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Abstract

In object-oriented languages, an abstraction often involves a group of objects acting as a
single entity. The programmer often has a mental vocabulary by which to label the objects: for
example, in a particular LR(0) automaton, one object might represent the state “¢ :== R . S”.
In a particular instance of a binary-tree, one object might represent the data item “15”. In
general, each object in an abstraction can be mentally labeled, by the programmer, according
to some statement of its purpose. The programmer’s vocabulary to taxonomize and label the
objects constituting an abstraction may be quite sophisticated and detailed. However, that
vocabulary is only in the programmer’s mind, it does not exist at the language level. The
runtime system has no means to tell two instances of class binary-tree-node apart — it can’t
even distinguish the nodes of one tree from the nodes of another without sophisticated analysis.
Though object-oriented languages make it possible to construct data structures with many
different parts, they do not create a language-level vocabulary by which to refer to the different
parts of the data structure.

There are several problems in the field of object-oriented parallel processing that have ham-
pered programmers for years, and for which solutions have been elusive. We argue that the lack
of solutions to these problems stems from the absence of a vocabulary with which to express those
solutions. In particular, the inability to refer to objects by name, and the lack of a vocabulary
to distinguish objects from each other, makes it difficult to even describe what is desired from a
complex algorithm. When the runtime system can’t identify which object is which, it becomes
becomes impossible to express such ideas as locality, or interconnectivity, or grouping. Clearly,
this is a serious problem for parallel programmers. We have designed a new encapsulation
mechanism for parallel processing, the agent declaration. This mechanism makes it possible to
create an abstraction whose subcomponents are labeled and taxonomized. Having done so, we
straightforwardly address some of the difficulties that have been facing object-oriented parallel
programmers for years. The purpose of this research is to explore the consequences of having
a vocabulary by which to distinguish objects, and to experiment with powerful language-level
constructs that were previously inexpressible.
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1 Introduction

While object-oriented oriented languages have recently gained tremendous acceptance as a means
for sequential programming, their acceptance as a means for parallel programming has been slow.
This reluctance is attributable to several inadequacies associated with using the object-oriented
model in a parallel context. In short, writing efficient object-oriented parallel programs is quite
hard. We have identified several of the factors that make it hard, and have come to a general
conclusion: all these factors could be alleviated, in principle, but a single obstacle stands in the way.
If that single obstacle were removed, progress in many areas of parallel object-oriented language
design could begin to leap forward. It is the objective of this research to remove that one obstacle,
and to explore many of the paths that open up as a consequence. The obstacle of which I speak is
the lack of a language-level vocabulary by which to distinguish objects from each other.

Abstraction mechanisms often group a set of computational entities together, but some also assign
a collective naming scheme to the encapsulated entities. For example, the abstract data type
array not only groups a number of distinct sub-entities (elements) together, those sub-entities
are identified by a naming scheme (indices) that tells the sub-entities apart. Using classes as an
abstraction mechanism does not impose a naming scheme over the encapsulated objects. Objects
are allocated individually, and then assembled together into larger structures in imperative code.
It is the imperative assembly that leads to the lack of a taxonomy for the various objects in the
abstraction. Though a group of objects may be conceptually related in the eyes of the programmer
(e.g., “these objects form a binary tree”), there is no vocabulary for the user to make declarations
about the whole tree or branches of the tree. The system itself can only reason about one node at
a time.

Array indices are good labeling scheme for objects when those objects are in a rectilinear, finite,
grid-like organization. For example, indices are a perfect means to label the objects that form the
nodes of a Jacobi relaxation grid. When the objects are interconnected in a non-rectilinear fashion,
for example, when the objects are in a hierarchy or a complex graph, a more sophisticated labeling
scheme will be needed.

When an encapsulation mechanism creates an expressive naming scheme for the encapsulated el-
ements, an obvious benefit is gained: one can refer to elements by name in the statements of the
programming language. This, in itself, is more than enough reason to use an encapsulation mech-
anism that assigns a naming scheme to entities. However, there is a much more important and
subtle benefit to be gained: once objects are distinguished by name, it becomes possible to express
concepts which simply cannot be stated without such a naming system.

A good example of a concept that cannot be expressed without a good naming scheme for objects
is “locality.” Compare the redistribution directives of HPF (essentially, a load-re-balancer for array
elements) to the load-balancers for object-oriented languages. Since HPF array elements can be
distinguished by their names (indices), it’s possible for the redistribution directive to know which
array elements are which, and thus, which belong where. So, the load balancer for HPF array
elements not only preserves locality, it is often used to improve it. By way of contrast, the load-
balancers for object-oriented languages degrade locality. This happens because the load balancer
is unable to tell objects apart: they all look the same to the runtime system. Since objects have no



distinguishing marks (except possibly past history, if the system is willing to settle for that), and
since the system has no meaningful vocabulary by which to distinguish objects, the load balancer
can’t even begin to reason about which belong where. Thus, it ends up making more or less random
individual-object movements, shattering whatever locality used to exist.

In fact, the very concept of “locality” is based on the idea that that objects have a location
within some communication pattern. Thus, objects can be identified by their location. The objects
could theoretically be labeled with information about their position in that communication pattern.
Having such an explicit labeling system would make locality-preserving load-balancing trivial. Even
if the objects were labeled with a naming system not transparently related to locality, it would be
possible for the programmer to provide a mapping from the existing labels to labels more visibly
related to locality. Almost any labeling system, so long as it is predictable, makes it possible for
the programmer to write assertions about locality and other object properties. In current object-
oriented systems, such assertions are inexpressible.

In general, a great many concepts pertaining to the structural relationships between objects cannot
be expressed without a naming system for objects. Thus, we assert the following principle: an
encapsulation mechanism for parallel programming should distinguish and label the objects it
encapsulates. It should do so in a way that makes it possible to make assertions about object
properties and about the structural relationships between them. The object-oriented encapsulation
mechanism, classes and objects, does not taxonomize the objects it encapsulates, however, it can
be modified to do so. Once such a modification is made, it becomes possible to make real progress
in solving several previously unmanageable problems.

The objectives of this research are:

e To show that there are certain highly difficult foundational tasks which all parallel algorithms
must perform. To show that the language cannot provide higher-level support for these tasks
without a vocabulary to distinguish objects.

e To develop “agents”, a new encapsulation mechanism for parallel processing that assigns a
descriptive labeling scheme to the entities it encapsulates. To develop a compiler supporting
agents as an infrastructure for exploring the advantages of this model.

e To show how the vocabulary created by agents makes it possible to express support mech-
anisms for the foundational tasks, thereby alleviating much of the difficulty of parallel pro-
gramming. To implement those support mechanisms within the agents infrastructure, thereby
verifying their expressibility and utility.

e To show how the same vocabulary simplifies the expression of parallel algorithms themselves.
To verify this reduction in complexity through comparative programming experiments, which
can then be evaluated through the use of software complexity metrics.

e To explore several interesting experimental language constructs that can be added once ob-
jects are labeled.

This document attempts to describe the research as it has progressed to date. It is structured as
follows. Section 2, as a foundation point, simply lists some general principles to which we feel an



encapsulation mechanism should adhere. Section 3 describes two tasks which must be performed
daily by object-oriented programmers, and which are extremely difficult to do efficiently using the
standard object-oriented model. Section 4, we describe the agents encapsulation mechanism, which
taxonomizes the entities it encapsulates. We show how it can provide powerful support to eliminate
the problems we set forth in sections 2 and 3. Section 5 describes the work we have yet to perform.

2 General Principles

The following subsections briefly list several criteria that an encapsulation mechanism for parallel
processing should adhere to. We set these general statements of principle forth as a foundation on
which the remainder of the paper can build.

This section begins a convention of explicitly listing encapsulation principles, or criteria to which
we feel an encapsulation mechanism should adhere. We also catalog a list of known problems, or
ways in which some encapsulation mechanisms (including class definition and variants) have failed
to satisfy these principles. The purpose of such listing is to pinpoint those ideas which we consider
important.

2.1 Bottlenecks and Efficiency in Encapsulation Mechanisms

Most of the encapsulation mechanisms used in the parallel programming world are derived from
similar sequential constructs. This introduces a potential problem: bottlenecks. A good example
of such a bottleneck occurs when using a header object to represent a group of objects “behind” it.

Known Problem — Using an ordinary sequential object as the header to a parallel structure creates
a bottleneck.

This doesn’t eliminate all concurrency, but limits it severely. This was quickly recognized as a
problem by researchers in the field, and was explicitly commented upon by Chien in [3]. The first
solution was the branchoffice, which was part of the Chare Kernel[12] parallel programming system
(later renamed Charm). BranchOffices are essentially distributed arrays of objects. They support
an operation branchcall which causes the entire array to appear as a single object on which one may
perform method invocations. Such invocations are handled by one element of the array, namely,
the element which is situated on the same processor as the invoker. Thus, the array can serve as
an interface to a parallel computation.

Without branchoffices or some alternative, the only way to achieve concurrency is to bypass the
header object, and communicate directly with the internals of a data structure. This violation of
an encapsulation layer illustrates what will be a common theme:

Encapsulation Principle — An encapsulation mechanism must not introduce undue costs, and must
avoid bottlenecks.



2.2 Continuations and Function Pointers

Many parallel language now include what we refer to as metaprogramming constructs. This very-
loosely defined term refers to those language features which are highly abstract, and which tend
to be used only by academicians. This class of features certainly includes first-class continuations
and lambda closures, and debatably includes function pointers and first-class method pointers.

Metaprogramming features may be extremely complex, but they can be encapsulated into much
more comprehensible tools. For example, first-class continuations are notoriously hard to under-
stand. However, they can be used to implement threads, which are easy to understand, and whose
utility is well-known. For this reason, metaprogramming constructs are useful and have their place.
The fact that a construct has proven to be too complex for use by many programmers does not
mean that it should not be included in a programming language. Such constructs enable the more
sophisticated programmers to create useful tools for programmers in general.

However, when a construct has been shown too difficult for normal programmers to use, then every
effort should be taken to avoid the imposition of that construct on those users who would find it
difficult to comprehend. For example, anyone designing a module with a first-class continuation as
an input should be aware that his module will be relatively inaccessible to anyone other than an
academic researcher in computer science. In particular, such modules will tend to alienate a large
subset of the customers of parallel processing, namely, scientists who learned some programming
as a means to further their research.

Unfortunately, some parallel programming languages use metaprogramming too pervasively: they
require the use of metaprogramming features to implement even the simplest parallel algorithms.
Worse, many require the use of metaprogramming constructs in the interfaces of parallel modules.
The use of a metaprogramming construct in a module-interface violates this principle:

Encapsulation Principle — The use of continuation-passing in a module-interface is contrary to the
encapsulation goal of hiding complexity within the module.

A good example of a place where this principle was not used was is in the design of the Charm[10][11]
language, which is an object-oriented language with support for remote method invocation. The
problem arises from the fact that in Charm, like in many other such languages, remote method
invocations do not have return values. An object must “return” a value to its caller through a
callback mechanism: the callee must invoke a method on its caller. If a method is to be invoked from
multiple call-sites, then one must not hardwire the method name used in the callback. Instead, one
must pass in a method-name: e.g., one must use continuation-passing style. It is disappointing that
all methods which wish to return values must use continuation-passing style. As a consequence, even
the most trivial computations must use continuation-passing style, not only in their implementation,
but in their interfaces.

Known Problem — The lack of return-values in remote-method invocation often forces one to use
continuation-passing style as a substitute.

A quick look at a repository of parallel programs in Charm reveals that in several cases, the use
of continuations was avoided by hardwiring the method-name of the invoker into the code of the



invokee. This practice tells us something important about encapsulation:

Known Problem — Real-world programmers will sacrifice encapsulation entirely in order to avoid
having to use continuation-passing style.

Of course, the proper solution for this problem is to provide return values to remote method
invocation. This reduces the need for continuation-passing style. However, as will be shown later,
there are several other problems that lead to continuation-passing style as a partial solution.

2.3 Interface Compatibility

Modern parallel programming languages are being designed with a large number of language con-
structs. Unfortunately, these constructs are often designed in such a way that each construct
accepts input in a different manner. As a consequence, one often finds incompatibility between the
manner in which one module produces output, and another module expects its input. This makes
it difficult to compose the modules.

Encapsulation Principle — All encapsulation mechanisms in a language should have plug-compatible
interfaces to allow mazimum compositionality, at least insofar as possible.

An example of this problem occurs in Chant[8], which contains two major constructs: threads, and
ropes (groups of threads). Both kinds of entities interact with the world by sending and receiving
messages. Thus, they are potentially plug-compatible. Unfortunately, this potential compatibility
is damaged by an almost trivial difference at the type-system level: thread IDs and rope IDs aren’t
the same type. Therefore, a rope cannot be interchanged for a thread. For example, it is common
for an entity to accept a thread ID as an argument, allowing the entity’s creator to control where
the entity sends its output. Unfortunately, this interface precludes directing the entity’s output to
a rope. If, on the other hand, the entity accepted a rope ID as an argument, it would be difficult
to direct its output to a thread.

Known Problem — potentially compatible interfaces can be made incompatible by trivial differences,
such as type-incompatibility or differing accessor-names.

Because of this apparently trivial incompatibility between Chant threads and Chant ropes, it is
difficult design an entity whose output can go to an arbitrary location. One way to get around this
problem is to use continuations. In other words, the entity accepts neither a thread ID nor a rope
ID, but instead accepts a function pointer that controls every aspect of how it produces its output.
Of course, doing so is a surrender to continuation-passing style.

Known Problem — the best available solution to the problem of interface incompatibility is the use
of continuation-passing style.

The simplest way to avoid this problem is to minimize the size of the language, providing one
general construct instead of many specialized constructs. This approach is being used less and less
often, as composite languages like CC++[2], Charm++[13], Chant[8], HPC++ and many others
are being invented with a large number of features.



The other approach is to provide compatible interfaces despite having multiple constructs. This is
not usually difficult. Currently, the only language that we are aware of that uses this approach is
concurrent aggregates[3]. In CA, aggregates were specifically designed to support the same interface
as an ordinary object — method invocation. The type system also allows the substitution of an
aggregate for a single object.

Either approach is acceptable, as long as the goal of compatible interfaces is achieved.

3 Foundational Tasks performed by Parallel Algorithms

There are certain foundational tasks that every parallel algorithm must perform: receiving input,
producing output, allocating memory for data, and so forth. When one of these foundational tasks
is difficult, the price is high: almost every algorithm written ends up suffering in terms of complexity
or speed.

The following subsections describe two foundational tasks which are very difficult to perform in
an efficient manner. Both tasks could be dramatically simplified by the addition of language-
level support. However, it is obvious in both cases that such support could not function unless
the runtime system had at least some ability to distinguish the objects from each other. Since
current object-oriented languages don’t make this possible, the language-level support has not
been provided.

3.1 Data-Driven Output

Often, the purpose of an abstracted computation is to “produce outputs” which are values. Such
production can either be data-driven, i.e., initiated inside the abstraction, or demand-driven, i.e.,
initiated outside the abstraction. For example, one way to design an object-oriented computation is
to produce outputs via retrieval-methods. This approach is inherently demand-driven: abstractions
designed in this way must wait until somebody outside the abstraction calls a retrieval method,
only then can the abstraction produce one output value. The return statement itself is inherently
demand-driven. In message-based systems, demand-driven output is recognizable by the fact that
a message must travel into an abstraction for each piece of data emerging from that abstraction.
Demand-driven behavior is often too synchronous for parallel applications:

Encapsulation Principle — Data Driven Qutput: An encapsulated computation must be capable of
producing output values not only on demand, but also in a data-driven fashion.

Data-driven behavior is needed in situations where a producer-module is transferring large amounts
of data to a consumer-module, and pipelining is desired (one wants each individual datum to travel
into the consumer as soon as its available). Consider, for example, the case where the producer
is a matrix multiplier. In this case, much pipelining is possible: the matrix multiplier produces
a large volume of output data (an entire matrix), and it produces one element at a time. One
can conceptually relay each matrix element into the consumer as soon as it is computed, without



waiting for the other matrix elements to be computed.

Consider how a matrix-multiply routine would be implemented in a parallel language like Concur-
rent Aggregates[3] (CA for short). CA computations are embodied by aggregates, which are much
like BranchOffices: they are arrays of objects, with the ability to invoke methods on the array
as a whole. One possible interface for the matrix multiplication would be an aggregate with the
following methods: a method accept-row for feeding in the rows of matrix A, and another method
accept-col for feeding in the columns of matrix B, and a method retrieve-result-matrix for
obtaining the result matrix. This interface denies the opportunity for pipelining.

A better option is to replace the retrieve-result-matrix method with a retrieve-one-element
method. This makes it possible to obtain result-elements as they become available, and pipeline the
computation. However, it is demand-driven: one must make N? invocations to retrieve-one-element,
thereby sending N? request messages (demands) into the matrix multiplier to obtain the results.
These N? request messages contain no data, they are entirely a waste of bandwidth. In this man-
ner, the demand-driven approach often doubles the number of messages needed. It also tends to
use extra resources to record the requests: in this case, one must create and suspend N? threads.
Overall, demand-driven output can be excessively resource-intensive.

Known Problem — Demand-driven output uses extra bandwidth, because of the need to transmit
requests. One needs data-driven output.

To implement this pipelined producer-consumer scenario efficiently, one needs data-driven output:
one needs to be able to send the N?2 results out, one at a time, without first sending N? requests
in.

Even if one is not concerned with the wasted bandwidth associated with the use of demand-
driven output, there is a second limitation associated with using demand-driven output. Consider
another producer-consumer scenario, involving an Al system. In this scenario, the producer is
a module generating plans to achieve a goal, using a search-tree to do so. The consumer is a
module that analyzes the plans, double-checking their consistency. Clearly, this should also be
pipelined. One possible interface for the plan-producer is a single retrieve-all-plans method.
As in the matrix-multiplication scenario, this option denies the possibility of pipelining. A better
option is a retrieve-one-plan method. Unfortunately, there isn’t any simple way to implement
retrieve-one-plan efficiently, because of the routing problem. The plans are being generated by a
search-tree. They appear at apparently random locations within the objects embodying the search
tree. Meanwhile, the retrieve-one-plan invocations are being made on the objects embodying
the interface of the computation. Somehow, the plans must be routed from the objects in the search
tree to the objects that have been asked to retrieve-one-plan. This routing can be achieved, but
it is extremely complex.

Known Problem - the use of demand-driven output often leads to a routing problem. To avoid this,
one needs data-driven output.

The only way to avoid the request-overhead (in the matrix example) and the routing problem (in
the AI example) is to use data-driven output. One achieves data-driven behavior in CA by passing
a continuation into the producer. The continuation forwards the results to the consumer. This



attains the goal of data-driven output, at a cost:

Known Problem - the lack of any other mechanism for data-driven output leads to the use of
continuation-passing style.

Retrieval methods represent an example of demand-driven output, where one must send a request in
before a result can come out. There are many other examples of demand-driven output mechanisms.
For example, another common means of obtaining the results of a computation is to preallocate
a variable, and to ask the producer to fill that variable. This approach is commonly used in
languages like Id, in which computations are often started to fill I-Structures, or in Multilisp,
where computations are started to fill futures. This approach is demand-driven: one must pass a
pointer to the variable into the computation before one can get the results out.

Known Problem — The technique of using preallocated variables to obtain the results of a computa-
tion suffers the same limitations as other demand-driven methods: wasted bandwidth, and routing
problems.

There is also an intermediate stage between demand-driven and data-driven approaches — some
programming models make it possible to send in one request, after which many results can be
obtained. We call this single-demand-driven. The technique of passing a continuation into a com-
putation is a actually single-demand-driven — it is not truly data-driven at all. Thus, continuations
(aside from being against our general principles) do not solve the data-driven output problem.

An abstraction mechanism for parallel programming should support the ability to send data “out”
of an abstraction in a data driven manner. Unfortunately, the concept of sending data “out” cannot
be effectively expressed without a vocabulary to identify which objects are inside the abstraction-
boundary, and which are “out”. In particular, the system needs to identify which outer objects are
“connected” to the output of the abstraction.

3.2 Allocating and Connecting the Computational Entities

The encapsulation device determines not only what kind of entity will represent the computation,
it also determines how those entities are allocated and what kinds of structures they can form.
For example, the subroutine-definition mechanism determines not only that the computation will
involve activation records, but that those records are allocated automatically and are linked together
automatically into a hierarchical caller-callee relationship. Conversely, the class-object-method
mechanism determines not only that the computation will involve object-instances, but that those
instances will be allocated imperatively and then connected together by pointers into graphs of the
user’s own design. Since the encapsulation mechanism completely specifies the procedure which is
used to allocate and connect the computational entities, we make this requirement:

Encapsulation Principle — The encapsulation entities should be able to connect together into arbi-
trary graphs, to support arbitrary data flow patterns.

This seems obvious. However, it doesn’t appear to be a problem: the class-object-method paradigm
appears to be sufficient for constructing arbitrary graphs, thereby supporting arbitrary dataflow
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patterns, because of the degree of manual control it gives the programmer. This turns out not to
be the case.

Consider, for example, the case where one wishes to perform a Jacobi relaxation on a 10x10 matrix.
To do this in an object-oriented language, it might be desirable to create 100 objects, with each
object connected to its four neighbors. If one views the 100 objects as nodes, and the neighbor
relationships as edges, then the grid becomes a graph: a very predictable and regular graph, to be
sure, but a graph nonetheless.

Most parallel object-oriented languages contain built-in primitives for constructing distributed ar-
rays of objects. In other words, they contain primitives for creating this particular shape of graph.
However, it is interesting to consider what would happen if the language did not contain a primitive
to allocate this shape of graph. In such a case, one would have to build the grid manually.

The easy way to build this graph is with the help a separate 10x10 array of object pointers. This
is an example of building a graph with auziliary storage, where the auxiliary storage can be any
storage device (usually an array or hash-table) used to hold pointers to the graph nodes during
the construction process. There is a cost-penalty with using auxiliary storage: each node’s address
must be inserted into the storage, at a cost of one message. When an edge must be set up in the
graph, one must fetch the address of the target object from the storage, at a cost of two more
messages. Using auxiliary storage makes it easy to allocate a graph, as long as one is willing to pay
the extra message overhead.

In this example problem, the overhead is 900 messages: 100 insertions into the array, 400 messages
to fetch the edges, and another 400 messages containing the fetch results. If the Jacobi relaxation
goes through many iterations, this overhead is probably irrelevant. However, if each edge were used
only once, then the overhead would lead to a threefold multiplier in the amount of message traffic.
This does not occur in Jacobi, but as will be shown in later examples, there are many computations
where the graph edges are used only once.

Known Problem — Constructing a graph using auziliary storage to hold the node pointers can up
to triple the message traffic.

As an alternative, one might consider building the graph without auxiliary storage, keeping the
object pointers in the graph-nodes themselves even as the graph forms. Until one allocates a
graph-node, there is no place to store the pointers to its neighbors. Thus, when using this method,
allocation of the nodes in the graph must follow a spanning tree. In our Jacobi grid, it is not exactly
obvious what is the best means of defining a spanning tree over the grid, but this much is clear:
the tree-structured allocation pass bears no structural relationship to the computation itself, and
it will have to occur in a separate pass. In general,

Known Problem — Constructing a graph without auziliary storage often involves implementing a
separate top-down tree-structured pass, which is both complex and inefficient.

There is a solution in parallel object-oriented languages supporting distributed vectors of objects.

One maps the graph nodes onto an array of objects using a static mapping. The mapping will
be many-to-one, if the graph being built contains an unpredictable number of nodes, or if the
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language imposes a one-object-per-processor restriction. For example, consider implementing our
Jacobi problem by mapping the Jacobi nodes onto the elements of a Charm BranchOffice (array of
objects with one object per processor). In this case, each array element must handle several Jacobi
nodes. The BranchOffice elements serve as intermediaries, whose job is to allocate the Jacobi nodes
and simply forward messages to them.

This BranchOffice is an example of a graph-node manager: any vector of objects whose job is
to allocate graph nodes and forward messages to them. The objects of the graph-node manager
are much like proxy objects in Corba/IDL, in that their primary function is message forwarding.
To forward messages, the graph-node manager must have proxy methods — one proxy method
for each actual method in the graph-node object. Unless one extends the language in some way
to automatically generate graph-node managers, these proxy methods must be written manually.
Thus, the total amount of code the user must write is as follows. For each graph-node object,
the user must write one graph-node manager object, which must contain the same methods as the
graph-node object. Each proxy method contains essentially the same code for static mapping and
forwarding. Despite the fact that these proxy methods are all the same, code reuse is effectively
nil. There is very strong dependency between graph-node objects and their graph-node manager
objects, reducing the degree of cohesion in the program. The amount of redundancy in the code is
immense. Thus,

Known Problem — Constructing a graph by implementing a graph-node manager is bad software
engineering, suffering from poor cohesion, poor reuse, and immensely redundant code.

Thus, it is unfortunate that this is the only efficient way to implement any graph structure other
than trees or arrays. The fact that there is no efficient and elegant means to assemble anything
other than a tree or an array explains why so many constructs are described as “primarily for
tree-structured problems” or “primarily for regular problems”. The use of graph-node managers
is common practice, it is by far the most popular means of implementing parallel object-oriented
algorithms. This demonstrates that programmers will sacrifice software engineering objectives for
efficiency.

To avoid this sacrifice, an encapsulation mechanism should provide an automatic means to assemble
the entities in the computation into arbitrary graphs. Unfortunately, this is not possible without
a means to express the shape of the graph that should be assembled. In other words, it cannot
be done without some vocabulary to describe the relative positions and structural relationships
between the objects.

4 The Agents Programming Model

We have devised an encapsulation mechanism for parallel computation, entitled the “agent”. We
say that function-invocations have agents “working for them.” Agents serve the same essential role
as callees. Just as a function-invocation may have several callees, a function-invocation may have
several agents working for it. Functions pass arguments to their callees, they send data to their
agents. Functions receive return-values from their callees, they receive result-messages from their
agents. In both the function/callee relationship and the function/agent relationship, there is a clear
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hierarchical structure of whom is working for who.

At a conceptual level, the difference between agents and callees lies in the timing. Ordinary callees
perform the following steps, in order: the caller passes input to the callee. The callee’s activation
record comes into existence. The callee computes and finishes. The callee’s activation record is
deallocated, and the outputs are sent back to the caller. These 5 steps are supposed to occur in
this strict order. Agents break all these sequencing rules.

At a more mechanical level, the difference between agents and callees is that callees are created
imperatively (by executing a function-call statement), whereas agents are specified declaratively,
and created on demand (when data is first sent to them). The agent declaration occurs within
function declarations, like this:

void functionnameO()

{
agent agentnamel(indices) runs functionnamel(arguments...);
agent agentname2(indices) runs functionname2(arguments...);

The agent declarations are intended to represent all the possible agents that the function-invocation
might need during its execution. It is as if one were enumerating and labeling all the possible callees
that a function might need to invoke. The agentname names a set of agents. Indices are similar
to array indices, they can be used to select an individual element in the set. However, unlike
array indices, they are not bounded, so the set of agents may be of unbounded size, and it may
be sparse. The indices to the set of agents need not be integers, they may be any other type that
can reasonably be used as an index into a table. Note that the agents are locally scoped within
the function, the agents of one function invocation cannot access the agents of another function
invocation.

Initially, the agents are virtual entities, taking no memory and performing no actions. At any
time, the function may send data to one of its agents, awakening it: the agent’s activation record
is allocated, and its computation to be started, and eventually, the data is received and processed.

When an agent runs off the end of its body, it returns to the virtual, dormant state.

Data is transmitted using the send statement:

send tag(valuel, value2, ...) to agentname(indexl, index2, ...);

In our notation, messages are tuples of values with a symbolic tag at the front'. We use the notation
tag(valuel, value2, ...) to denote such a tuple. The tag is a single identifier.

!The use of the word “tuple” to describe messages should not be construed to imply that such messages enter a
“tuple-space”, as they do in Linda. It simply means that messages contain a short sequence of values.
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Messages, when they arrive, trigger handlers, defined by the handle declaration. These occur
within function declarations:

void functionnameO()

{

handle tag(varl, var2, ...) from agentname(varl, var2... ) { code }

In the handle declaration, the from-specifier may be omitted to accept tuples from anywhere.
When a tuple arrives, the variables in the handler declaration are bound to match the data in the
message and the name of the sender. The handler may modify variables of the enclosing function.

When a function is executing, its handlers are inactive. The function’s body continues atomically
without interruption by handlers until the function executes a wait-statement:

wait <boolean-expression>;

This causes the function to suspend while messages arrive and are handled. Messages continue
to arrive and get handled (in the background) until the condition is satisfied, then the function
resumes. Handlers only execute during wait-statements: even the message that first awakens the
agent is queued until the agent reaches its first wait-statement. Code without wait-statements is
always executed atomically.

A function, in addition to sending to its agents, may also send to self, parent, or invoker. parent
refers to the agent’s owner in the superagent/subagent hierarchy. invoker can only be used inside
a handler, it refers to the agent that sent the message that triggered the handler.

The intention of the agents mechanism is that it provides an analogue to the caller/callee rela-
tionship and structure, without the sequencing limitations built into procedure call. With these
mechanisms, functions may communicate with their subagents at any time. Unlike with callees,
data may pass back and forth entirely asynchronously.

4.1 Minor Features

This section describes a number of the “finer points” about agents as a construct.

Function Call. Note that function names can be used in agent-declarations, but they can still be
used in call-statements. Therefore, there are two ways to create a function-invocation: by calling
a function, or by declaring an agent. Every function invocation, regardless of whether it exists by
function-call or by agent-declaration, can send and receive messages.

The Return Statement. The return statement acts as it does in C. However, when a function
is used as a agent, the return statement causes the agent to transmit a result message containing
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the return-value to the parent. This can be distinguished from other result messages using the
from-clause of the handler, if necessary.

Multicast. There is a variation of the send-syntax for multicast. This transmits the same message
to a large number of agents:

send <message> to agentname(lo...hi, lo...hi, ...)

Copying Data. Sending data across address-space boundaries causes the data to be automatically
copied. If the data contains pointers, as in a linked list, the copy is in most ways identical to the
original. Sending data within address-space boundaries causes a reference to be passed without

copying.

Handers containing wait. When a message arrives that triggers a handler, a thread is spawned to
execute the handler, and that thread is executed immediately. If it suspends, and another message
arrives triggering another handler, another thread will be created: there is no mutual exclusion.
Thus, multiple handlers (even multiple instances of the same handler) can execute concurrently.
The fact that code without wait-statements is always executed atomically often leads to mutual
exclusion in practice, however.

Send-from. Normally, in a handler, the word invoker refers to the agent that sent the message
that triggered the handler. One may change the value of invoker in the handler using:

send <message> to <agent> from <invoker>;

Efficient Forwarding. Note that a function may only send messages to its own agents, just as a
function may only pass arguments to its own callees. This seems to suggest that data necessarily
flows along tree-lines, as it does in sequential programs. However, in sequential programs, functions
often simply relay data from one callee to the next. Similarly, agents often wish to relay data from
one subagent to the next. To make this efficient, we add the following optimization rule: any
handler that executes without touching a variable of the enclosing agent is a relay handler. Relay
handlers need not be executed locally to the agent that contains them. Instead, they are executed
on whatever processor sent the message that triggered the handler. Therefore, even if a message
goes through a chain of relay handlers, it only makes at most one actual processor-to-processor
hop, straight to its final destination. With this condition, data can move in any direction through
the agents-tree. Note that the addition of relay-handlers also makes it possible for subagents to
be allocated before their parents! If the parent relays data to a subagent without touching it, the
subagent may in fact be allocated before the parent. This condition is necessary to prevent wrapper
objects from becoming bottlenecks.

First Class Agent-Names. Agent-names evaluate to agent-references, which are values. Agent

references can be stored in and copied from place to place in the usual ways. The only nontrivial
use for an agent reference is in a send-statement.
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Objects as Agents. One may convert an object into an agent using agentize(obj). Sending a
message to the object asynchronously triggers one of its methods.

Agents Scoping. There is a slightly more general version of the agent declaration:

agent subagentname(indexl, index2, ...) runs { code }

This syntax is sometimes syntactically more convenient than the other. It is more powerful, in
one sense: the code can refer to subagent names defined in surrounding scopes. It cannot refer to
variables defined in surrounding scopes.

Local Agents. Agents can be declared local by putting the keyword local in front of the agent
declaration. This simple pragma implies that the agent’s activation record resides on the same
processor and in the same memory space as its superagent’s.

Identifying Address Spaces. We provide a function nodecount () which returns the total num-
ber of distinct address spaces in the host. We provide another function nodecurrent() which

returns the index of the address space in which the agent that called nodecurrent resides.

Controlling Address Spaces. The following construct controls which address-space a particular
agent is allocated in. address-space-index may be an expression involving the indices:

align subagentname(indexl, index2, ...) to <address-space-index>;

4.2 A Simple Example: Fibonacci

The purpose of this section is to demonstrate the agent mechanism in the simplest possible context.
After this example, we will move on to more interesting examples. The computation we show has
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the same structure as this sequential program:

int fib(int n)

{
if (n<2) {
return n;
} else {
return fib(n-1) + fib(n-2);
}
}

Here is the parallel version, using agents:

int fib(int n)

{
agent sub(int m) runs fib(m);
int total, count;
handle begin() {};
handle result(int x) { total=total+x; count=count+1 };
if (n<2) {
return n;
} else {
total=0; count=0;
send begin() to sub(n-1);
send begin() to sub(n-2);
wait (count==2);
return total;
}
}

Note that in the sequential version, each fib-invocation has (up to) two callees, both of which are
also fib-invocations. In the parallel version, each fib-agent has (up to) two subagents, both of
which are also fib-agents. The first line of the parallel fib-function declares a large potential set of
subagents underneath fib named sub(0), sub(1), etc. Of those subagents, only two are ever used.

The design is as follows: a fib-agent will send two messages with the ”begin” tag to its two subagents.
Each subagent will then begin executing, will compute a fib-value, and will send it back to the parent
agent with a ”result” tag. The parent will accumulate the results from its two children, and will
then generate its own result.

Each fib-agent has two handlers, making it capable of receiving two kinds of messages: ”begin”
messages from the parent, and ”result” messages from subagents. The begin-handler contains
no code, but remember: the first message an agent receives always wakes it up (causes it to be
allocated and start executing). Therefore, sending a begin message to a fib-agent wakes it up,
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causes it to start computing, and does nothing else. The ”result” handler is used to accumulate
results from children. When the result is received, it is added to the running total, and the counter
is incremented to keep track of how many results have been received.

After the declarations, we see the code of the agent. If n<2, it functions like a sequential fib function.
In this case, none of the subagent or handler-declarations get used. If n>=2, the result-accumulator
is cleared, two begin-messages are sent off starting two subagents, the agent waits until two results
have been received, and then it returns the total. If the agent is the subagent of another, then that
return-value becomes an upward "result” message.

Now that we have shown an introductory function, we move on to more interesting examples.

4.3 A Second Example: Summation

An interesting problem is implementing a summation tree, which adds up the contents of a large
array of numbers. To show compositionality of agents, we begin by defining a simple accumulator
agent. This small agent expects one to feed in a number of add messages. When it has received a
predetermined number of adds, it produces an output in the form of a result message.

int accum(int count)
{
int total=0;
handle add(int n) { total+=n; count--; }
wait (count==0);
return total;

An agent running accum will wait until it receives a number of add messages equal to the count
argument. Once it receives the appropriate number of values, it returns the total in a return value
(or equivalently, a result message).

Note that the way the accum function produces values (by sending out a result message) is data-
driven. One does not have to send anything in to the accum agent to get the results out, they
simply emerge. This is manifested at the hardware level, one can see that only the add messages
travel into an agent running accum. The utility of this will be visible later.

Note that there is no question of interface inconsistency in agents. This agent, like all other agents,
produces its output as a stream of messages, and expects inputs as a stream of messages. By way
of comparison, a similar object in Chant[8] would need to decide whether to produce output by
sending it to a thread, or by sending it to a rope element — an impossible decision to make without
contextual information.

Now we move on to the summation-tree proper. Its wrapper expects an array of numbers to be

fed in in the form of input messages: one value per input message. Once all the inputs have been
received, the total pops out in the form of a total message.
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We decide to implement the summation tree by assembling a large number of accum agents together
in the form of a tree. The tree is a particular class of graph, thus, this will be an example of graph
construction in agents. There are two ways to build this graph in most languages. One can do
it using a spanning tree, which is trivial, but unnecessarily slow: the data is moving up the tree,
not down it, thus a top-down assembly requires a separate pass, doubling the latency and message
traffic. One can also do it using an auxiliary hash-table, but note that each edge in this graph
is being used exactly once: the overhead of using this approach would triple the message traffic.
Agents will assemble and propagate data up this graph without difficulty.

The design is as follows: the wrapper for the abstraction is a single summation agent. Underneath
the summation agent is a group of agents labeled node(lo, hi, size). We assign to node(lo,
hi, size) the responsibility of producing the total of all array-elements in the range (lo-hi),
where size is the size of the array. We utilize only some of these nodes (obviously, we don’t wish
to compute the totals of all possible subranges). At the bottom of the tree, we use the nodes
that add two successive elements: node(0,1,size), node(2,3,size), node(4,5,size), and so
forth. At the next level we use the nodes that add four successive elements: node(0,3,size),
node(4,7,size), node(8,11,size), and so forth. This repeated doubling goes on up the tree
until the root handles the entire array. For simplicity’s sake, we assume that the size of the array
is a power of 2.

void summation()
{
agent node(int lo, int hi, int size) rums accum(2);
handle input(int index, int size, int val) {
if (index&1) send add(int val) to node(index-1, index, size);
else send add(int val) to node(index, index+1, size);
}
handle result(int n) from node(int lo, int hi, int size) {
int rangesize;
if ((lo==0)&&(hi==size-1)) send total(n) to parent;
else {
rangesize = (hi-lo)+1;
if (lo&rangesize) lo-=rangesize; else hi+=rangesize;
send add(n) to node(lo, hi, size);
}
}
wait O;

}

Explanation: the declaration of the node subagents constitutes the first line of the summation
engine. The first handler is responsible for feeding input messages in at the base of the tree. The
input messages come from outside the abstraction, and get routed to the appropriate node at
the base of the tree depending on whether they are odd or even numbered elements. The second
handler is responsible for the propagation of values up the tree. It takes the output from a node,
and routes it to the next higher node in the tree. This is the first time we truly use the from clause:
the variables lo, hi, and size are bound to the indices of the node from which the result came.
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The main if statement in the handler checks if the value was produced by the root. If so, it is sent
out as a total message. If the value was produced by an internal node, some simple mathematics
determine the node’s mathematical parent, and the value is routed upward. Note that since this
function requires input messages, it cannot be called, it must be used as an agent.

Note that both handlers are relay handlers: all the messages bypass the main summation function.
In fact, if an agent running summation is declared, the agent’s activation record will never get
allocated because no message ever goes to it. Thus, the summation function is not a bottleneck, as
it would be if it were an ordinary object-oriented header. Also note that any executable code in
the function is irrelevant, as the function will never get executed. We put a wait-forever statement
there out of a sense of completeness.

The data-driven manner in which the accum agent produces its results are valuable here. The
outputs of the accum agents were obtained and forwarded without sending requests, pointers, or
continuations into the accum agents. Instead, the outputs simply emerged from the accumulators,
were captured, and were forwarded to where they belonged. In comparison, if the accum agent had
been an accum object, then each accum object would need to know where to send its results. Each
accum object would need to be given a pointer to the object that wants the results. This would be
an example of a situation where the lack of data-driven output would lead to continuation-passing
style. However, the continuation-based program would still require twice as many messages as the
agents implementation, requiring those extra messages to pass the parent-pointers into the accum
objects. This demonstrates the fact that in some situations, single-demand-driven output is as
inefficient as ordinary demand-driven output, and it is not a substitute for true data-driven output.

The agents declaration mechanism makes it possible to assign semantically meaningful names to

the agents. Having a clear vocabulary for referring to specific agents, in particular, a vocabulary
reflecting the logical function of the agents, makes the expression of the algorithm fairly clear.
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This algorithm shows one of the uses of relay handlers. This alternate implementation of the
summation algorithm shows a more interesting property of relay handlers:

void summation()
{
agent L() runs summation();
agent R() runs summation();
agent acc() runs accum(2);
handle rinput(int pos, int lo, int hi, int n) {
if (lo==hi) send total(n) to parent;
else {
int mid = (lo+hi) / 2;
if (pos<=mid) { send rinput(pos, lo, mid, n) to LO); }
else { send rinput(pos, mid+1, hi, n) to R(); }
}
}
handle input(int pos, int size, int n)
{ send rinput(pos, 0, size-1, n) to self; }
handle total(int n) { send add(n) to acc(); }
handle result(int n) { send total(n) to parent; }

This is a much more elegant design than the previous one. In this variation, the agents are in a
recursive hierarchy, each agent having two subagents, each responsible for half its range. When an
input is fed in, it gets converted to an rinput message. The rinput message rapidly works its
way down the tree using a binary-search to find its proper starting point.

Despite several factors which might suggest otherwise, the graph-assembly is just as efficient in
this implementation as in the previous. In particular, the rinput messages appear to be moving
down the tree, the tree is nonetheless allocated from the bottom up. This is because the input
and rinput methods are relay handlers: the value works its way down the tree without actually
touching the nodes of the tree. In fact, the only entities that ever do get touched are the accum
agents: the rest of the structure is an abstract concept only, the accum agents are the only entities
that ever get allocated. The binary-search, incidentally, is performed by the processor that tries
to send the input into the tree. Unlike the previous implementation, the array does not need to
be a power of 2, and thus, the tree is no longer perfectly balanced. This irregularity does not
impact the efficiency or simplicity of the graph assembly. This again highlights the fact that agent
declarations with relay handlers make it possible to assemble complicated graph structures, and
for data to move directly into the graph and through it in the optimal direction.

4.4 An Example Utility: A Replicated Storage Agent

Our next example is a replicated-storage agent. Its purpose is to enable the broadcast of data to
all processors, where it is immediately accessible to all who want it. Before we can implement it,
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we start by writing a simple storage agent with handlers for set and get:

void simplestore()
{
int done=0;
misc value = nil;
handle set(misc v) { value = v; }
handle get() {
wait (value '= nil);
send reply(value) to invoker;
}
handle free() { domne=1; }
wait done;

This agent simply contains a variable. It accepts one kind of message to set the variable, and
another kind to get the variable. The get handler sticks around in the background as a sleeping
thread until the value is set, then it transmits the result. This demonstrates one way to implement
a request-reply protocol in agents. The agent sticks around and remembers any stored value until
somebody sends it a free message. Here is a function designed to fetch from a simplestore agent:

misc fetch(agent a)
{
misc value=nil;
handle reply(misc x) { value=x; }
send get() to a;
wait (value != nil);
return value;

This simple agent demonstrates how agents can act like objects that return values. The fetch
subroutine s, for all intents and purposes, a blocking method of the simplestore agent. Note that
the same agent also has a nonblocking interface. Thus, in agents, continuation-passing style is not
needed to substitute for the lack of return values.
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Given this basic construct, one can implement replicated storage. Each node has a simplestore
agent like the one above holding a copy of the value.

void replicatedstore()
{
agent node(int n) runs simplestore();
align node(int n) to n;
handle set(misc v)
{ send set(v) to node(0..(nodecount()-1)); }
handle get()
{ send get() to node(nodecurrent()) from invoker; }
handle free() { send free() to node(0..(nodecount()-1)); }

This agent keeps a copy of whatever value you set on every processor. It is plug-compatible with
simplestore, therefore, fetch works on it too. Whenever you request the value, it obtains it from
the nearest copy. Because of the forwarding policies of relay handlers (no unnecessary hops), and
the copying policies for messages (no unnecessary copying), the get is guaranteed to be efficient.

This time, taxonomy is used for a different purpose: we assign names to the node agents according
to what processor they are on. Having semantically relevant names that the compiler can see makes
it possible to state the align directive. It also makes the expression of the imperative part of the
code simple.

4.5 An Example Application: Theorem Proving

As our next example, we show a use of the replicated storage agent. This subroutine is an SLD
refutation engine. SLD theorem provers start with a single assertion, and by combining that
assertion with a (unchanging) rule-database, generate more assertions. These new assertions are
in turn combined with the rule-database, and so on recursively, until finally an assertion is derived
that is known to be false. This refutes the original assertion. The problem is almost a plain search
tree, with one exception: assertions frequently get re-derived, but they must not be re-processed.
The prover consists of a refute function, which uses many tryrefute children. Each tryrefute
agent has the task of trying to refute one assertion. A tryrefute agent either sends refuted
immediately, or it derives a set of assertions, transmitting begin tuples to initiate their recursive
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expansion. It then sleeps forever, thereby refusing to try to refute something twice.

void refute(assertion goal, database db)
{
agent dbholder() runs replicatedstore();
agent tryrefute(assertion A) rumns {
if (obviously_false(A)) send refuted(A) to parent;
else {
database DB = fetch(dbholder);
for all assertions D derived from A and DB do
send begin() to tryrefute(D);
}
wait O;
}
handle refuted(assertion a) { send refuted(a) to parent; }
wait O;

Again, the agents in this computation form a graph. This time, there is no good word to describe
the shape of the graph. Despite its apparently random structure, the graph-assembly takes place
without difficulty. In other languages, one solution would be to assemble the graph using a hash-
table of assertions as auxiliary storage. This would approximately triple the number of messages,
as each edge in the graph is used once. Another option would be to statically map the assertions
onto an array of objects, making the array into a graph-manager. Of course, this involves the usual
reimplementation of the graph-manager code, and the resulting lack of clarity.

In this implementation, each agent is identified according to the assertion it is supposed to refute.

Naming of agents according to their responsibility is one of the things that makes the algorithm so
simple.

4.6 A Final Example: Matrix Multiplication

Our final example is a matrix multiplication subroutine. We assume the existence of a subroutine
vecmul that multiplies a row with a column. The subroutine matelt is defined to represent a single
element in the result matrix. The matmul subroutine expects one to feed in a number of row and
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col messages, which causes it to respond by producing elt messages.

void matelt()

{
vector r=nil; vector c=nil;
handle row(vector x) { r=x; }
handle col(vector x) { c=x; }
wait (r !'= nil);
wait (c !'= nil);
return vecmul(r, c);

void matmul (int size)
{
agent element(int r, int c) runs matelt();
align element(int r, int c) to (c/2)+((x/2)*(size/2));
handle row(int r, vector x)
{ send row(x) to element(r, 0..size-1); }
handle col(int c, vector x)
{ send col(x) to element(0..size-1, c); }
handle result(double d) from element(int r, int c)
{ send elt(r, c, d) to parent; }

In this example, the utility of data-driven output is clear: the element values simply emerge without
prompting. There is no need to send request messages into the matmul subroutine: one need only
send in the rows and columns. The results will come out as they are computed, and the results
can be easily pipelined to a consumer. Because of agents forwarding policy and relay handlers, the
matmul wrapper agent (which appears to be singlehandedly converting result messages into elt
messages) is not a bottleneck.

In the align directive, we see an example of where having a vocabulary to describe groups of objects
becomes extremely useful. This declaration makes it possible to explicitly state which processors
should hold which agents. In this example, we specify a 2x2 blocking using the align declaration,
more as an example than as an efficient thing to do. Note that the agents runtime system can also
support dynamic load balancing, by allowing the user to map agents onto virtual processors, which
can then be moved about the physical processors.

5 Planned Work

The agents language has been fully designed, a compiler has been written. The compiler is currently
capable of handling only very simple programs. We estimate that another month or two will be
required to make the compiler fully operational and bug-free on arbitrary agents programs.
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Once the agents compiler itself is fully operational, we intend to begin testing the agents construct
itself, attempting to find algorithms that cannot be easily encapsulated in agents. This may take
some time, as we wish to assure ourselves that in fact, agents is a fully general encapsulation mech-
anism for concurrent computation. Therefore, we wish to examine a broad range of algorithms. We
do not anticipate serious trouble during this phase, since a great many algorithms have already been
implemented successfully on paper. However, we suspect that actual execution will reveal subtle
points about these algorithms that we may not have noticed during pencil-and-paper evaluation.
Therefore, we expect to encounter minor problems in the agents construct. We plan to make any
necessary modifications or extensions to the design, modifying the compiler as well.

By the end of this phase, we expect the agents compiler to be a fully operational compiler, suitable
not only for internal use, but also for use by other research groups and programmers in general. As
a side effect of the first testing phase, we expect to have developed a fairly large library of agents.
This library will include highly abstract control structures like the replicatedstore agent shown
in a previous section. It will also include more concrete algorithms such as matrix operations.

The next phase will involve comparative evaluation of the agents construct. We will choose a number
of small benchmark applications, coding them in each of several parallel languages, including agents.
We will code each benchmark in the manner most appropriate for the language being used, subject
to the condition that we will not change the underlying dataflow pattern that we wish to implement.
For example, if we implement a tree-structured Fibonacci algorithm in one language, the Fibonacci
algorithm in the other languages will also be tree-structured. Each program will be coded with the
following priorities:

1. sacrifice encapsulation for efficiency where necessary
2. avoid unnecessary dependencies between modules
3. avoiding redundant expression

4. avoid using continuation-passing, especially in module interfaces

Once each program is done, we will count the number of times one of the criteria listed above had
to be compromised. In addition, the programs will be evaluated using an appropriate normalized
metric of size. Once the numerical evaluation is complete, the resulting information will be com-
piled into a summary of agents’ relative strengths and weaknesses in terms of software engineering
objectives, particularly encapsulation. These strengths and weaknesses will be explained in terms
of the properties of the languages being tested.

While this paper emphasizes the importance of having an expressive vocabulary for identifying ob-
jects according to semantically meaningful names, the utility of such a vocabulary was demonstrated
primarily in imperative code. We feel that a significant portion of the value of having a meaningful
taxonomy over objects is the possibility of writing declarations about those objects. Therefore,
we plan on experimenting with declarations, especially with those pertaining to load balancing: as
an example, we anticipate a new form of the alignment directive that aligns agents to points in a
Cartesian space, making it possible to load balance by shifting processor-boundaries within that
space. We also intend to experiment with declarations that control priority, that manage grainsize,
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and handle other tasks. These experimental declarations will be intended to exemplify the types
of concepts that become expressible once entities are meaningfully labeled.

6 Related Work

The foundation of agents is its ability to assign semantically meaningful names to entities. Such
names make it possible to express a wide variety of ideas that cannot be stated otherwise. The need
for a vocabulary by which to identify data, and the related need to taxonomize those data, have
also been recognized in languages like Linda[5] and D-Memo[15]. In such languages, each item of
data is represented by a key (or by tag fields) which can be semantically meaningful. This simplifies
the expression of programs. Linda’s wildcards taxonomize the tuples into groups, those groups are
useful for expressing such concepts as wildcard receives. We are not aware of any object-oriented
languages in which the objects are labeled.

Agents, being an abstraction mechanism, focuses strongly on software engineering goals such as
modularity and reuse. Early parallel programming models (e.g., pure message passing) did not
focus very strongly on the issues of encapsulation, abstraction, and modularity. Currently, there
are indications that level of awareness of these issues seems to be rising. Though there are not
yet many papers being published on the subject of software engineering in the context of parallel
programming, one sees frequent references to such issues within papers on other subjects. In
addition, more and more researchers cite software engineering objectives as a goal of their language
design efforts.

Much progress toward the goal of modularity and encapsulation has been made within the past
several years. The adaptation of the object-oriented model to the parallel arena was a first step
in this direction, and clearly represented an intention to achieve modularity within a parallel con-
text. Among the first languages incorporating the object-oriented model was the Chare Kernel[12].
Almost immediately, it was clear that the object-oriented model contained bottlenecks, and this
bottleneck was addressed by the addition of the branchoffice to the Chare Kernel, making it possible
to create abstractions of distributed modules. Agents has taken a few more steps along the road
toward true modularity and efficient encapsulation.

Agents, by labeling objects according to their caller/callee relationships, makes the statement
“send to parent” meaningful. Thus, it supports true data-driven output. Though other models
cannot provide data-driven output, many do provide single-demand-driven output, which is at
least an approximation to data-driven. For example, in Fortran-M[4], after delivering one “channel
endpoint” (much like a Unix pipe) to a thread, the thread can then write values into the channel.
Similarly, in Id, one can pass a global pointer to an I-variable into a producer. The producer can
then gradually fill the I-variable with a linked list. In both these approaches, the output channel is
a bottleneck. One can eliminate the bottleneck by passing an array of channels into a Fortran-M
procedure, or an I-array into an Id function. These approaches are somewhat complicated to use
as one’s standard module interface. Nonetheless they do achieve, if not data-driven output, then
at least reasonably efficient single-demand-driven output.

Agents, by labeling objects, makes it possible to declare the entities which can potentially exist.
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Thus, automatic graph creation is straightforward. Insofar as we are aware, the problem of efficient
and elegant graph construction has not been addressed in a general manner in other models. The
visual petri net languages like TDFL[16] strongly seem to suggest that easier graph construction
was a primary design objective. However, though the idea seems to be there at an abstract level,
it does not manifest itself in a very practical way, the visual petri net languages are no better at
graph construction than most other languages. Some languages are recognizing the importance
of the issue by providing primitives that construct specific kinds of graphs. For example, many
parallel libraries now provide the reduction tree, and Charm recently added a primitive for building
multidimensional arrays. We feel that this approach is limited, but useful.

Many researchers have asserted that continuation-passing style may not be desirable for general
programming. For example, the Cid description[14] comments that “continuation-based program-
ming seems quite tricky for humans. We believe that this is because it is difficult to modularize
continuation-passing style, causing it to pervade the whole program.” Agents makes a concerted
effort to avoid the need for continuation-passing style. One major motivation for continuation-
passing style is the need to obtain return-values from one’s requests. Agents makes this effect
possible without continuations using constructs like fetch on page22. The second major moti-
vation for continuation-passing was the lack of data-driven output: one can use continuations as
a means to achieve, if not data-driven output, then at least single-demand-driven output. The
third major cause for continuation-passing style was interface inconsistency, leading to the need for
continuations as glue. Agents attacks all three problems. Other language designers have also dealt
with one facet of the continuation-problem: many have provided support for lightweight threads,
making it possible to implement return-values on remote method invocations[14][1][2][6].
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