
to or sometimes more than the number of available processors. All processes are allowed
read and write access to the same global memory. In addition, processes may also have
private memory that other processes cannot access. Shared memory allocation, locks and
barriers are the main coordination primitives in these languages, in addition to a primitive
for creating multiple processes. A lock can be used to achieve mutual exclusion, so that two
processes do not simultaneously attempt to modify the same shared variable. A barrier is
a synchronization primitive: a process that calls barrier is made to wait until all the other
processes have arrived at the barrier.

Posix Threads (Pthreads) [25] is a recent standardization of this model on Unix machines.
Similar models are supported on Windows NT and OS/2. In Pthreads, users may create
many more threads (each mapped to one process) than the number of processors, but they
are advised to create as many threads as the number of processors for computation-oriented
applications.



The curent set of prevailing parallel machines shows a trend towards NUMA shared
memory machines (e.g. Origin 2000, Convex Exemplar). These machines support a large
number of processors at the cost of incurring non-uniform memory access (NUMA) times:
some of the memory is local to the processor, and is much faster to access than the rest of
the (remote) memory. The above model can also be used on NUMA machines. However, on
NUMA machines, users must be careful to avoid memory access patterns involving a large
number of accesses to small portions of remote memory. Instead, explicit copying of large
chunks of data from shared memory into the private memory of the processor can be used
for better performance.

For distributed memory machines (such as the IBM SP3), various software based shared
memory schemes can be used. As software based schemes allow different processors to
maintain copies of the same shared data, maintaining consistency of the shared data becomes
an issue. A continuum of trade-offs between performance and functionality is being explored
by different experimental systems. (e.g. TreadMarks[4] , and CRL[19] ).

3.2 Message Passing

Message passing languages are used to program distributed memory computers. The earliest
distributed memory computers, such as the NCube and Intel iPSC supported a relatively
simple dialect of message passing. More sophisticated and powerful (and consequently com-
plex) portable libraries such as PVM[14] and MPI[16] evolved subsequently. MPI is an
industry standard in widespread use, while PVM has a loyal following, and finds being used
especially on workstation clusters.

MPI contains over a hundred functions that users can call. Yet the basic message passing
paradigm can be understood with just a small subset of these features: functions to send,
receive, and broadcast data. In a distributed memory computer, each processor executes its
own program, within its own memory. (Typically, the programs running on all the processors
are identical). They communicate with each other by exchanging “messages”. The message
can be thought of as an arbitrary sequence of bytes (data) enclosed in a tagged envelope. The
send function copies the data from the sending processor’s memory into a message, attaches
a user specified tag to it, and sends the message to the destination processor specified by
the user. At the destination processor, the receive call can be used to copy the data from
the message into the user’s program memory. In its simple version, the receive call waits for
a message with a specified tag. Variations of these calls support synchronous/asynchronous
behavior. In addition, MPI supports user-defined data types, and “communicators” that
(among other things) allow different library modules to use the same tags for their messages,
without causing a mix up. PVM provides support for dynamic creation of new processes
(presumably on new workstations), and functions for packing individual data types into
messages.

Message passing is a powerful, relatively low-level, paradigm. One can construct highly
efficient applications with it, because programmers can control the locality of accesses di-
rectly. At the same time, it requires a higher degree of effort on the programmer’s part than
the data parallel languages.



3.3 Data parallel languages and loop-based parallelism

The data parallel approach is based on the observation that subcomputations in CSE ap-
plications often involve identical operations on large amounts of data, typically stored in
arrays. As these operations are naturally expressed using loops, we will also refer to this
approach as loop-based approach to parallel programming. In this style, users write a pro-
gram, typically in FORTRAN, just as they would write a sequential program. To exploit
parallelism, they simply add specific compiler directives at strategically chosen places in the
program. The quintessential construct that defines this approach is the parallel loop. When
a user specifies, via a directive, that a particular loop is parallel, the system is free to execute
different iterations of that loop using different processors. As multiple iterations may read
and write data from the same variables, it is the user’s responsibility to make sure that the
iterations are independent when the loop is specified to be parallel.

3.3.1 Parallel Loops

Several vendors of shared memory machines (such as SGI, HP and DEC) had been supporting
their own variations of loop based parallelism. Recently, a new standard called OpenMP [1]
has emerged that is meant to subsume such variations. In addition to parallel loops, OpenMP
supports parallel sections (where each processor executes the same section of code), and task
parallelism.

OpenMP assumes that all the data is accessible from each of the processors. So, this
approach, in its simple form, is used mostly on shared memory machines. This approach has
been quite successful for a significant portion of applications, especially on machines with a
small number of processors.

On NUMA machines with a large number of processors, the portion of a parallel loop
being executed by a processor may need to access remote data frequently, leading to slow
execution times. Advances in compiler technology, being implemented by several compiler
vendors currently, are aimed at extending the success of this approach to large NUMA
machines.

3.3.2 High Performance Fortan

High-performance FORTRAN (HPF) supports parallel loops while giving the users more
control over the locality of data (i.e. which processor is to hold which piece of data), in
order to scale up to large NUMA as well as distributed memory machines. To allow HPF
programs to run efliciently on distributed memory machines, the user is allowed to spec-
ify the distribution patterns for each global array. HPF compiler then inserts appropriate
communication calls (such as put/get primitives or send/receive primitives) while compiling
the program for parallel machines. A typical approach used by HPF compilers is to analyse
the communcation requirements of a parallel loop at runtime, carry out all the communica-
tion to get the data needed by iterations of the loop executing on each processor, and then
run the loops without any communication. This allows the communication to be efficiently
“bunched” in larger chunks of data. HPF is based on FORTRAN 90 and supports high level

array operations, implemented in parallel.



It is important to remember that both OpenMP and HPF support several features in
addition to parallel loops. We focused on parallel loops, as they are seen as a defining feature
of both languages.

3.3.3 Restructuring compilers

The efficiency of a program is critically dependent on the fractions of loops identified as
parallel. Making conservative assumptions would mean that significant portions of code
will execute sequentially, at a much lower performance. However, in many applications,
it may not be easy for the user to identify which loops are parallel. Also, the user may
make mistakes in identifying loops as parallel, when they are not. Further, many loops that
exhibit data dependences (so that the computations of an iteration depends upon that of
an earlier iteration) can be restructured with some effort to eliminate the data dependency.
Paralllelizing compilers are being developed to automatically identify parallel loops, and
to restructure programs to increase the detectable parallelism. Recent examples of the
success of this approach are provided by the Polaris system [7] and SUIF [3]. Some of the
vendor-suppiled compilers (e.g. PFA from SGI)also carry out limited forms of restructuring
transformations during compilation.

The data parallel languages work effectively for applications that are relatively regular.
To attain good performance, one needs to develop the program while being conscious of
the potential for parallelism in each loop. Such programs tend to perform better than
automatically parallelized “legacy codes”. A combination of improvements in compilers
with such conscious programming can be used to attain good performance even on machines
with a large number of processors.

3.4 New Approaches

In addition to the languages described so far, many novel (and sometimes experimental)
languages are being used in parallel CSE applications. Need to support irregular control and
data structures, ensuring reusability of parallel software components, and adaptive tolerance
of run-time conditions are some of the motivations for the existence and utility of these
languages.

Often, entities in a parallel program running on a distributed memory machine must wait
for data from remote processors. To avoid making the entire processor wait for this piece of
data, it is desirable if the processor were to execute some other useful computation during
the wait. This can be accomplished if there are more than one actions (or subcomputations)
that can be executed on a processor. Then, while one subcomputation is waiting for data,
others can carry out useful work. The approaches described in Sections 3.4.1 and 3.4.2
activate user-defined entities (threads, objects or handlers) based on availability of data.
Thus they can be called data driven execution based approaches.

3.4.1 Multithreading

This technique involves creating a number of user level threads on each processor. Each
thread executes a user specified function. The difference between calling a function directly,



and creating a thread to execute it is that with threads, the function’s execution is delayed
to a later time. (when the calling thread needs to wait for some data, for example). Also, a
thread can suspend its execution and can be resumed at a later time. Thus, when threads are
used with message passing, a thread may issue a receive call for a message with a specific
tag. If the message is available, execution proceeds as usual. However, if the message is yet
to arrive on the processor, the thread is suspended, and another ready thread is resumed.
When the system notices that the message has arrived on the processor, it moves the waiting
thread to the scheduler’s pool of ready threads.

It is important to distinguish multithreading from the use of kernel level threads in small
shared memory machines. (See Section 3.1) The user level threads used in multithreading
are lightweight, in that suspending one thread and resuming another is relatively fast. Also,
typically user level threads can be suspended only when the thread requests to be suspended
(when it finds that the data it needs is not yet ready, for example), whereas kernel level
threads are often suspended by the operating system at arbitrary intervals. User level threads
need not run in parallel: they just take turns running on the same processor. The adaptive
overlap between communication and computation created by multithreading can sometime
lead to substantial improvements in performance.

Limitations of multithreading include the relatively high memory usage per thread,
caused by the need to allocate a separate stack (usually several tens of Kilobytes) for each
thread. In addition, context switching requires saving all the registers and is often sub-
stantially slower than a function call. The following subsections describe represent another
approach to data driven execution.

3.4.2 Data driven objects and handlers
Languages based on data driven objects (such as Charm++[23] and ABC++[5] , for exam-

ple) allow creation of a number of “objects” on each processor. An object, for the purpose
of this discussion, is a collection of related data, and a set of subroutines that can access this
data. These subroutines associated with an object are called the “methods” of the object,
and the phrase “method invocation” is used to denote calls to such subroutines. There can
be many objects which use the same set of subroutines, but with their own copies of the
data. To distinguish between them, each object has an object ID that must be used when
invoking methods on it. In a parallel environment, global object IDs are used that are valid
irrespective of the processor on which they are used. Method invocations can be “sent” to
objects on remote processors using their global object ID. On every processor, a scheduler
uses a queue of waiting invocations (also called messages), and repeatedly selects a message
from the queue, identifies the object it is addressed to, and executes the method identified in
the message. As a result, no object is allowed to hold the entire processor waiting for a par-
ticular data, leading to an adaptive overlap between communication and computation. [22]
was probably one of the first to use data driven execution on commercial parallel computers,
although the idea itself existed in the earlier data-flow approach[2], and the Rediflow[24]
project for parallel functional languages.

More recently, handler based approaches such as active messages [29] have been imple-
mented. An active message encodes the name of a “handler” — a user-defined function of
one parameter. The message is sent to a remote processor just as a regular message is. On
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each processor, a scheduler (either running in the background or invoked by the user explic-
itly) calls the handler for each arrived message, passing the message itself as a parameter.
Originally, active messages were distinguished from message driven execution by the fact
that active messages were designed to cause an interrupt on the remote processor on arrival.
In contrast, recent variants of active messages are scheduler driven. Some systems such as
Nexus[12] require each message to contain a global data pointer in addition to the handler.
As the global data pointer is equivalent to the global object ID, this approach supports data
driven objects.

These data driven approaches avoid the overhead of threads. This is because the scheduler
does not need to create a thread for executing an object or handler. Instead, it executes the
specified function (or method) itself, and only when that function completes, selects the next
message. As a result, only one action is “in progress” at a time, and so extra bookkeeping
(which is required for threads) is not needed. However, this comes at a cost to expressiveness:
the objects or handlers themselves cannot suspend in the middle of their execution waiting
for remote data, unless they are wrapped inside threads. This necessitates the use of “split-
phase” programming style, where the request for remote data and the code to be executed
when the remote data arrives are physically separated. An interesting compromise is provided
by the language (an extension to Charm++) called Structured Dagger [17] .

3.4.3 Data parallel object-oriented languages and frameworks

This class of languages supports the data parallel model in the context of C++ based object-
oriented programming. Distributed arrays are supported as templated classes with support
for various data parallel operations. Compiler supported approaches such as the PC++
[13] use syntactic extensions for supporting HPF-style data distributions and data parallel
operations. Frameworks such as POOMA[6] and Overture[10] use mechanisms provided
in C++ itself (such as operator overloading and templates) and provide a rich library of
operators useful in scientific/engineering applications.

3.4.4 Other approaches

Several additional languages are being used in parallel CSE applications. We will cite just a
few examples. Linda[15] allows multiple parallel processes to communicate and coordinate
by sharing a set of tuples: a tuple contains a sequence of data items. A process can deposit
tuples in the shared tuple space, and request the system to retrieve tuples with specific
characteristics. The language Cid[26] combines the notions of “future” with ideas in the
earlier data flow language called Id, in an extension of C. Cilk[8] supports data driven
execution, threads and remote function invocations. CC++[11] supports parallel execution
within an object using threads, and remote method execution using “processor objects”.
Multipol [30] combines standard message passing with user invocable scheduler for executing
handlers.

The languages and approaches described here overlap in their abilities and features. So,
robustness of implementation and level of support as well as subjective preferences play a
significant part in the selection of languages for an application. Recognizing that different
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languages may be better suited for different modules even within a single application, run-
time frameworks such as Converse [20] support multi-paradigm interoperability.

4 Concluding Remarks

What languages will continue to be used in future CSE applications? It is clear that parallel
machines will be a part of the landscape of computing in future. Automatic parallelizing
compilers that can target scalable parallel machines, and data driven approaches that can
deal with hard-to-paralllelize applications can be expected to grow in importance. Further,
one can expect a growth in the development and use of domain specific languages, and
scripting frameworks to flexibily utilize them. Whether or not the usage of technically
“better” languages such as FORTRAN 90 or Java will increase in sequential computing is
unclear at this point.

Given the breadth of the topic meant to be covered by this article, and the brevity
required of it, it was not possible to do justice to the large number of programming languages
available today, nor is the number of citations provided here fully adequate. To partially
address this problem, a more detailed bibliography associated with this article is available
at http://charm.cs.uiuc.edu/cseLanguages.html.
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