Load Balancing in Parallel Molecular Dynamics*

L. V. Kalé, Milind Bhandarkar and Robert Brunner

Dept. of Computer Science, and
Theoretical Biophysics Group, Beckman Institute,
University of Illinois,

Urbana Illinois 61801
{kale,milind,brunner}@ks.uiuc.edu

Abstract. Implementing a parallel molecular dynamics as a parallel ap-
plication presents some unique load balancing challenges. Non-uniform
distribution of atoms in space, along with the need to avoid symmet-
ric redundant computations, produces a highly irregular computational
load. Scalability and efficiency considerations produce further irregu-
larity. Also, as the simulation evolves, the movement of atoms causes
changes in the load distributions. This paper describes the use of an
object-based, measurement-based load balancing strategy for a parallel
molecular dynamics application, and its impact on performance.

1 Introduction

Computational molecular dynamics is aimed at studying the properties of bio-
molecular systems, and their dynamic interactions. As human understanding
of biomolecules progresses, such computational simulations become increasingly
important. In addition to their use in understanding basic biological processes,
such simulations are used in rational drug design. As researchers have begun
studying larger molecular systems, consisting of tens of thousands of atoms, (in
contrast to much smaller systems of hundreds to a few thousands of atoms a few
years ago), the computational complexity of such simulations has dramatically
increased.

Although typical simulations may run for weeks, they consist of a large num-
ber of relatively small-grained steps. Each simulations step typically simulates
the behavior of the molecular system for a few femtoseconds, so millions of such
steps are required to generate several nanoseconds of simulation data required
for understanding the underlying phenomena. As the computation involved in
each timestep is relatively small, effective parallelization is correspondingly more
difficult.

Although the bonds between atoms, and the forces due to them, have the
greatest influence on the evolving structure of the molecular system, these forces
do not constitute the largest computational component. The non-bonded forces,

* This work was supported in part by National Institute of Health (NIH PHS 5 P41
RR05969-04 and NIH HL 16059) and National Science Foundation (NSF/GCAG
BIR 93-18159 and NSF BIR 94-23827EQ).

the van der Waals and electrostatic (Coulomb) forces between charged atoms
consume a significant fraction of the computation time. As the non-bonded
forces decrease as the square of interaction distance, a common approach taken
in biomolecular simulations is to restrict the calculation of electrostatic forces
within a certain radius around each atom (cutoff radius). Cutoff simulation ef-
ficiency is important even when full-range electrostatic forces are used, since
it is common to perform several integration steps using only cutoff forces be-
tween each full-range integration step. This paper therefore focuses on cutoff
simulations performance.

In this paper, we describe the load balancing problems that arise in par-
allelization of such applications in context of a production quantity molecular
dynamics program, NAMD 2 [5], which is being developed in a collaboratory
research effort. The performance of the load balancing strategies employed by
this program are evaluated for a real biomolecular system. The load balancing
strategy employed is based on the use of migratable objects, which are sup-
ported in Charm++ [7], a C++ based parallel programming system. It relies on
actual measurement of time spent by each object, instead of predictions of their
computational load, to achieve an efficient load distribution.

2 NAMD: A Molecular Dynamics Program

NAMD (8] is the production-quality molecular dynamics program we are devel-
oping in the Theoretical Biophysics group at the University of Illinois. From
inception, it has been designed to be a scalable parallel program. The latest
version, NAMD 2 implements a new load balancing scheme to achieve our per-
formance goals.

NAMD simulates the motions of large molecules by computing the forces act-
ing on each atom of the molecule by other atoms, and integrating the equations
of motions repeatedly over time. The forces acting on atoms include bond forces,
which are spring-like forces approximating the chemical bonds between specific
atoms, and non-bonded forces, simulating the electrostatic and van der Waals
forces between all pairs of atoms. NAMD, like most other molecular dynam-
ics program, uses a cutoff radius for computing non-bonded forces (although it
also allows the user to perform full-range electrostatics simulations computation
using DPMTA library[9]).

Two decomposition schemes are usually employed to parallelize molecular dy-
namics simulations: force decomposition and spatial decompositon. In the more
commonly used scheme, force decomposition, a list of atom pairs is distributed
evenly among the processors, and each processor computes forces for its assigned
pairs. The advantage of this scheme is that perfect load balance is obtained triv-
ially by giving each processor the same number of forces to evaluate. In practice,
this method is not very scalable because of the large amount of communica-
tion that results from the distribution of atom-pairs without regard for locality.
NAMD uses a spatial decomposition method. The simulation space is divided
into cubical regions called patches. The dimensions of the patches are chosen

to be slightly larger than the cutoff radius, so that each patch only needs the
coordinates from the 26 neighboring patches to compute the non-bonded forces.
The disadvantage of spatial decomposition is that the load represented by a
patch varies considerably because of the variable density of atoms in space, so a
smarter load balancing strategy is necessary.

The original version of NAMD balanced the load by distributing patches
among processors and giving each patch responsibility for obtaining forces ex-
erted upon its constituent atoms. (In practice, Newton’s third law insures that
the force exerted by atom i due to atom j is the same as that exerted on j
by i. Such pair interactions are computed by one of the owning patches, and
the resulting force sent to the other patch, halving the amount of computation
at the expense of extra communication.) We discovered that this method did
not scale efficiently to larger numbers of processors, since out of a few hundred
patches, only a few dozen containing the densest part of a biomolecular system
accounted for the majority of the computation. The latest version of NAMD
adds another abstraction, compute objects (see figure 1). Each compute object
is responsible for computing the forces between one pair of neighboring patches.
These compute objects may be assigned to any processor, regardless of where
the associated patches are assigned. Since there is a much larger number of com-
pute objects than patches, the program achieves much finer control over load
balancing than previously possible. In fact, we found that the program could
reach a good load balance just by moving compute objects, so we also refer to
them as migratable objects. Migratable objects represent work that is not bound
to a specific processor.

Most communication in NAMD is handled by a third type of object, called
prozy patches. A proxy patch is an object responsible for caching patch data on
remote processors for compute objects. Whenever data from a patch X is needed
on a remote node, a proxy PX for patch X is created on that node. All compute
objects on that remote node then access the data of patch X through proxy
patch PX, so that the patch data is sent to a particular processor only once per
simulation step. The main implication of this for load balancing is that once a
proxy patch is required on a particular processor, placing additional compute
objects on that processor does not result in increased communication cost.

3 Static Load Balancing

NAMD uses a predictive computational load model for initial load balancing.
The computational load has two components. One component, proportional to
the number of atoms, accounts for communication costs, integration, and bond
force computation. The second component resulting from the non-bonded force
computation, is based on the number of atom pairs in neighboring patches.
Profiling indicates that this component can consume as much as eighty percent
of typical simulations, so good overall load balance depends on good distribution
of this work.

[Processor 1 e Processor 2)

Patch <] > Proxy
Compute
Compute
Patch Patch
Compute
Patch &« | |5 Proxy

_ AR J

Fig. 1. This is a diagram showing object interactions in NAMD 2. Compute objects use
data held by either patches or proxies. Each proxy receives and buffers position data
from its owner patch on another processor, and returns forces calculated by compute
objects to the owner patch. In order to move a Compute object to another processor,
it is only necessary to create proxies on the new processor for all patches from which
the compute receives position data.

The first stage of load balancing uses a recursive-bisection algorithm to dis-
tribute the patches among the processors so that the number of atoms on each
processor is approximately equal. The recursive bisection algorithm ensures that
adjacent patches are usually assigned to the same processor.

The second stage is the distribution of compute objects that carry out the
non-bonded force computations. First, the compute objects responsible for self-
interactions (interactions between a pair of atoms where both atoms are owned
by the same patch) are assigned to the processor where the patch has been as-
signed, and the load for the processor incremented by the chztoms‘ Then the
compute objects for each pair of neighboring patches are considered. If the
patches reside on the same processor, the compute object is assigned to that
processor; otherwise the compute object is assigned to the least-loaded of the
two processors. Then the load-balancer increments the load for that processor
by weight X Ngtoms, X Natoms,- The weights take into account the geometric
relationship between the two patches. There are three weights corresponding to
whether the patches touch at a corner, edge or face, since patches which have an
entire face in common contribute more pairs which actually must be computed
than patches which share only a corner.

This method yields better load balance than earlier implementations, which
only balanced the number of atoms. However, it does not take advantage of

the freedom to place compute objects on processors not associated with either
patch. It is possible to build a more sophisticated static load balancing algorithm
that uses that degree of freedom, and even tries to account for some commu-
nication related processor-load. However, the geometric distributions of atoms
within a patch impacts the load considerably, making it harder to predict by
static methods. So, we decided to supplement this scheme with a dynamic load
balancer.

4 Dynamic Load Balancing

Dynamic load balancing has been implemented in NAMD using a distributed
object, the load balance coordinator. This object has one branch on each proces-
sor which is responsible for gathering load data and implementing the decisions
of the load balancing strategy.

4.1 The Load Balancing Mechanism

NAMD was originally designed to allow periodic load rebalancing to account for
imbalance as the atom distribution changes over the course of the simulation. We
soon observed that users typically break multi-week simulations into a number of
shorter runs, and that rebalancing at the start of each of these runs is sufficient
to handle changes in atom distribution. However, difficulties with getting a good
static load balance suggested that the periodic rebalancing could be used to
implement a measurement-based load balancer.

If the initial patch assignment makes reasonable allowances for the load rep-
resented by each patch, compute object migration alone provides a good final
load balance. During the simulation, each migratable object informs the load
balance coordinator when it begins and ends execution, and the coordinator ac-
cumulates the total time consumed by each migratable object. Furthermore, the
Converse runtime system [6] provides callbacks from its central message-driven
scheduler, which allows the coordinator to compute idle time for each processor
during the same period. All other computation, including the bond-force compu-
tations and integration, is considered background load. The time consumed by
the background load is computed by subtracting the idle time and the migratable
object times from the total time.

After simulating several time steps, the load balance coordinator takes this
data and passes it to the selected load balancing strategy object (see section 4.2).
The strategy object returns new processor assignments for each migratable ob-
ject. The coordinator analyzes this list and determines where new proxy patches
are required. The coordinator creates these new proxy patches, moves the se-
lected migratable objects, and then resumes the simulation.

The first rebalancing results in many migratable object reassignments. The
large number of reassignments usually results in changes to the background load,
due to (difficult to model) changes in communication patterns. Therefore, after
a few more steps of timing, a second load balancing step is performed, using

an algorithm designed to minimize changes in assignments (and therefore in
communication load). The second balancing pass produces a small number of
additional changes, which do not change the background load significantly, but
result in an improved final load distribution.

4.2 The Load Balancing Strategy
The load balancing strategy object receives the following pieces of information

from the load balance coordinator (all times/loads are measured for several re-
cent timesteps):

The background (non-migratable) load on each processor.

— The idle time on each processor.

The list of migratable objects on each processor, along with the computation
load each contributes.

— For each migratable object, a list of patches it depends on.

For each patch, its home processor, as well as the list of all processors on
which a proxy must exist for non-migratable work.

Based on this information, the strategy must create a new mapping of migrat-
able objects to processors, so as to minimize execution time while not increasing
the communication overhead significantly. We implemented several load balanc-
ing strategies to experiment with this scenario. Two of the most successful ones
are briefly described below.

It is worth noting that a simple greedy strategy is adequate for this problem if
balancing computation were the sole criterion. In a standard greedy strategy, all
the migratable objects are sorted in order of decreasing load. The processors are
organized in a heap (i.e. a prioritized queue), so that the least loaded processor
is at the top of the heap. Then, in each pass, the heaviest unassigned migratable
object is assigned to the least loaded processor and the heap is reordered to
account for the affected processor’s load.

However, such a greedy strategy totally ignores communication costs. Each
patch is involved in the electrostatic force computations with 26 neighboring
patches in space. In the worst-case, the greedy strategy may end up requir-
ing each patch to send 26 messages. In contrast, even static assignments, using
reasonable heuristics, can lead to at most six or seven messages per patch. In
general, since more than one patch resides on each processor, message-combining
and multicast mechanisms can further reduce the number of messages per patch
if locality is considered. Since the communication costs (including not just the
cost of sending and receiving messages, but also the cost of managing various
data structures related to proxies) constitute a significant fraction of the overall
execution time in each timestep, it is essential that the load balancing algorithm
also considers these costs.

One of the strategies we implemented modifies the greedy algorithm to take
communication into account. Processors are still organized as a heap, and the

migratable objects sorted in order of decreasing load. At each step, the “heavi-
est” unassigned migratable object is considered. The algorithm iterates through
all the processors, and selects three candidate processors: (1) the least loaded
processor where both patches (or proxies) the migratable object requires already
exist (so no new communication is added), (2) the least loaded processor on which
one of the two patches exists (so one additional proxy is incurred), and (3) the
least loaded processor overall. The algorithm assigns the migratable object the
best of these three candidates, considering both the increase in communication
and the load imbalance. This step is biased somewhat towards minimizing com-
munication, so the load balance obtained may not be best possible.

After all the migratable objects are tentatively assigned, the algorithm uses a
refinement procedure to reduce the remaining load imbalance. During this step,
all the overloaded processors (whose computed load exceeds the average by a
certain amount) are arranged in a heap, as are all the under-loaded processors.
The algorithm repeatedly picks a migratable object from the highest loaded
processor, and assigns it to a suitable under-loaded processor.?

The result of implementing these new object assignments, in addition to
anticipated load changes, creates new communication load shifts. Also, a part
of the background work depends on the number (and size) of proxy patches
on each processor, and increases or decrease as a result of the new assignment.
As a result, the new load balance is not as good as the load balance strategy
object expected. Rather than devising more complex heuristics to account for
this load shift, we chose a simpler option. As described in section 4.1, a second
load balancing pass is performed to correct for communication-induced load
imbalance. This pass uses the refinement procedure only. Since the load is already
fairly well balanced, only a few migratable objects are moved, improving load
balance further without significant change in communication load. We find two
passes sufficient to produce good load balance.

5 Performance

Performance measurements of various runs of NAMD were done using Projec-
tions, a performance tracing and visualization tool developed by our research
group. Projections consists of an API for tracing system as well as user events
and a graphical tool to present this information to the user in addition to modules
to analyze the performance. To suit our needs for this particular task, Projec-
tions was extended with capabilities such as generating histograms, displaying
user-defined markers, and tracing thread-events.

Our performance results are from an actual molecular system (ER-GRE, an
estrogen receptor system) being studied by the Theoretical Biophysics Group.
The system is composed of protein and DNA fragments in a sphere of water. Ap-
proximately 37,000 atoms are simulated using an 8.5 A cutoff. The simulations
are run on 16 processors of CRAY T3E.

2 The techniques used to select the appropriate pair of candidates is somewhat involved
and have been omitted.

Time

12000000 +

10000000

8000000 — — — — — —

6000000 -

4000000 1

2000000 -+

0 2 4 6 8 10 12 14 Average

Processor

‘IMigratabIe Work O Non-Migratable Work ‘

Fig. 2. Load with static load balancing

Figures 2 and 3 show a typical improvement obtained with our load balancer.
Figure 2 shows measured execution times for the first eight steps of the simulation
(where load balancing is based on a predictive static load balancing strategy
described in section 3), and figure 3 shows times for the eight steps after load
balancing. Since total execution time is determined by the time required by
the slowest processor, reducing the maximum processor time by ten percent
decreases execution time by the same amount. We have also observed that for
larger numbers of processors, the static load balancer produces even more load
variation. The measurement-based load balance does not produce such variation,
producing greater performance improvement. Comparisons of the average times
(the rightmost bar on each plot) shows that the new load distribution does not
increase computational overhead to obtain better balance.

Figure 4 shows the speedup compared to one processor for the same simu-
lation, using measurement-based load balancing. Since the number of computa-
tional objects is fixed, and total communication increases with increasing number
of processors, load balancing grows more complex. Our load balancer exhibits
good speedup even for larger numbers of processors.

Time

10000000

9000000

8000000 -

7000000 -

6000000 -

5000000 -

4000000 -

3000000 -

2000000 -

1000000 -+

0

Speedup relative to 1 Processor

2 4 6 8 10 12 14

Processor

‘I Migratable Work O Non-Migratable Work ‘

Fig. 3. Load after measurement-based load balancing

70

Speedup —<—
Ideal ----
60 |- E

0 ! ! ! ! ! !

0 10 20 30 40 50 60 70
Number of Processors

Fig. 4. Speedup for simulation steps after load balancing.

Average

6 Conclusion

Molecular dynamics simulation presents complex load balancing challenges. The
pieces of work which execute in parallel represent widely varied amounts of com-
putation, and the algorithm exhibits an appreciable amount of communication.
We found it difficult to devise good heuristics for a static load balancer, and
therefore used measurement-based dynamic load balancing that was accurate
and simpler to implement, especially when object migration is supported by the
programming paradigm.

Future work will focus on improvements on the load balancing strategy.
Smarter strategies may be able to reduce communication costs in addition to bal-
ancing the load, producing speed improvements beyond that obtained through
equalizing load without great attention to communication. The current load bal-
ancer also does not address memory limitations; for large simulations it may be
impossible to place objects on certain processors if memory on those processors is
already consumed by simulation data. Although the measurement-based scheme
is more capable of adjusting to changes in processor and communication speeds
than other schemes, we will also study the algorithms behavior for other archi-
tectures, including workstation networks and shared memory machines. Also,
the current implementation of load-balancing strategy is centralized on proces-
sor 0. We plan to provide a framework for parallel implementation for future
load-balancing strategies.

References

1. Bernard R. Brooks, Robert E. Bruccoleri, Barry D. Olafson, David J. States,
S. Swaminathan, and Martin Karplus. CHARMM: A program for macromolec-
ular energy, minimization, and dynamics calculations. Journal of Computational
Chemistry, 4(2):187-217, 1983.

2. Axel T. Briinger. X-PLOR, A System for X-ray Crystallography and NMR. Yale
University Press, 1992.

3. Terry W. Clark, Reinhard v. Hanxleden, J. Andrew McCammon, and L. Ridgeway
Scott. Parallelizing molecular dynamics using spatial decomposition. Technical
report, Center for Research on Parallel Comutation, Rice University, P.O. Box
1892, Houston, TX 77251-1892, November 1993.

4. H. Heller, H. GrubMuller, and K. Schulten. Molecular dynamics simulation on a
parallel computer. Molecular Simulation, 5, 1990.

5. L. V. Kalé, Milind Bhandarkar, Robert Brunner, Neal Krawetz, James Phillips,
and Aritomo Shinozaki. A case study in multilingual parallel programming. In
10th International Workshop on Languages and Compilers for Parallel Computing,
Minneapolis, Minnesota, June 1997.

6. L. V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan, and Joshua
Yelon. Converse: An Interoperable Framework for Parallel Programming. In Pro-
ceedings of the 10th International Parallel Processing Symposium, pages 212-217,
Honolulu, Hawaii, April 1996.

7. L.V. Kale and S. Krishnan. Charm++: A portable concurrent object oriented
system based on C++. In Proceedings of the Conference on Object Oriented Pro-
gramming Systems, Languages and Applications, September 1993.

8. Mark Nelson, William Humphrey, Attila Gursoy, Andrew Dalke, Laxmikant Kalé,
Robert D. Skeel, and Klaus Schulten. NAMD— A parallel, object-oriented molec-
ular dynamics program. Intl. J. Supercomput. Applics. High Performance Com-
puting, 10(4):251-268, Winter 1996.

9. W. Rankin and J. Board. A portable distributed implementation of the paral-
lel multipole tree algorithm. IEEE Symposium on High Performance Distributed
Computing, 1995. [Duke University Technical Report 95-002].

10. W. F. van Gunsteren and H. J. C. Berendsen. GROMOS Manual. BIOMOS b. v.,
Lab. of Phys. Chem., Univ. of Groningen, 1987.

11. P. K. Weiner and P. A. Kollman. AMBER: Assisted model building with energy
refinement. a general program for modeling molecules and their interactions. Jour-
nal of Computational Chemistry, 2:287, 1981.

This article was processed using the ITEX macro package with LLNCS style

