Multiparadigm, Multilingual Interoperability:
Experience with Converse

L. V. Kalé, Milind Bhandarkar, Robert Brunner, and Joshua Yelon

Dept. of Computer Science, University of Illinois

Abstract. The Converse run-time framework was designed with dual
objectives: that of supporting quick development of portable run-time
systems for new parallel programming paradigms, and that of permit-
ting interoperability between multi-paradigm modules in a single ap-
plication. This paper reports on the refinements made to the original
Converse model since its inception almost two years ago, and assesses
our experience in using Converse to satisfy the above objectives. A brief
overview of the motivation and overall design of Converse is included
for completeness. Extensions and refinements in Converse are discussed
along with the reasons for their inclusion. Several languages/paradigms
were implemented using Converse; techniques used in these implementa-
tions and our experience with specific features of Converse used in them
are discussed. A major multilingual multi-paradigm parallel application
developed within the Converse framework is described.

1 Introduction

Programming parallel machines is a complex task, especially if one considers the
broad class of applications one may wish to parallelize. The currently popular
paradigm is characterized by the raw or direct use of MPI: all processes execute
essentially identical code, exchanging messages via explicit sends and receives at
predetermined points. Although this paradigm is reasonably suited to many ap-
plications with relatively regular parallel structure, there are many applications
for which it is not a good match. As the class of parallel applications broad-
ens and includes more complex applications than attempted so far, it is natural
that new parallel paradigms will be invented and studied. Indeed, many such
approaches including multithreading, message driven objects, gather-scatter li-
braries, etc. are being explored.

Such new paradigms, some of which will undoubtedly prove useful in the
long run, face two major hurdles. First, to implement the run-time system for
a new paradigm on a parallel machine is often a daunting task. This is further
compounded by the diversity and multitude of different parallel machines. Sec-
ond, user acceptance of new paradigms is difficult to attain. Users are naturally
reluctant to commit their entire applications to an experimental approach. Also,
a new paradigm may prove inappropriate for some parts of the application, even
though other parts may profit from it in efficiency or readability.

The Converse run-time framework was designed to overcome both of these
obstacles. Converse is a runtime system that provides portable, efficient imple-



mentations of all the functions typically needed by a parallel language or library.
One of Converse’s primary goals is interoperability. Converse enables modules
written in different languages/paradigms to coexist and, indeed, overlap in a sin-
gle application. This interoperability reduces barriers to user acceptance. Users
can employ a new paradigm for a small select number of modules, while retain-
ing their favorite or traditional paradigm for the rest of the application. This
allows the novel approaches to establish a toe-hold, from which they can ex-
pand based on their merit. Further, users can select an appropriate paradigm
for implementing each module individually.
This report serves as a progress report and evaluation of Converse.

2 Converse Architecture and Refinements

The Converse run-time framework was designed with the objective of supporting
a wide variety of parallel programming paradigms without requiring them to
sacrifice efficiency. This means that the implementation of any parallel language
using Converse must be almost as efficient as a native implementation on each
particular machine. Results so far [3] suggest that Converse meets this goal.
To achieve this level of efficiency, the Converse API must subsume capabilities
offered by most parallel machines. To ensure that each language pays for only
those features that it uses, the Converse architecture consists of a set of very
simple, efficient core components. Higher-level functionality is layered on top of
this core in the form of optional modules. The idea of need-based cost is discussed
further in [11]. The set of core components is chosen so that a wide variety of
programming models, and their coexistence, can be supported.

Converse models the machine as a set of semi-independent processors that
communicate primarily via messages. Each processor is running a scheduler,
which is responsible for all message reception. Each message contains a function
pointer and some bytes of user data. The scheduler thread’s job is to repeatedly
pick and process the highest priority message (or other event) it has received.
Processing a message consists of calling the function pointer which is in the
message, passing in the message’s data. This functionality is encapsulated in
three distinguishable modules: a threads module, the scheduler, and the machine
interface.

The machine interface’s most important part is the communication prim-
itives. These primitives insert messages into the scheduler queues at remote
processors, where the scheduling thread finds and processes them. To ensure
that the abilities provided by the machine are properly exploited, several vari-
ants of communication primitives are provided that support synchronous and
asynchronous communication and various forms of broadcast.

The Converse scheduler serves not only as a message receiver, but also as
a central allocator of CPU time. Many parallel paradigms, such as the multi-
threaded models and message driven objects, require a scheduler. If each library
had its own scheduler, then control of the CPU would not transfer from one
library to another.



The scheduler supports prioritized messages. These priorities are very flexi-
ble: we even allow arbitrary-precision numbers to be used as priorities. This is
extremely useful for many AI applications. Importantly, though, the scheduler
is designed in such a way that the cost of priority queueing is only paid when
priorities are being used.

The thread component is much like traditional thread systems. However,
the Converse user is given explicit control over very low-level primitives like
context-switching, suspension, and thread handles. This separation of the prim-
itive thread functions makes it possible for the users to design their own syn-
chronization primitives and scheduling mechanisms very inexpensively. Converse
threads are currently nonpreemptive. This is useful in that it eliminates most
locking and thread-safety issues, in turn making functions like malloc much
more efficient.

Threads are normally scheduled automatically by Converse, but hooks are
provided so that the Converse user can write alternate scheduling code. This
is not unlike a facility provided by OpenThreads [8]. However, to keep conflicts
between modules to a minimum, alternate scheduling code only affects those
threads that explicitly request it. This helps preserve interoperability.

Support for shared memory and shared variables is provided in a portable
manner as described in the section on the machine model below. In addition,
the machine interface supports several other utilities such as timers and terminal
I/0.

In addition to these fundamental parts which have been present since Con-
verse’s inception, several new modules have been added. The following sections
describe these recent additions.

2.1 Shared Memory

Converse assumes the machine to be a collection of nodes, where each node con-
sists of one or more processes sharing memory (some systems call these processes
“kernel threads”.) Each process operates with its own scheduler, and messages
are usually directed to processes, not nodes. Each process houses an arbitrary
number of Converse threads. This model covers all the memory hierarchies in
existing machines, from the distributed memory machine at one end to the fully-
shared machine at the other, with clusters of SMPs in-between (Converse has
recently been ported to the SGI Origin 2000 and networks of SMP workstations).

Even though shared memory is there on some machines, Converse intention-
ally keeps processors separate from each other, with mostly-independent data
structures. In other words, Converse presents the impression of a distributed
memory machine. Since the processors are kept separate, and threads are non-
preemptive, the Converse user rarely has to implement any kind of locking or
thread-safety code. The Converse user can access shared memory, but this can
only be done through explicit action. Typically, locking is only needed in modules
that explicitly use shared memory. This is in contrast to many runtime systems
that require every data structure to be protected with locks. Many Converse
modules use the shared memory internally. In particular, Converse messaging



uses it for efficient delivery where possible. Thus, much of the benefit of shared
memory is gained, with none of the complexity.

The C programming language supports global variables (global in scope, not
shared across processors). Compilers for distributed-memory hardware typically
give each processor a separate copy of the globals, but compilers for shared-
memory hardware typically make only one copy. Thus, attempts to use global
variables tended to create portability problems. Converse solves this by adding
explicit control over sharing of global variables. Converse extends C (through
macros) to include thread-private, processor-private, and shared variables. Each
Converse thread has its own copy of the thread-private variables. Each processor
has a copy of the processor-private variables, and all the threads housed on that
processor share the copy. Each node has a copy of the shared variables, which is
available to all the entities in that node.

2.2 Global Pointers

A global pointer is a triplet consisting of a processor identifier, memory ad-
dress local to that processor, and size of that memory block. Any processor can
declare a block of its private memory globally accessible by creating a global
pointer associated with it. This global pointer is a first class object which can
be sent to other processors using messages'. Remote processors can then use
functions provided in Converse to asynchronously or synchronously read and
write (Get and Put) into this memory. Converse’ global pointer mechanism is
being used in the implementations of an all-software Distributed Shared Mem-
ory (DSM) scheme called CRL (in progress), and I-structures[1]. Parallelizing
compilers implemented assuming a runtime support for DSM, can be retargeted
to use Converse global pointers.

2.3 Vector Sends

Messaging routines often accept user data, concatenate a header onto that data,
and then send the header and data together. For example, the MPI messaging
routines accept a pointer to data, but they also accept a “communicator” object.
The communicator and the data are then transmitted together. The act of con-
catenating a header to message data often requires copying the header and data
into a new buffer. This is inefficient. To help the implementors of such routines,
Converse now provides a set of vector-send primitives. These primitives accept
an array of pointers to data. Each element in this array represents a piece of
a message to be delivered. The pieces of data are concatenated and sent, but
the concatenation is often done very efficiently, without the overhead of copy-
ing. For example, on machines where messages are packetized, the packets are
simply gathered by scanning the array and packetizing each piece separately. On

! A mechanism is also provided to share global pointers by associating well-known
names with it.



machines with shared memory, messaging is sometimes implemented by copy-
ing a message from the sender’s memory to the receiver’s memory. In this case,
vector send is implemented by concatenating straight into the receiver’s mem-
ory. All of these optimizations are done transparently to the Converse user by
the implementation of the vector-send primitives, thus reducing programming
complexity.

2.4 Threads

In version 4.5, thread support was added for some machines, in version 4.6, it
was ported to all machines. The original implementation was somewhat machine-
dependent, and thus we had multiple versions of the threads package. This turned
out to be a maintenance problem: each time we added a feature to the threads
package, we had to code the feature into each version separately. The problem
was solved by reimplementing Converse threads on top of the QuickThreads [17]
library. While Quickthreads does contain machine-dependent code, the fact that
the Quickthreads API has been frozen for years prevents this from becoming
a maintenance issue. Any features added to Converse threads are now imple-
mented on top of the stable Quickthreads layer. Porting is much easier, since
Quickthreads uses a minimalist design. We have ported QuickThreads to sev-
eral new platforms, including the Cray T3D and T3E, the Origin 2000, the
IBM RS6000, and the SP1 and SP2. The use of the QuickThreads API makes
our porting efforts useful to all thread users, even outside the Converse user-
community. Finally, Converse threads context-switch time for Converse has also
been reduced, as many of the QuickThreads ports were hand-coded in assembly
language.

2.5 Utilities and Libraries

In addition to its core components, several convenience modules are provided
with Converse. These are designed to simplify the task of implementing runtime
systems for parallel languages.

The message manager is a table object for storing messages according to a set
of integer tags. It supports variable numbers of tags, and wild cards in the lookup
process. It can also be used to store any data that must be indexed by integer
tags. The futures library implements the futures abstraction [9] in a library-
form. It provides a future “object”, with methods to fill the object remotely,
get its value, and block until the value has been filled. The Converse Parameter
Marshalling system is a small C preprocessor and code generator that produces
remote function-invocation code. One inserts the keyword CpmInvokable into
a C source file in front of a function definition. The CPM preprocessor scans
the C file, and generates code to invoke that function remotely. The CPM-
generated code automatically packs up the arguments into a message, sends them
to the destination, and invokes the function in question. The POSIX threads API
has been implemented on top of Converse threads. These POSIX threads can
interoperate with Converse threads, and the rest of the Converse system.



3 Languages and Libraries Implemented in Converse

Several parallel programming languages and libraries have been implemented in
the past two years using Converse. The number of these languages and the ease
with which we were able to implement them strongly demonstrates the utility
of Converse. In the following subsection, we describe in detail how one simple
language was implemented using Converse to illustrate how Converse is used
for building language runtimes. The following subsections describe several other
languages and libraries implemented on top of Converse.

3.1 Implementation of a Multithreaded Messaging Library

This section shows the implementation of CSM, a message-passing library. CSM
was designed for illustration purposes, it is intentionally the simplest possible
library that implements message-passing with threads. The basic design shown
here can be used to implement any message-passing library, including MPI or
PVM. The following function descriptions are from the CSM manual:

void CsmTSend(int pe, int tag, char *buffer, int size)

A message is sent to the given processor pe containing size bytes of data
from buffer, and tagged with the given tag. The calling thread continues after
depositing the message with the runtime system.
int CsmTRecv(int tag, char *buffer, int size, int *rtag)

Waits until a message with a matching tag is available, and copies it into
the given buffer. A wild card value, CsmWildCard, may be used for the tag. In
this case, any available message is considered a matching message. The tag with
which the message was sent is stored in the location to which rtag points. The
number of bytes in the message is returned.

Our implementation buffers messages on the destination processor. To im-
plement this using Converse, two major data structures are needed. First, each
processor needs a “message table” containing messages that were sent, but for
which no CsmTRecv call has been issued yet. Second, each processor needs a
“thread table” containing threads that are waiting for messages, indexed by the
tags that they’re waiting for. Given these data structures, the send and receive
functions are implemented as follows.

CsmTSend creates a Converse message containing the user data and the tag.
It configures the message to invoke the function CsmTHandler. CsmTSend then
transmits a copy of this message to the destination processor. When the mes-
sage arrives, the target processor calls CsmTHandler, passing it a pointer to the
message (which contains the user data and tag). CsmTHandler takes the user
data and tag, and inserts it into the local message table. It then checks the
thread table to see if any thread was waiting for the message. If so, that thread
is awakened.

When a thread calls CsmTRecv, it looks in the message table, and if a matching
message is already there, it is extracted and returned. If not, CsmTRecv obtains
its own thread ID, and inserts itself into the thread table. It then puts itself



to sleep. When it wakes up, it knows it has been awakened by CsmTHandler. It
retrieves the message from the message table, and returns it.

For the message and thread tables, we used an off-the-shelf table object
provided by Converse (the “message manager”). Thus, our data structures were
largely implemented for us. The thread functions were provided, as was the
messaging. We had to design the format of the CSM messages (header, then tag,
then user data), write the subroutines shown above, and declare and initialize the
tables. All in all, this took about 100 lines (2 pages) of code. This is interesting,
as the message-passing model we implemented is significantly different from the
underlying message-driven model.

Notice that no explicit action was needed to keep CSM from interfering with
other libraries also implemented on top of Converse. CSM messages, when they
arrive, trigger changes to the CSM data structures. They have no other effect.
If a library system does not explicitly monitor the CSM data structures, it will
not be aware that a CSM message arrived. In general, two libraries implemented
on top of Converse do not notice each other’s existence unless explicit action is
taken to create interaction. This is in contrast to such systems as MPI, where
each independent module must take explicit action (e.g., the creation of new
communicator objects, etc) to avoid interfering with other modules.

3.2 PVM and MPI

We have implemented both MPI and PVM on top of Converse. This makes it
possible to link modules written with the PVM or MPI primitives to each other
or other parallel languages.

The MPI implementation([3] is based on MPICH [22]. MPICH is an imple-
mentation of MPI which can be easily retargeted, we simply retargeted it to
Converse. Interestingly, the Converse port of MPICH is very close in efficiency
to the native port of MPICH on the machines we tested. However, the Converse
version gains all the interoperability benefits of Converse.

Our version of PVM is a from-scratch reimplementation of much of the PVM
3.3 C library. The code is 2000 lines, most of which is the message-packing
routines. The PVM process-management calls are not available under Converse,
but dummy functions are provided for easy translation of standard PVM code.
The implementation of PVM-Converse is much like the implementation of CSM
as described above. The PVM-Converse library is currently used in a major
production quality molecular dynamics application (See section 4.)

3.3 Message-Driven Languages

Charm[16] and Charm++[13] were developed before Converse. The design of
Converse was a result of our experiences with making Charm and Charm++
portable and making modules written in both Charm and Charm++ interop-
erate within the same application. Charm and Charm++ were later retargeted
to Converse. The most difficult part of this retargeting was moving Charm’s
support for multiprocessor nodes into Converse. For example, the specifically



shared variables had to be reimplemented in order to take advantage of node-level
memory access, and in-built node-level locks instead of using language-specific
abstractions. Also, Charm and Charm++ contained dynamic load balancing
facilities. However, in an application with multiple language modules, load bal-
ancing should be done in the global context taking into account the entire load
across all the language modules. Thus load balancing facilities were moved into
Converse, and Charm++ runtime was written to use this load-balancing facility.

More recently, Charm++ has been simplified to use an interface definition
language to produce wrappers for objects and entry methods in Charm++. Also,
new additions to entities supported by Charm++ were made in the form of
object arrays. These additions were made at the Converse level and the modular
architecture of Converse helped to quickly develop a prototype version of these
libraries. Because of the interoperable nature of languages implemented on top
of Converse, these entities could also be used across multiple language modules.

We also developed a Java binding for the Charm++ constructs and entities
such as remote objects with global name space, and asynchronous method in-
vocation using Converse[12]. Currently this binding is supported on machines
where Sun’s Java Development Kit 1.1 is available. Converse runtime system
functionality was made available to this implementation through native meth-
ods of the PRuntime class. We had to modify the machine layer implementation
on networks of workstations, because the common resources used by JDK1.1 are
not separated into kernel-level threads in the JDK implementation. This problem
will be fixed in the future versions of JDK.

3.4 Data Parallel Languages

DP[18], a subset of High Performance Fortran (HPF) was implemented on top of
Charm++ before the development of Converse. After Charm++ was retargeted
to Converse, DP was automatically retargeted and is available for programming
data parallel algorithms in a multilingual application.

pC+-+ [5, 2] is a C++ extension for data-parallel computation using collec-
tion of objects. The method execution semantics of C++ objects is extended to
include method invocation in parallel on a collection of objects. The pC++ im-
plementation consists of a translator that converts pC++ constructs into ANSI
C, and generates calls to the runtime system functions. The runtime system of
pC++ is called Tulip. Tulip offers a subset of Converse functionality. In partic-
ular, it supports a single handler function per application. Also, the scheduler
for Tulip operates in a “polling” mode, and calls to this scheduler are inserted
in application by the translator. It was indeed very simple task to provide an
implementation of pC++ on top of Converse.

3.5 Other Languages

Several experimental languages have been recently implemented on top of Con-
verse. We describe these languages briefly.



Import [15] is a simulation language based on Modsim. Import models a
simulation system as a set of objects. The sequential version of the language has
a centralized discrete event queue where each event is a time stamp, an object,
and a method. Our parallel implementation replaces the centralized discrete
event queue with the Time Warp concurrency control mechanism. This simu-
lates a strict time-stamp-ordered execution of events, when in fact events are
being executed in parallel. The implementation of Time Warp was challenging,
but the Converse interface was straightforward. The implementation relies upon
the Converse messaging primitives, its priority mechanisms, and its and shared
variable mechanisms. Speedups for our sample simulations have been excellent.

Agents [23] is an experimental object-oriented language dedicated to explor-
ing the idea of immutable, static networks of objects. The language supports
remote method invocation, and thus, its implementation is much like the imple-
mentation of Charm (see section 3.3). The runtime system of the language took
only a few hundred lines of code, though the compiler and optimizer were much
more complex.

Perl is a popular scripting language mainly used for text processing and
system administration tasks. Message Driven Perl (mmdPerl) is a package for Perl
b programs that allows writing message-driven parallel programs in Perl. The
basic capability of mdPerl is to invoke subroutines on remote processors. mdPerl
provides a subroutine mdCall that specifies a processor number, name of the
subroutine to be invoked on that processor and arguments to be passed to that
subroutine. The implementation consists of approximately two hundred lines of C
code to interface Perl with Converse. The scheduler of Converse is made available
to Perl programs to schedule computations received from remote processors. For
common programming tasks such as analyzing the log information of a WWW
server, we have obtained a near linear speedup using mdPerl.

4 Multilingual Programming: Applications

NAMD [19] is a parallel molecular dynamics simulation program being devel-
oped with the Theoretical Biophysics group at the University of Illinois. NAMD
simulates the motions of biological molecules such as proteins and DNA by re-
peatedly computing the forces exerted by individual atoms on one another, and
integrating the motion due to these forces over time.

The original version of the program, NAMD 1, was built using a message-
driven design. Two variants of the program were initially developed. One variant
used Charm++, which provided support for straightforward expression of the
message-driven design. The other variant used PVM in order to allow us to use
the DPMTA [20] library developed by collaborators at Duke University. The
DPMTA library provides efficient long-range electrostatic force computation,
which is necessary for some simulations. The PVM variant of NAMD originally
had a message-driven design, but new features tended to be added around rather
than within the message-driven core design, sacrificing maintainability. Eventu-
ally, since DPMTA made the PVM variant more useful, more development time



was spent on it, and the Charm++ version fell into disrepair. By that time,
though, the haphazard mix of SPMD and message-driven code had reduced the
readability of the program.

NAMD 2 [10] was conceived as a rewrite of the core parallel code to increase
scalability and modifiability. Our experience with NAMD 1 led us to conclude
that a message-driven design was appropriate for the parallel core code, but that
adding threads to the design would allow the integration loop to be expressed
as a loop construct, with occasional thread suspension to wait for data. We also
observed that much of the startup code was easier to write in an SPMD style.
Furthermore, we did not want to rewrite the input routines or the DPMTA
library, so we needed support for PVM. Fortunately, Converse satisfies all of
these goals.

The case for multilingual programming is vividly made by our new design
for the integration logic that is the core of NAMD 2. The simulation space is
divided into cubical regions called patches, each of which can be simulated in
parallel, requiring only information from neighboring patches. Each patch has
an associated object called a sequencer, which is responsible for integrating the
equations of motion for the atoms owned by the patch. The sequencer contains
the code that, for each time step, sends out atom positions, retrieves the forces
calculated for those positions, and then computes the positions at the next time.
Each sequencer is initially created by a Charm-++ object in its own Converse
thread. First, the sequencer sends atom positions to compute objects, Charm++
objects that actually perform the force computations. Then the sequencer sus-
pends its thread. The receipt of the force messages from the last compute object
causes the sequencer thread to awaken, and the forces are used to update the
positions for the patch. The author of a particular sequencer code writes the
logic as a loop, and the only attention he must pay to the parallel nature of
the code is to insert the thread suspend calls in the correct places. This satisfies
one of the major design goals of NAMD 2, namely that the user of the program,
typically a physicist or chemist with experience writing sequential programs, can
implement a new integration algorithm without having to understand details of
the parallel code.

NAMD 2 is now being tested, and nearing release. Increased sequential and
parallel efficiency makes the program faster than NAMD 1, indicating that a
multilingual Converse program pays little or no price for programming conve-
nience. NAMD 2 already supports almost all features of NAMD 1, and several
significant features which were never part of the original program, providing
evidence of the improved modifiability of its multilingual design.

5 Conclusion

The Converse run-time framework was designed with two objectives: To simplify
the development of run-time systems of parallel languages, and to allow inter-
operability between modules written in different languages (often representing
diverse parallel programming paradigms) within a single application. In this



paper, we presented evidence that Converse has indeed attained these goals.
We also described several extensions to Converse in the form of new features
and libraries, that simplify development of run-time systems and enhance their
portability. More than ten distinct libraries/languages have been implemented
on top of Converse, demonstrating utility of the framework and completeness
of its functionality. We also describe a large production quality application that
employs modules written using different languages running on top of Converse.

Several other systems have been designed with objectives similar to Converse.
Nexus [6] supports dynamic addition of processors on the Internet and provides
flexible communication protocol. These features are useful for some applica-
tions but they add complexity to the programming model. Run-time frameworks
aimed at supporting parallel languages on dedicated parallel machines include
Tulip [2], Panda [4], and Chant [7]. We believe that a few additional frameworks
are also being developed at research laboratories. We propose to collaborate with
these researchers to combine useful features from these systems so as to broaden
the set of paradigms that can be supported by run-time frameworks.

Current unfinished work on Converse includes messages directed to nodes
instead of processors, profiling and tracing support, ports of more program-
ming models to the Converse API, more convenience modules, transparent load-
balancing across nodes, and ports to new machines. Future work may include
support for networks of heterogeneous workstations, new language bindings, dy-
namically adding nodes, and support for thread preemption.

References

1. Arvind, R. S. Nikhil, and K. Pingali. I-structures: Data structures for parallel com-
puting. ACM Transactions on Programming Languages and Systems, 11(4):598—
632, October 1989.

2. P. Beckman and D. Gannon. Tulip: A portable run-time system for object-parallel
systems. In Proceedings of the 10th International Parallel Processing Symposium,
April 1996.

3. Milind Bhandarkar and L. V. Kalé. MICE: A Prototype MPI Implementation in
Converse Environment. In Proceedings of the second MPI Developers Conference,
pages 26-31, South Bend, Indiana, July 1996.

4. Raoul Bhoedjang, Tim Ruhl, Rutger Hofman, Koen Langendoen, Henri Bal, and
Frans Kaashoek. Panda: A portable platform to support parallel programming
languages. In Ezperiences with Distributed and Multiprocessor Systems (SEDMS
IV), pages 213-226. USENIX, San Diego, CA, September 1993.

5. F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. Yang. Distributed pC++:
Basic ideas for an object parallel language, 1992.

6. lan Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An Interop-
erability Layer for Parallel and Distributed Computer Systems. Technical Report
ANL/MCS-TM-189, Argonne National Laboratory, May 1994.

7. M. Haines, D. Cronk, and P. Mehrotra. On the Design of Chant: A Talking
Threads Package. In Proceedings of Supercomputing 1994, Washington D.C.,
November 1994.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Matthew Haines and Koen Lagendoen. Platform-independent runtime optimiza-

tions using openthreads. In 11th International Parallel Processing Symposium,
april 1997.

. R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM

Transactions on Programming Languages and Systems, October 1985.

L. V. Kalé, Milind Bhandarkar, Robert Brunner, Neal Krawetz, James Phillips, and
Aritomo Shinozaki. A case study in multilingual parallel programming. Technical
report, Theoretical Biophysics Group, Beckman Institute, University of Illinois,
Urbana, June 1997.

L. V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan, and Joshua
Yelon. Converse: An Interoperable Framework for Parallel Programming. In Pro-
ceedings of the 10th International Parallel Processing Symposium, pages 212-217,
Honolulu, Hawaii, April 1996.

L. V. Kalé, Milind Bhandarkar, and Terry Wilmarth. Design and implementation
of parallel java with a global object space. In Proc. Conf. on Parallel and Dis-
tributed Processing Technology and Applications, Las Vegas, Nevada, July 1997.
L. V. Kalé and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175-213. MIT Press, 1996.

L. V. Kalé and Joshua Yelon. Threads for Interoperable Parallel Programming.
In Proc. 9th Conference on Languages and Compilers for Parallel Computers, San
Jose, California, August 1996.

L. V. Kalé, Joshua M. Yelon, and T. Knauff. Parallel import report. Technical
Report 95-16, Parallel Programming Laboratory, Department of Computer Science,
University of Illinois, Urbana-Champaign, 1995.

L.V. Kalé. The Chare Kernel parallel programming language and system. In
Proceedings of the International Conference on Parallel Processing, August 1990.
David Keppel. Tools and techniques for building fast portable threads packages.
Technical Report UWCSE 93-05-06, University of Washington Department of Com-
puter Science and Engineering, May 1993.

E. Kornkven and L. V. Kalé. Efficient implementation of high performance for-
tran via adaptive scheduling — an overview. In Proceedings of the International
Workshop on Parallel Processing, Bangalore, India, December 1994.

Mark Nelson, William Humphrey, Attila Gursoy, Andrew Dalke, Laxmikant Kalé,
Robert D. Skeel, and Klaus Schulten. NAMD— A parallel, object-oriented molec-
ular dynamics program. Intl. J. Supercomput. Applics. High Performance Com-
puting, 10(4):251-268, Winter 1996.

W. Rankin and J. Board. A portable distributed implementation of the paral-
lel multipole tree algorithm. IEEE Symposium on High Performance Distributed
Computing, 1995. [Duke University Technical Report 95-002].

Sanjeev Krishnan and L. V. Kalé. A parallel array abstraction for data-driven
objects. In Proc. Parallel Object-Oriented Methods and Applications Conference,
February 1996.

W. Gropp and E. Lusk. MPICH ADI Implementation Reference Manual, August
1995.

Joshua Yelon and L. V. Kalé. Agents: An undistorted representation of problem
structure. In Lecture Notes in Computer Science, volume 1033, pages 551-565.
Springer-Verlag, August 1995.

This article was processed using the ATEX macro package with LLNCS style



