Threads for Interoperable Parallel Programming

L. V. Kalé, J. Yelon, and T. Knauff

Dept. of Computer Science,
University of Illinois,
Urbana Illinois 61801,

jyelon@cs.uiuc.edu, kale@cs.uiuc.edu

Abstract. Many thread packages are freely available on the Internet.
Yet, most parallel language design groups seem to have rejected all exist-
ing packages and implemented their own. This is unsurprising. Existing
thread packages were designed for sequential computers, not parallel ma-
chines, and do not fit well in a parallel environment. Also importantly,
existing thread packages try to impose a number of design decisions, es-
pecially in regard to scheduling and preemption. Designers of parallel
languages are simply not willing to have scheduling methods decided for
them, nor are they willing to allow the threads package to decide how
concurrency control will work. In this paper, we explore the special issues
raised when threads packages are used on parallel machines, particularly
as parts of new parallel languages and systems. We describe the Converse
threads subsystem, whose goals are to support the special needs of paral-
lel programs, and to support interoperability among parallel languages.
We then demonstrate how the Converse threads subsystem addresses the
problems created when threads are used on a parallel computer.

1 Introduction

Many parallel programming languages rely upon lightweight threads as a funda-
mental component. Threads are extremely useful in implementing a vast range
of constructs for parallelism. Use of threads can provide a number of benefits to
a parallel program, such as improved latency tolerance, higher degrees of paral-
lelism, and the potential for adaptive scheduling. When designing a set of thread
primitives, it makes sense to take into account the special needs of parallel lan-
guages. There are many such special needs: parallel language runtime systems
tend to impose very strict requirements on the properties of the thread package.
Since parallel languages differ so much, each language offering its own set of
advantages, it becomes critical to be able to use different languages for differ-
ent modules of a parallel program. As a result, future parallel applications may
contain many languages, with each language’s runtime system making different
demands of the thread subsystem. The existing threads packages, such as those
based on the POSIX threads standard, are not designed for use in parallel pro-
grams, and are thus seen to be inadequate for parallel programming. This has led
the implementors of new parallel languages to develop their own thread packages
tuned to the needs of their language. This obviously makes the development and

maintenance of runtime systems for such languages more complex than neces-
sary. At the same time, such specialized thread packages make it harder, if not
impossible, to achieve interoperability across languages — i.e. allowing multiple
modules written in different multi-threaded languages to coexist and interleave
their execution in a single program.

In this paper, we present the design and implementation of the Converse
threads subsystem, which supports such interoperability. It addresses the is-
sues created by the diverse needs of coexisting parallel languages. The Converse
threads subsystem comprises a modular and flexible thread abstraction, related
facilities, and protocols, which are used in conjunction with the remainder of the
Converse system to implement runtime systems of multi-threaded languages. In
the remainder of this section, we examine several of the special problems created
when multiple parallel languages all try to share a threads package in a single
application.

1.1 Thread Scheduling

Most thread packages execute threads in a round-robin fashion. This behavior
is often inappropriate for parallel languages and applications. As an example,
round-robin scheduling fails to take into account the fact that parallel programs
generally have critical paths, unlike sequential applications that use threads.
Some applications may require a specialized scheduler with knowledge of critical
paths. A second example: round-robin scheduling destroys locality of reference
when large numbers of threads are being used. When hundreds of threads coexist,
randomly transferring control from one to another randomizes memory access
patterns, and as a consequence, cache performance is reduced to nil. Again,
a customized policy with knowedge of locality may be needed for some appli-
cations. A third example: round-robin scheduling, when used with tree-search
applications, tends to produce breadth-first search. This is usually undesirable,
depth-first search is usually more efficient, and breadth-first sometimes over-
flows the available memory. Again, one needs a specialized scheduling policy. In
short, round-robin scheduling may be a good general-purpose policy, but there
are many cases where a customized policy is needed.

One “solution” to this problem is to add priorities to the scheduler. This
provides a means by which a language can encourage the scheduler to pick the
“right” thread. However, there are some cases in which priorities aren’t suf-
ficiently expressive. Two of the three cases listed above are not amenable to
prioritizing. Attempting to encourage depth-first search with priorities is clumsy
and is not possible unless the priorities have a large number of significant bits.
Encouraging locality with priorities is not feasible. In short, priorities are quite
useful for some applications, but there will be other scheduling objectives that
cannot be achieved in this manner.

One could attempt to devise a more sophisticated scheduler to try to handle
these complex needs. However, it is obvious that such a scheduler would be
language-dependent, and therefore could not be part of the threads package.
Fortunately, there is at least one threads package, QuickThreads [6], which allows

one to implement one’s own scheduler. Thus, each language’s runtime system
could contain a scheduler appropriate to its needs. Unfortunately, though, this
approach causes an arbitration problem: if an applications programmer wishes to
combine multiple parallel languages (with multiple runtime systems) in a single
application, then that programmer must remove the schedulers from the runtime
systems of the languages and write a new scheduler which is compatible with
all. It is clearly undesirable to force the application programmer to undertake
such a task.

One of the facilities provided by the Converse threads subsystem is a hierar-
chical scheduling model, which makes it possible for one module or language to
implement its own scheduling behaviors without sacrificing the ability to coexist
with other modules using the standard scheduler.

1.2 Portability Concerns

The second problem facing thread users today is the lack of a single threads pack-
age which runs on all platforms. Many threads packages claim to be “portable”,
but very few actually compile without modification on any significant number
of UNIX platforms. The user who wishes to run threads on a machine with an
unusual CPU, unusual compiler, or different operating system typically ends up
having to do his own port of the threads package. Unfortunately, parallel ma-
chines tend to count as “unusual” in this sense: they often use custom processors,
compilers, and operating systems. And, usually, it’s the parallel language imple-
mentor who has to maintain the port, since thread package implementors are
rarely interested in supporting some strange supercomputer to which they don’t
have access.

A solution to this problem is to design a threads package which can be
implemented in a machine-independent manner. The machine-independent im-
plementation may not be as efficient as the carefully tuned assembly-language
implementations, however, its presence makes it possible for users of unusual par-
allel machines to simply plug the threads package into their application, knowing
that it will work. An optimized implementation can be written later if neces-
sary. The Converse threads subsystem can be (and has been) implemented in a
fully machine-independent manner, and has been successfully tested on all the
machines supported by Converse.

1.3 Preemption and Nonpreemption

There is no general consensus regarding whether or not a standardized threads
package should support preemptive context-switching or not. There are strong
arguments in favor of both preemptive and nonpreemptive threads.

Preemptive threads have several disadvantages in terms of convenience and
efficiency. On a distributed memory machine, where concurrency control is not
normally needed, preemptive threads require that one rewrite all the libraries in a
reentrant fashion. This is usually achieved by adding locking to the nonreentrant
routines, but the cost of of such locking can be quite significant when it surrounds

an otherwise cheap routine. This performance hit is compounded by the fact that
one must pay for operating system interrupts and context switching far more
often than one would in a nonpreemptive system. Finally, preemptive threads can
easily violate the semantics of a parallel programming language if the language
was not designed for concurrent access to variables.

However, there are also strong arguments in favor of preemption. Preemp-
tion can significantly improve IO performance in systems where 10 is polled.
Preemption is useful for keeping priorities up to date — without preemption,
high-priority tasks can end up waiting for lower-priority tasks to yield. Consider,
for example, the situation in which a high-priority thread is waiting for a mes-
sage. With preemption, this can be easily handled: when the message arrives,
one simply preempts any low-priority thread. Preemption can significantly im-
prove interactive response time. Finally, preemption is a required part of many
parallel programming models.

Clearly, this is a tradeoff. Some runtime system designers will need preemp-
tion, others will find it unacceptable. Given this state of affairs, it doesn’t make
sense to design a threads package with a fixed preemption policy. In fact, in an
interoperable environment, where multiple languages are linked together in a
single application, it is clear that preemptive and nonpreemptive threads need
to coexist. The Converse threads subsystem supports the use of preemptible and
nonpreemtible threads in the same program.

1.4 Compiler-Supported Threads

Currently, most thread packages do not get any explicit support from the com-
piler. However, thread-packages which have the compiler’s support can be signif-
icantly more efficient, as is demonstrated by such languages as Concert [11]. It
therefore seems likely that popular compilers like gcc will eventually be extended
to include support for high-speed threads.

However, by the time this occurs, most users will already be using a conven-
tional thread package. If that conventional thread package has a well-designed
interface, it will be possible to efficiently reimplement it as an abstraction layer
on top of the high-speed compiler-supported threads. If not, then users of that
thread package will need to discard their software and start over to gain the
efficiency advantages of compiler-supported threads. Therefore, it is important
that thread primitives be designed in such a way that they can be efficiently
reimplemented with compiler support.

For a set of threads primitives to be efficient in a compiler-supported context,
it must not utilize inherently expensive abstractions. If a threads package is to be
reimplemented as a layer on top of an extremely fast compiler-supported threads
package, it is critical that the abstractions not add excessive overhead to what
could otherwise be a very fast system.

An example of a costly abstraction is the “mutex” variable. Each mutex
operation is actually built from a number of simpler primitives, such as as ex-
plicit context-switching, thread queues, and monolithic monitors. By forcing a
language designer to implement a basic primitive (e.g., the future) in terms of

a full-featured abstraction like the mutex (when it could be implemented using
much less costly abstractions) robs the language designer of needed performance.

Given the inefliciency of currently available thread packages, expensive ab-
stractions are rarely noticed: the overhead associated with using powerful ab-
stractions is irrelevant in comparison to the large context-switch overhead. How-
ever, when compiler-supported threads become available, software designers who
used a threads package with an efficient interface will simply download a faster
version of the threads package, whereas designers who used a threads package
with an expensive abstraction layer will need to rewrite much code to gain the
efficiency they desire.

1.5 A Model for Shared and Private Data

Designers of thread packages for workstations have clearly reached consensus
regarding their model of shared and private data: global variables are to be
shared among all threads, and thread-private data is to be obtained by function
calls. Unfortunately, this model is unusable on parallel computers. Global sharing
is simply too expensive (if available at all) to be the standard meaning for global
variables. As a consequence, designers of thread packages for parallel computers
have rejected the workstation-oriented model of global sharing, and without any
consensus to adhere to, each thread package designer chooses a different meaning
for global variables. For example, with Solaris threads, global variables turn out
to be shared among all threads, while with QuickThreads on distributed memory
machines, they turn out to be partially shared, and with the vendor supplied
thread on the Convex Exemplar they turn out to be private.

The unfortunate consequence is this: if the programmers use a global variable
in a parallel multithreaded program, their code is not portable. This is a severe
problem, and one that can only be dealt with by the threads implementor. If the
threads package does not provide a consistent interpretation of whether a given
variable is to be private or shared across threads, then code using the package
is not portable.

No solution is possible until a sharing model is adopted which is more con-
sistent with the properties of parallel computers. Converse commits to a model
which acknowledges the fact that several levels of sharing are possible, each with
its own advantages. Converse therefore provides primitives to declare and access
data at each level of sharing.

2 Converse Threads Subsystem

Converse [4] is a machine interface for parallel systems and languages. It seeks
to achieve the following major goals:

1. portability: that programs written on top of Converse be executable without
modification on a wide range of platforms,

2. generality: to be able to implement the full spectrum of parallel constructs
on top of Converse.

3. interoperability: the ability for unrelated and highly dissimilar modules, of-
ten written in different parallel languages at different institutions, to con-
currently execute, exchange data, and share the machine interface without
conflicts.

Interoperability is the feature that sets Converse apart from most runtime
systems — Converse provides a variety of resource arbitration techniques not
found in other parallel runtime systems. Chief among these resources is CPU time
itself. An important part of Converse’s mechanisms for allocating and managing
CPU time is the Converse threads subsystem, which is the focus of this paper.
The other parts of Converse are discussed elsewhere [4].

The Converse threads subsystem is not a threads package in the traditional
sense of the phrase. It includes some software, to be sure, but its goal is not
just to provide some useful subroutines. Instead, it seeks to guarantee that soft-
ware written with the Converse threads subsystem will be both portable and
“Interoperable” — in other words, it seeks to guarantee that contention over
thread facilities will never be a source of incompatibility between two modules.
Therefore, the Converse threads subsystem includes not just software, but also
a set of “rules” which, if followed, enable threaded modules written by different
research groups to coexist.

The Converse threads subsystem contains the following major components:

The Thread Objects Module: the most fundamental elements of a thread
system: routines for creating threads and context switching.

A Standardized Scheduler Interface: a protocol whereby blocking rou-
tines can be written without knowing what scheduling policies are in place.

The Converse Scheduler: A scheduler provided by Converse. In addition
to providing a convenient scheduler for many languages, it serves as a central
clearinghouse for CPU time.

Yielding Mechanisms: A set of mechanisms that threads may use to tem-
porarily give up control. Both nonpreemptive (manual) and preemptive (auto-
matic) yielders are available.

A Model of Thread-Private and Thread-Shared Data: Converse de-
fines the concepts of the address space, the processor, and the thread, and pro-
vides ways of declaring data with several levels of sharing.

The following sections describe the elements of the Converse threads subsys-
tem in greater detail.

2.1 Thread Objects

The thread-object module, like most thread packages, provides a function for
creating threads, one for destroying threads, one for explicitly transferring con-
trol to another thread, and one for retrieving the currently-executing thread.
The following calls are the most important ones:
typedef struct CthThreadStruct *CthThread;

This is an opaque type defined in the Converse header files. It represents a
first-class thread object. No information is publicized about the contents of a

CthThreadStruct. The fact that threads are first-class objects makes it possible
to express many operations elegantly.

CthThread CthCreate(void (*fn)(void *), void *arg, int size)

Creates a new thread object. CthCreate returns the thread identifier of the
newly created thread. The newly-created thread is not yet executing.

void CthResume(CthThread t)

Immediately context-switches (transfers control to) thread t. Note: normally,
the user of a thread package wouldn’t explicitly choose which thread to transfer
to. Instead, the user would rely upon a scheduler to choose the next thread.
Therefore, this routine is primarily intended for people who are implementing
schedulers, not for end-users. Instead of calling CthResume, most threads will use
a scheduler-provided function CthSuspend to context switch, this is described in
the next section.

CthThread CthSelf ()
Returns the currently-executing thread.

void CthFree(CthThread t)

Releases the memory associated with thread t. You may even CthFree the
currently-executing thread, although the free will actually be postponed until
the thread suspends.

2.2 Schedulers and the Standardized Scheduler Interface

We formalize the idea of a scheduler in the following manner: when a thread
stops (context-switches out), another thread must take over the CPU. At that
moment, a decision must be made regarding which thread will take over the
CPU. Any subroutine or module making such decisions is termed a “scheduler”.

Converse includes a standard scheduler. However, we recognize that the Con-
verse scheduler uses a policy that may not be applicable to all parallel pro-
gramming languages. Therefore, we allow language designers to write their own
schedulers. Each thread will be managed by one scheduler, of its own choosing.

Since there will be multiple schedulers available, there is significant poten-
tial for incompatibilities. For example, suppose an implementor wished to write
a subroutine that reads from the keyboard. The subroutine, upon discovering
that no characters were available, would need to call some “suspend” subrou-
tine. However, the keyboard IO routine could conceivably be called from many
different languages, each using a different set of scheduling subroutines. There-
fore, the keyboard IO routine would need to figure out which subroutine to call
to ask for suspension. To make this feasible, we define a standardized way in
which threads ask to suspend and ask to be reawakened. This interface is the
“standard scheduler interface”.

The standard scheduler interface consists of two functions: CthSuspend and
CthAwaken. From the point of view of the thread, these methods perform as
follows. When the thread wishes to block, it calls CthSuspend(). This causes
a transfer of control to some “ready” thread. A thread t which has called

CthSuspend() is considered not-ready, and it remains not-ready until some-
body calls CthAwaken(t). After this time, the thread is considered ready, and it
remains ready until it suspends again.

From a scheduler’s point of view, the function CthSuspend () means “transfer
control to a thread in the ready-set”. CthAwaken(t) means “insert thread t into
the ready-set”. The scheduler’s job is to record the contents of the ready-set,
and choose elements from it as necessary.

At any given moment, each thread is connected to one scheduler. When the
thread suspends, its scheduler picks the next thread. When a thread is awakened,
its scheduler records the fact that it is now ready. A thread is associated with a
scheduler using the function CthSetStrategy, described below.

The following is a brief description of the interface via which threads talk to
their schedulers.

void CthSuspend()

Threads should call CthSuspend when they wish to give up control of the
CPU. CthSuspend will then automatically transfer control to some other thread
that wants the CPU. CthSuspend will select the thread to transfer control
to by calling the scheduler-supplied, thread-specific “choosefn” described in
CthSetStrategy below.

void CthAwaken(CthThread t)

Should be called only when t is suspended. Indicates to thread t’s scheduler
that t is no longer suspended, that it needs to be selected for execution. This
function actually just calls the scheduler-supplied, thread-specific “awakenfn”
described in CthSetStrategy below.

void CthSetStrategy(CthThread t,
void (*awakenfn)(CthThread t),
CthThread (*choosefn)(void))

Specifies the scheduling functions to be used with thread t. Subsequent to
this call, any attempt to CthAwaken(t) will cause then t’s awakenfn will be
called. If t calls CthSuspend, then thread t’s choosefn will be called to pick
the next thread. One may use the same functions for all threads (which is the
common case), but the specification on a per-thread basis gives you maximum
flexibility in controlling scheduling.

2.3 The Converse Scheduler

The Converse Scheduler is a fully-functional scheduler with supporting a pow-
erful priority system, and support for a highly efficient form of stackless thread
(for short, nonblocking tasks) in addition to its support for standard threads. A
standard thread can be attached to the Converse scheduler using the following
function:

void CthSetStrategyDefault(CthThread t)

After this call, the central Converse scheduler will automatically pick the
next thread whenever t suspends or yields, and it will arrange for control to
return to t when t is awakened.

The following subroutine is available for priority management:

void CthSetPrio(CthThread t, int strategy, int priolen, int #*prio)

Sets the priority and queuing behavior of thread t. The priority is a sequence
of bits representing an arbitrary-precision number. The strategy can be LIFO or
FIFO (the thread is inserted on the ready queue either before or after threads
of the same priority).

For many programs, the Converse scheduler will be quite sufficient in itself. It
is quite common for several modules written in different multithreaded languages
and running concurrently to simply share the Converse scheduler.

Although the Converse scheduler is an excellent basic scheduler, it cannot ac-
count for all the peculiarities of the languages implemented using Converse — for
example, it cannot anticipate critical paths, whereas a programming language’s
runtime system could conceivably have good critical-path heuristics. Language
designers may therefore wish to write their own schedulers to manage their own
threads. In Converse’s spirit of interoperability, these home-brewed schedulers
must coexist with the Converse scheduler and other home-brewed schedulers.
Therefore, the Converse scheduler has a second role: as a central clearinghouse
for CPU time.

The principle of hierarchical scheduling is based on the idea that the sched-
uler is actually an allocator of CPU-time, and can be compared to memory
allocators. Arranging memory allocators into hierarchies is quite common: for
example, a lisp programmer might allocate memory using cons, which originally
obtained its memory from malloc, which in turn obtained its memory from the
UNIX primitives brk and sbrk. Hierarchical schedulers are based on exactly the
same principle: initially, all CPU time is owned by the Converse scheduler. A
different scheduler can request an indefinite amount of time from the central
scheduler by inserting a thread into the central scheduler’s queue. When the
thread receives the CPU, it can then allocate time segments to other threads
by calling CthResume to restart them. Those must eventually return control to
their scheduler, which must eventually return control to the central Converse
scheduler.

2.4 Yielding Mechanisms

The facilities we have shown thus far make it possible to write uninterrupted
threads — threads that run continuously until they call CthSuspend. Such
threads retain the CPU until they have no computation left to perform.

Many thread-packages use a preemptive context-switching policy. Converse,
however, recognizes that preemptive context-switching can be very destructive
to program correctness: it introduces a number of concurrency control issues, can
destroy nonreentrant subroutines, and can violate the semantics of many parallel
programming languages. On the other hand, preemptive context-switching can

provide significant advantages in terms of IO performance and in terms of keeping
priorities current. Therefore, Converse provides facilities for preemptive context-
switching, but in a very conservative manner. Each thread must individually
request preemptive behavior. If a thread does not ask to be preemptible, then
that thread is not preempted. By providing preemptible threads for languages
that need it, and allowing those threads to coexist with nonpreemptible threads
for languages without concurrency control, Converse preserves interoperability.

Even nonpreemptible threads may wish to yield occasionally. In fact, we have
found that manual yielding is sufficient for almost all purposes, and it does not
create concurrency control problems. Therefore, we provide the following manual
yielding mechanism.
void CthYield()

Temporarily suspends the current thread. This requires no additional support
from the scheduling module, since it is implemented as follows: The thread simply
adds itself to it’s scheduler’s ready-set using the scheduler’s “awaken” method,
and then transfers control to another thread using its schedulers “choose-next”
method.

Converse provides the following facility for traditional preemptive yielding:
void CthAutoYield(int microsec)

Called by a thread to request “traditional” preemption. After this call, the
thread that called it will be automatically preempted every microsec microsec-
onds, approximately. This does not cause any other thread to be preempted.
void CthSigY¥ield()

This function should be called either from inside a UNIX signal handler or a
Converse event handler. (Converse generates some events, which are much like
UNIX signals. Active message arrival is an example of a Converse event.) It
causes the currently active thread on the current processor to yield. Accepting
such yields is optional, see CthSigYieldEnable below. Signal-based yielding is
particularly useful if the system has just received a high-priority interrupting
message that needs to be processed.
int CthSigYieldEnable(int flag)

This functions enables preemptive yielding if flag is nonzero, and disables it
if the flag is zero. Returns the old value of the flag. Initially, threads do not allow
signal-based yielding. They must explicitly turn it on with CthSigYieldEnable.
If a CthSigYield occurs and signal-based yielding is not being accepted by the
current thread, the yield is delayed until the next manual yield or until signal-
based yielding is enabled.

2.5 A Model of Private and Shared Data

Programming languages for uniprocessors make no presupposition about whether
or not global variables, common blocks and the like are to be shared across
threads. Therefore, thread-packages for parallel computers make inconsistent
decisions about global variables. For example, Solaris threads [14] treats global
variables as shared across threads, whereas the Convex vendor-supplied threads

treat them as private. Other thread packages have other policies. The prac-
tical consequence for those attempting to write portable code is this: global
variables have completely unpredictable behavior, and therefore, undefined se-
mantics. Without a known behavior for global variables, it becomes extremely
difficult to use any sort of globally-scoped data, private or shared.

Writing a useful, portable package requires a clear model of what kinds of
sharing are possible. Converse identifies several levels of sharing, based on the fol-
lowing machine model. A parallel machine consists of a number of address spaces.
Each address space contains a number of processors (or virtual processors). Each
processor can support an arbitrary number of threads. The number of address
spaces varies, and may be only one, likewise with the number of processors per
address space. Given this machine model, there can be three kinds of variables:
those where one copy per thread exists (thread-private), those with one copy
per processor (processor-private), and those with one copy per address-space
(shared). Converse provides macros to define variables at each level of sharing.
Here are the most important macros for declaring, initializing, and accessing
thread-private data:

CtvDeclare(type, varname)

Used in a fashion analogous to a C global variable declaration. One may place
this macro at the top level of one’s program to declare thread-private variables.
CtvInitialize(varname)

This macro must be invoked once for each thread-private variable that is de-
clared in the program. It must be called exactly once per thread-private variable
declaration, before any threads are created. It is therefore convenient to do so
temporally near the start of main.

CtvAccess(varname)

Thread-private variables must be accessed with this macro. For example,
to add one to the thread-private variable X one might say CtvAccess(X) =
CtvAccess(X) + 1, or just CtvAccess(X)++.

The macros for declaring processor-private and shared variables are identical,
except that they begin with Cpv and Csv respectively. With the help of these
macros, it is possible for the parallel programmer to meaningfully use non-local
variables.

The macros for declaring variables at each level of sharing have been carefully
optimized. For example, the macro for accessing a thread-private variable takes
approximately 3 Sparc instructions per fetch, which can be compared to 2 Sparc
instructions for fetching a global variable.

2.6 Synchronization Mechanisms

Parallel languages use a variety of interesting and complex synchronization ab-
stractions. It would be impossible for a threads package to provide all of them.
Instead, to be usable in a parallel environment, a threads subsystem must provide
efficient support for user-level implementation of synchronization abstractions.
In this section, we show an implementation of such an abstraction, using the

primitives described in previous chapters. The implementation illustrates the
relative simplicity of building synchronization abstractions in Converse.

The synchronization mechanism we will use for demonstration purposes is
the mutex. Mutexes may be in one of two states, either locked or unlocked,
and they support two operations, “lock” and “unlock”. A “lock” cannot proceed
unless the mutex is in the unlocked state, therefore, the locking subroutine waits
(blocks) until the mutex is in the unlocked state. These routines can be easily
implemented using the Converse primitives. The mutex data type itself has the
following structure:

typedef struct {
int locked;
queue_of_threads queue;
} *mutex;

If a thread (hereafter known as the “locker”) wishes to lock the mutex, it
must first check whether the mutex is already locked. If not, the locker can
simply lock the mutex. If the mutex is already locked, however, the locker must
wait for the mutex to enter the unlocked state. It pushes itself onto the queue of
lockers. When the mutex is unlocked, the unlocker promises to 1, remove a locker
from the queue, 2, relock the mutex on behalf of the locker, and 3, reawaken the
locker. Therefore, when a locker is reawakened after being in the queue, the
mutex has been locked on its behalf, and it may go on. Figure 2 shows the code
executed by the locker and unlocker respectively.

void MutexLock(mutex m) void MutexUnlock(mutex m)
{ {
int oldenable int oldenable
= CthSigYieldEnable(0); = CthSigYieldEnable(0);
if (m->locked==0) m->locked=1; if (empty(m->queue))
else { m->locked=0;
push(CthSelf (), m->queue); else {
CthSuspend(); CthAwaken(pop(m->queue));
} }
CthSigYieldEnable(oldenable) ; CthSigYieldEnable(oldenable) ;
} }

Fig. 1. Locking and Unlocking a mutex using Converse primitives.

Note that the use of CthSigY¥ieldEnable to achieve atomicity is only cor-
rect in situations where the mutex is controlling access to processor-private data

(a Cpv variable). If the data were shared across the node (a Csv variable), one
would need to add a test-and-set or other interprocessor synchronization di-
rective to the mutex implementation. (Converse provides a fairly standard set
of interprocessor synchronization facilities). Note that the use of interprocessor
synchronization primitives would make the lock significantly more expensive, it
is therefore advantageous to be able to use this less expensive single-processor
lock where appropriate. In general, the ability to design synchronization mech-
anisms with as little or as much generality as one needs is likely to improve the
efficiency of parallel languages implemented with Converse.

3 Converse Scheduling, Messaging, and other Facilities

The thread abstractions defined above could be demonstrated in the context
of a single-language uniprocessor program. However, this would not adequately
demonstrate their special properties. Instead, we demonstrate them in the con-
text of a multi-language program with message-passing and other concurrency
mechanisms. Therefore, we briefly describe the Converse scheduling and mes-
saging subsystems [4], which together with the threads make up the heart of
Converse.

The Converse scheduler is much like the scheduler for a normal threads pack-
age. However, in addition to regular threads, the Converse scheduler supports
stackless threads. Their lack of their own stack makes them more efficient than
regular threads, though it also means they cannot suspend or yield. Their high
efficiency makes it possible to use Converse’s prioritized ready-queue for very
small, short tasks in situations where creating a true thread for the task would
be too expensive. In fact, the Converse scheduler is hand-tuned specifically for
this type of thread: the very short-lived, non-blocking, rapidly-generated threads
that so commonly are created by parallel programs.

The Converse scheduler provides a task pool on each processor. It repeat-
edly selects tasks (either threads or stackless threads) from the ready-pool and
allocates time segments to them. Unlike traditional multithreaded systems, time
segments can either be of a fixed length (the thread is preempted), or can be
of indefinite duration (the thread runs until it decides it is ready to yield). In
the case of stackless threads, however, the thread’s time segment lasts until the
thread completes.

The Converse messaging system is integrated with the Converse scheduling
facility: it makes it possible to insert a stackless thread into another processor’s
ready-queue. With the ability to insert work into each other’s queues, proces-
sors can easily demand arbitrary work of each other — for example, they can
PUT/GET each other’s memory, they can simulate the reception of MPI mes-
sages, and so forth. Most of Converse’s distributed operations are built on top
of this basic primitive.

To use the Converse messaging system, one first builds a “message”, which
is essentially a stackless thread encoded in the form of a sequence of bytes.

Messages only contain a function pointer! and a block of data to be passed to
the function. Allocating and building the message structure is done manually
by the user. One then inserts the message into another processor’s ready-queue
with a function similar to this one:

void CmiSyncSend(int destPE, int size, void #*msg)

Inserts a stackless thread (as represented by the message msg whose size is
size bytes) into into the ready-queue of processor destPE. The “sync” in the
name of this functions refers only to its buffer management policy, it does not
wait for the data to be received, it only waits for it to be extracted from the
message buffer. Therefore, it returns nearly immediately. The stackless thread
has extremely high priority in the target processor’s ready-queue.

There are several other send-functions in Converse. Some of them perform
broadcast (insertion of a stackless thread into the ready-queues of all processors).
Some use varying buffer-management policies which are more efficient than this
one (Converse has a variety of buffer management policies designed to minimize
overhead). Further information about Converse’s messaging mechansisms and
buffering policies can be found in [4].

The overall structure of a Converse program can be seen in figure 3.

/* the following code is executed by all processors */
void user_main(int argc, char **argv)

{
Converselnit(argv); /* initialize Converse runtime */
CreateWork(); /* create some threads */
CsdScheduler(-1); /* run until user termination */
ConverseExit(); /* clean up and exit */

Fig. 2. The structure of a typical program using Converse

The function CreateWork would be user-written. It might use CthCreate and
CthAwaken to create and start some standard threads. Alternatively, it might
use the messaging routines described above to create some stackless threads and
insert them into the scheduler’s ready-queue.

The function CsdScheduler is provided by Converse: it chooses threads and
stackless threads from the ready-queue and allocates time segments to them. It
continues until the function CsdExitScheduler is called by one of the threads.

In addition to its scheduler, threads, and messaging, Converse contains a
number of utility modules designed to facilitate the implementation of parallel

! actually, a network-transmittable encoding of a function pointer.

languages. A good example of such a module would be the Converse message
manager, designed to facilitate the implementation of languages with tagged
message transmission. This module provides a data type, the CmmTable, which
can store data and index it according to a set of tags. One can insert data into
the table along with a sequence of integer keys, and one can then retrieve the
data by specifying the keys, possibly specifying some keys as wildcards. While
it would be quite feasible for the Converse user to implement this himself, it is
such frequently-needed functionality that it is convenient to provide this storage
structure as a part of Converse.

Collectively, the subsystems in Converse seek to provide all the facilities
needed to easily implement the runtime system for a parallel programming lan-
guage. The facilities are designed for ease of use, for efficiency, and to handle
the resource-arbitration issues created when multiple parallel languages must
coexist. In the following sections, we demonstrate how Converse can be used to
implement multithreaded languages quickly and efficiently.

4 Implementing Multithreaded Languages in Converse

The purpose of this section is to explore the design of a multithreaded par-
allel language, and determine how this language would be implemented in an
interoperable way using the facilities provided by Converse.

An interesting style of parallel programming is the model where threads on
different processors communicate by sending messages to each other. Chant[2] is
an example of a prominent system that supports such a capability. In this sec-
tion, we describe a simple “language” that supports threads sending messages
to and receiving messages from each other. This language supports a subset of
the features of Chant, and so is easier to describe here. We will show how our
thread interface, in conjunction with the Converse framework, facilitates imple-
mentations of such languages. The language, which we call “simple messaging
plus threads” or SMT for brevity, provides the following major functions:

CthThread CsmStartThread(void (*function)(void *), void *arg)

This call allocates a new thread, and enters it in the main scheduler’s ready-
queue. When scheduled, this thread will start executing the function pointed to
by function, with a single parameter arg.

void CsmTSend(int pe, int tag, char *buffer, int size)

A message is sent to the given processor pe containing size bytes of data
from buffer, and tagged with the given tag. The calling thread continues after
depositing the message with the runtime system.

int CsmTRecv(int tag, char *buffer, int size, int *rtag)

Waits until a message with a matching tag is available, and copies it into
the given buffer. A wildcard value, SMTWildCard, may be used for the tag. In
this case, any available message is considered a matching message. The tag with
which the message was sent is stored in the location to which rtag points. The
number of bytes in the message is returned.

This language has been designed to test Converse, to determine whether or
not it is an adequate vehicle for implementing multithreaded parallel languages
such as Chant.

The SMT runtime has been implemented with the help of mechanisms and
data structures provided by Converse. Figure 3 shows a snapshot of those data
structures as they might exist on some processor of a running SMT program,
with each data structure labeled according to the module that supports it. In
this particular snapshot, threads 1, 3, and 4 are waiting for messages: they
have inserted pointers to themselves into the table of waiting threads and have
suspended. Threads 2 and 6 are waiting for the CPU, they wait in the scheduler’s
ready-set. Thread 5 must be the currently running thread on this processor, if
(as the diagram suggests) it is not stored in any synchronization structure at all.
Three messages have arrived and been stored for future receipt.

tag dat;l

— 0110001010¢
5| @]
o

[1101001011]
19 1101001011
47| @ 11100110100p

table of unreceived messages unreceived messages
(Cmm - message manager) (Csm - simple messaging)

tag| data
2 | @&
31| @
6| @

table of waiting threads all threads, inclusive set of ready—threads
(Cmm - message manager|Cth — threading system) (Csd - sheduler)

Fig. 3. Snapshot of data structures internal to Csm

The implementation of CsmTSend is as follows: it creates a stackless thread
(also known as a Converse message), it stores the SMT message data and SMT
tag in the stackless thread, and configures the thread to run an internal function
CsmTHandler. It then inserts the stackless thread into the target processor’s
ready-set.

The stackless thread begins executing CsmTHandler on the target processor.
CsmTHandler finds the SMT message data and SMT tag in its thread’s data area,
and inserts a pointer to the message data into the table of unreceived messages.
It then checks to see if any Csm threads were waiting for the specified tag (by
checking the table of waiting threads), and if so, it removes them from the table
and awakens them. CsmTHandler returns, and the stackless thread is done.

CsmTRecv is implemented as follows: it first checks the table of unreceived
messages, and if the message is already there, CsmTRecv extracts it and returns
it. If not, it obtains its own thread identifier and inserts itself into the table of
waiting threads. It then suspends. When it awakens, it knows that it has been
awakened by CsmTHandler. It therefore extracts its message from the table of
unreceived messages, and returns.

The CsmStartThread function is simply layered on top of CthCreate and
CthSetStrategyDefault, it creates the thread and specifies that it should use
the central Converse scheduler.

The entire code for this “runtime”, which uses the message manager and the
thread object, takes less than a hundred lines. The size of the runtime system
would probably increase somewhat if an effort were made to optimize it, and
a more sophisticated language such as Chant would require more code, but
substantially less than a from-scratch implementation. The simplicity of the
implementation demonstrates the success of our thread design.

Some features of Chant are not provided by SMT. For example, we have
not mentioned remote thread creation. Adding such a feature can be achieved
by adding a few more routines based on Converse features already described.
We have also not mentioned direct thread-to-thread transmission. To provide
thread-to-thread transmission, one need only make the thread identifier part
of the message tag (this may require enlarging the tag). Expanding the SMT
runtime to provide most of the features of the Chant runtime is straightforward.

The implementation techniques described in this section can be directly used
to implement runtime systems for several thread-based languages including Mul-
tiLisp [3], Cid [10], and so forth. The ease of their implementation, using the
Converse facilities, and the automatic interoperability provided by the frame-
work, suggests that one will be able to run multilingual programs in near future,
each module implemented using the language that suits its structure the best.

It is also easy to extend a language such as SMT to support prioritized
threads. Of course, it is straightforward to have each thread run at a different
priority level, by simply having it call CthSetPrio. More interestingly, we can
make the priority of a thread depend on the priority of the message it is waiting
for, or has just received. In such a configuration, each message will carry a
priority on it, set by the sender. The message handler in the runtime, when it
receives such a message, will set the priority of the waiting thread to that of
the message before awakening it. If the message arrives before a thread starts
waiting for it, the receive call will change the priority of the thread, and force it
to yield, if necessary. Such message-induced priority will be useful, for example,
to implement server threads whose priority can be dictated by its client.

5 Conclusions

We described the design and rationale of the Converse threads subsystem, a
framework designed to facilitate the implementation of multithreaded parallel
languages. The Converse threads subsystem is unique in that it contains sup-
port for interoperability among multiple parallel languages. The thread abstrac-
tions in Converse modularly separate the thread-scheduling functionality from
the suspension and resumption mechanisms for threads. The facilities provided
by the Converse threads subsystem include a highly portable thread object, a
hierarchical scheduling model with a powerful top-level scheduler, routines for
obtaining preemption or nonpreemption on a per-thread basis, and support for
declaring thread-private variables as well as shared variables at multiple levels
of sharing. The Converse threads subsystem, when integrated with the other
subsystems in Converse, provides a complete framework for implementing in-
teroperable multithreaded parallel languages. The rich set of flexible primitives
ensures that a diverse set of languages, with widely varying (and possibly non-
standard) thread behaviors, can be easily implemented using Converse. The
comprehensive scheduling model ensures that such languages can interoperate
in a single program. We explored the implementation of the runtime system for
a small multithreaded language SMT. In doing so, we demonstrated the feasibil-
ity and simplicity of implementing multithreaded languages using the Converse
threads subsystem and the remainder of the Converse framework.

The following programming models have been implemented with the help of
Converse:

Charm++ [5], based on remote method invocation,

— IMPORT [9], a successor to Modsim, using time-warp [1] methodology,
— SMT, a message-passing threads model,

PVM [15], a simple but popular message-passing model

DP [7], a data-parallel Fortran-based language

Of these languages, Charm++ uses stackless threads unless the programmer
explicitly creates a Cth thread, DP and IMPORT use stackless threads exclusively,
and SMT and PVM are based upon full-fledged threads. The fact that languages of
such widely varying structure can coexist under a single runtime system indicates
that the goals of interoperability and generality have been fairly well attained.

Immediate goals for the Converse threads subsystem include a detailed anal-
ysis of the performance of the thread subsystem, possibly optimized implemen-
tations for specific platforms, an implementation of MPI [8] that runs within a
set of threads, and a runtime layer for the multithreaded Cid [10] language.

When these are complete, the future of this research involves porting the run-
time systems of a wide range of parallel languages to Converse, thereby making
it possible to use what were previously isolated languages as parts of a compre-
hensive multi-language programming system, where one may choose the “right
language for the job” on a module-by-module basis. Pre-existing libraries written
in different languages can then be used in a single program. The utility of such

multi-lingual programming will then be systematically examined by developing
several multi-lingual applications.

Converse, including its thread subsystem, is available from the Parallel Pro-
gramming Laboratory at http://charm.cs.uiuc.edu/.

References

1. D. Ball and S. Hoyt. The Adaptive Time-Warp Concurrency Control Algorithm.
In Proceedings of the SCS Multiconference on Distributed Simulation, pages 174—
177, 1990.

2. M. Haines, D. Cronk, and P. Mehrotra. On the design of Chant: A talking threads
package. In Proceedings of Supercomputing 1994, Nov 1994.

3. R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems, October 1985.

4. L.V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon. Converse:
An Interoperable Framework for Parallel Programming. In International Parallel
Processing Symposium 1996 (to appear), 1996.

5. L.V. Kale and Sanjeev Krishnan. Charm-++ : A portable concurrent object ori-
ented system based on C++. In Proceedings of the Conference on Object Oriented
Programmi ng Systems, Languages and Applications, September 1993.

6. David Keppel. Tools and techniques for building fast portable threads packages.
Technical Report UWCSE 93-05-06, University of Washington Department of Com-
puter Science and Engineering, May 1993.

7. E. Kornkven and L.V. Kalé. Efficient Implementation of High Performance Fortran
via Adaptive Scheduling — An Overview. In V. K. Prasanna, V. P. Bhatkar, L. M.
Patnaik, and S. K. Tripathi, editors, Proceedings of the 1st International Workshop
on Parallel Processing. Tata McGraw-Hill, New Delhi, India, December 1994.

8. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
May 1994.

9. Vance P. Morrison. Import/dome language reference manual. Technical report,
US. Army Corps of Engineering Research Laboratory, ASSET group., 1995.

10. Rishiyur S. Nikhil. Parallel Symbolic Computing in Cid. In Parallel Symbolic
Languages and Systems, 1995.

11. John Plevyak, Vijay Karamcheti, Xingbin Zhang, and Andrew A. Chien. A hybrid
execution model for fine-grained languages on distributed memory multicomputers.
In Supercomputing ’95.

12. PORTS- POrtable Runtime System consortium. The PORTSO0 Interface. Techni-
cal report, Jan 1995.

13. POSIX System Application Program Interface: Threads Extension to C Language.
Technical Report POSIX 1003.4a Draft 8, Available from the IEEE Standards
Department.

14. M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOS
Multi-thread Architecture. In Proceedings of the Winter 1991 USENIX Confer-
ence.

15. V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Con-
currency: Practice and Ezperience, 2(4), December 1990.

This article was processed using the ATEX macro package with LLNCS style

