Automating Parallel Runtime Optimizations Using Post-Mortem
Analysis

Sanjeev Krishnan and Laxmikant V. Kale
Department of Computer Science,
University of Illinois, Urbana-Champaign.
Email : {sanjeev,kale}@cs.uiuc.edu

Phone :

Abstract

Attaining good performance for parallel programs fre-
quently requires substantial expertise and effort, which
can be reduced by automated optimizations. In this paper
we concentrate on run-time optimizations and techniques
to automate them without programmer intervention, us-
ing post-mortem analysis of parallel program execution.
We classify the characteristics of parallel programs with
respect to object placement (mapping), scheduling and
communication, then describe techniques to discover these
characteristics by post-mortem analysis, present heuris-
tics to choose appropriate optimizations based on these
characteristics, and describe techniques to generate con-
cise hints to runtime optimization libraries. Our ideas
have been developed in the framework of the Paradise
post-mortem analysis tool for the parallel object-oriented
language Charm++. We also present results for opti-
mizing simple parallel programs running on the Thinking

Machines CM-5.

1 Introduction

Developing efficient software for parallel computers has
been recognized as one of the bottlenecks preventing more
widespread use of parallel computers. This is because sev-
eral new issues have to be tackled before parallel programs
can attain the peak performance that parallel computers
provide. Whereas simple parallel implementations often
suffer from bad speedups and other symptoms of low per-
formance, good performance can usually be attained only
at a high programming cost. The challenge is thus to
attain good performance at low programming cost.
Ideally, an expert parallel programmer would be able
to anticipate and respond to all potential performance
problems during the design of the first prototype. How-
ever, parallel programming skills are not widespread, and
moreover, the programmer may not know enough about
the characteristics of the application and implementation

(217) 244-0094

without investing considerable effort. The first prototype
of a parallel program is hence likely to have several se-
rious performance flaws, leading to active research for
identifying performance problems and optimization tech-
niques. These steps lead to a significant portion of the
programming cost in the parallel program development
cycle. Since most parallel programmers are not skilled
in identifying and solving performance problems, ezpert
parallel programming knowledge must be embodied in tools
which are available to the parallel programmer.

Automating program optimizations using expert know-
ledge either in the compiler or the run-time system can
significantly help to reduce the parallel software develop-
ment effort. When most performance problems are solved
in this manner, there will be fewer iterations of the devel-
opment cycle. Even in cases where completely automatic
techniques are not possible, it is beneficial to automate
the optimization steps to the extent possible. This pa-
per is concerned with precise post-mortem analysis which
can be used for automating run-time optimizations with-
out programmer intervention.

2 The Optimization Framework

This section motivates run-time optimizations, the use of
post-mortem analysis for automating them, describes our
framework, and relates it to previous work.

2.1 Need for run-time optimizations

Traditionally, research in optimization techniques has con-
centrated on compiler transformations of parallel programs
for exposing parallelism, automatic grainsize control, de-
termining data distribution, improving locality, reducing
communication overhead, etc. The disadvantages of opti-
mizations performed only at compile time are :

Compiler optimizations are static: they cannot take
into account run-time conditions. On the other hand,
a parallel computer presents an inherently variable envi-
ronment: resource availability and message transmission
have non-deterministic factors.

Unpredictability: Many parallel applications have un-
predictable computational needs and communication pat-

To appear in the 10th ACM International Conference
on Supercomputing, May 1996, Philadelphia.

terns which cannot be inferred from a static analysis of
the parallel program.

Static analysis is complicated: for parallel object-
oriented programs based on C++ because of the difficul-
ties of precise dependence and type analysis in the pres-
ence of pointers.

Separate compilation: If a parallel program is com-
posed from separately compiled modules, the compiler
does not have enough global information to optimize the
program; e.g. load balancing decisions cannot be made
by a module in isolation, since the load on a processor is
affected by computations in all modules.

Library based parallel programming environments:

(e.g. PVM and MPI) are collections of run-time libraries.
For such programs, run-time optimization is the only way
to get better performance.

Thus the compiler may have insufficient information to
decide whether an optimization is necessary, how to do it,
and when (at what point in the program) to do it. Op-
timizations performed at run-time can take care of many
cases where compiler transformations are inadequate.

2.2 Paradise: Automatic Optimization

Run-time optimizations need information about charac-
teristics of the parallel program in order to enable op-
timization mechanisms and guide strategies for selecting
them. Since compilers cannot statically deduce the re-
quired information in many cases, programmers manu-
ally analyse the execution of a program in order to dis-
cover program characteristics and optimizations (Figure
la). Automatic post-mortem analysis may thus reduce
the effort required for performance optimization.

Optimizations

nguage\ | [Paralel

} Compiler

Application | | Program | Executable | _Computer | Resuits
(a) Conventional program development cycle
Run-time | Optimization Hints
Libraries w
\ v Iel)
Langu: e‘ ‘ Com |Ier‘ ‘ Pard Paradise
Application ‘ e ‘ Program ‘ P ‘ Execulable‘ Computer | Traces

(b) Program development with run-time optimizations driven by
the intelligent post-mortem analysis tool Paradise

Figure 1: Parallel program development cycles.

Different executions of a parallel program are often
very similar, if not identical, in their structure, commu-
nication patterns and performance characteristics. This
leads us to observe that analyzing one or more execu-
tions of a program can give us information about perfor-
mance problems and possible optimizations for the pro-
gram. In a traditional program development cycle, all
the tasks of analyzing performance data, identifying per-
formance problems, designing optimizations, and incor-
porating them in the parallel program need to be done
by the programmer. By incorporating expert knowledge
in a post-mortem analysis tool, it is possible to do some

of these tasks automatically and generate information for
automatic compile-time as well as run-time optimization.

Most parallel programs needing optimization fall into
one of two categories: the first consists of those for which
good optimization strategies can be derived from well
known heuristics; for such programs an automated expert
system for guiding optimization can potentially achieve
good results. The second category consists of programs
which need new algorithms and techniques for optimiz-
ing them; for such programs the intervention of a human
programmer is obviously needed. However, experience
with parallel applications has shown that many of them
have well-recognized performance problems for which op-
timizations can be found using a few good heuristics.

This paper presents current results from an ongoing
project to develop a framework for automating run-time
optimizations (Figure 1b). The framework involves the
expert post-mortem analyzer PARADISE (PARallel pro-
gramming ADvISEr) which analyzes traces of program
execution, finds program characteristics and suggests op-
timization hints. Paradise works in close cooperation with
a run-time system which uses the hints to parameterize
optimizations and select between alternate optimization
strategies. Paradise builds a representation of the pro-
gram’s execution from traces, determines characteristics
of the program, uses heuristics to find optimizations that
will solve the performance problems, and generates con-
cise hints which are communicated to runtime libraries by
a “hints file”.

2.3 Previous work

Performance analysis research has concentrated on visu-
ally displaying performance data [1, 2], relating perfor-
mance data to high level language constructs [3, 4], or
giving the user insights into performance problems us-
ing expert analysis [5, 6]. Our framework aims to go a
step further in the direction of automation : Paradise
not only finds performance problems, but also solutions
in terms of optimizations for the problem areas, and in
co-operation with the run-time libraries, incorporates the
optimizations in the program without programmer inter-
vention.

Automatic compiler optimizations have achieved suc-
cess for automatic data partitioning and communication
schedule generation in array-based Fortran programs [7,
8]. The use of profile information for compiler optimiza-
tions is well-known. Several sequential compilers use pro-
file information to predict branch probabilities (e.g. [9]).
Some compilers for data-parallel languages such as HPF
[10]) use profile information to accurately find the cost of
various computation and communication operations. To
the best of our knowledge, our framework is one of the
first efforts towards using post-mortem analysis for au-
tomating run-time optimizations. Also, the scope of our
optimizations is much broader than in traditional com-
piler optimizations, and moreover applies to dynamic and
irregular applications as well as regular ones.

Another unique aspect of our work is that it is in
the context of a parallel object-oriented language which
allows the run-time system the flexibility to choose strate-
gies for placement (mapping) and scheduling of compu-
tations and managing communication between objects.
Thus there are significantly greater opportunities and chal-

lenges for automatic optimizations. In contrast, message-
passing layers such as PVM or MPI require the program-
mer to explicitly specify the placement and scheduling
of computations and the communication between them,
and also do not provide facilities for dynamic creation
of tasks, thus restricting the extent of automatic opti-
mizations. Again, data-parallel languages such as HPF
present a much simpler regular computational model for
which optimizations are easier to perform, as compared to
a parallel object-oriented model which involves dynamic
creation of tasks and asynchronous communication.

3 Program model

This work is based on the parallel object-oriented lan-
guage Charm++, [11, 12] which is an extension of C++.
The basic unit of work in Charm++ is a chare, which is a
medium-grained concurrent C++ object. Chares are dy-
namically created; there may be thousands of chares per
processor. A chare type is a C++ class containing data
and functions which may be triggered by the arrival of
messages. Functions inside chares are atomic (they may
not be pre-empted).

Chares communicate by sending messages to func-
tions (invoking methods) in other chares asynchronously.
An essential feature of the Charm-++ parallel program-
ming model is asynchronous message driven ezecution,
which helps latency tolerance by overlapping communi-
cation and computation. All calls to the run-time are
non-blocking, and there are no “receive” calls. Remote
accesses are performed in a split-phase manner. Each
processor has multiple chares, and a pool of messages tar-
geted to methods in the chares. The scheduler picks mes-
sages from the pool one by one, and “processes” them by
invoking their target methods in the proper chare objects.

Charm++ also provides multidimensional parallel ar-

rays of objects which are distributed over processors using
a user-specified mapping function. Array elements may
communicate with each other in a point-to-point manner
or using multicast communication primitives.
Post-mortem representation:
The execution of a Charm++ program is represented as
an event graph, which is essentially a task graph con-
structed using traces collected at run-time. Issues in col-
lecting trace data, reducing perturbation, and construct-
ing the basic event graph are discussed in [6] and are
beyond the scope of this paper. A simple version of the
event graph was originally used for the Projections[2] per-
formance visualization and analysis tool. The event graph
constructed by Paradise consists of vertices representing
entry-function executions, edges representing messages be-
tween entry functions and edges for dependences between
methods (these dependences must be specified in the lan-
guage or generated by the compiler). Also, all vertices
belonging to the same object instance are grouped to-
gether.

3.1 Problems due to non-determinism

The validity of inferences drawn from post-mortem anal-
ysis of an execution depends on how similar subsequent
executions are to that execution. For programs with com-
pletely deterministic behavior (such as some SPMD pro-

grams), or for executions with the same inputs, the infer-
ences will be very accurate. Suggestions for optimization
may be made in terms of individual message and object
instances. For irregular or non-deterministic programs,
variations in the input parameters can affect program ex-
ecution, so that fewer inferences will be valid. In such
cases we need techniques to specify properties of a set of
instances (e.g. all messages of a particular type in the
source program), because we cannot make suggestions at
the level of individual instances. Essentially, we need to
infer program-level characteristics (e.g. whether the pro-
gram has graph-structured or tree-structured communi-
cation) by analyzing an execution.

Completely deterministic programs always produce
the same set of tasks and messages. However, most par-
allel programs contain non-determinism because of the
following factors:

o Inputs: Many parallel programs have different num-
bers of tasks and messages depending on the in-
put set, e.g. when the size of the input problem
changes. Sometimes even the kind of computations
performed change depending on input : such cases
are extremely difficult to handle.

o Scheduling: Some programming models adaptively
schedule computations to overlap them with com-
munication and also to adjust for varying run-time
conditions. Thus the order of execution of com-
putations on a processor may change from run to
run.

o Placement: Dynamic object placement strategies
place objects on processors depending on run-time
conditions, hence the location of computations may
change from run to run.

o Granularity: If the run-time system provides dy-
namic granularity control, the number of parallel
objects created may differ from run to run, although
the total amount of computation remains the same.

o Speculative computations: Some applications (such
as those involving search) create speculative work,
the amount of which depends on run-time condi-
tions.

In this paper we do not tackle the last two problems (non-
determinism due to dynamic granularity control and spec-
ulative work). We target our techniques to handling dif-
ferent input sets as long as the basic computation steps
do not change : i.e. only the numbers of objects and
messages may change, not the structure of the parallel
program or the kinds of computations performed. This
is achieved by not generating any execution-specific op-
timization hints which depend on individual message or
object instances. Instead, the optimization hints are in
terms of object and message types (e.g. “all messages of
type T are to be given priority level 17).

To deal with non-determinism due to adaptive schedul-
ing and dynamic object placement, we need to ensure
that the program representation remains invariant even if
there is such non-determinism. As described in the pre-
vious subsection, the event graph contains edges between
methods for dependences : this ensures that the graph for
operations such as a “join” — where a method executes
only if several preceding methods have executed — does

not change even if the order of execution of the preceding
methods changes. Also, by grouping vertices belonging
to the same object instance, we get an object-interaction
graph which is independent of the exact assignment of
objects to processors, thus removing the effects of non-
deterministic placement. Moreover, this allows us to an-
alyze the interactions between object instances, instead
of restricting ourselves to a less precise processor-level.
This is very useful when we try to analyze patterns of
communication between objects.

4 Optimizing object placement

There are two main aims of an object placement strategy:
to balance load across processors; and to maintain local-
ity by moving objects only when necessary and keeping
heavily interacting objects on the same processor.

4.1 Characteristics of parallel programs af-

fecting object placement

In order to select a suitable object placement strategy,
Paradise attempts to systematically discover the charac-
teristics of the parallel program from the event graph. We
first describe some important characteristics which affect
object placement, and discuss how they are inferred from
the event graph.

4.1.1 Phase structure of program

This characteristic tells us if there are repeatedly occur-
ring phases in the program. Separating the program into
independent phases helps to focus analysis [6], because
each phase can be analyzed independently. The phase
structure is also important if all objects are not active in
all phases: ignoring the phase structure may result in load
imbalance within a phase in which only part of the objects
are active. The following types of phases are commonly
found in parallel programs:

o Phases separated by synchronization points: here
each phase proceeds only after all computations in
the previous phase have finished (figure 2a).

o Phases separated by initiation points: here there
are no synchronization points, instead each phase
is initiated by a multicast from one object (figure
2b), which forms an initiation point.

o Computation phases alternating with communica-
tion phases: (figure 2c) this is typical in a data-
parallel, loosely synchronous program, where all
processors perform the same computation (of same
size) on their own data, then send and receive data
from other processors.

o No phases: the program does not exhibit a repeat-
ing communication pattern (figure 2d). This may
arise because phases in the program overlap with
each other so that separate phases cannot be dis-
cerned.

For a program which has phases we need to make sure that
the load in each phase is balanced; this usually leads to

additional constraints on assignment of objects to proces-
sors which need to be considered by the object mapping
strategy.

(a) Phases with synchronization points
(b) Phases with initiation points
(c) Loosely synchronous (compute-communicate) phases

e

(d) No phases

Figure 2: Different types of phases in parallel programs.

4.1.2 Data locality

The behavior of a program with respect to data local-
ity tells us the extent of access to non-local data. It is
desirable to increase data locality in a program so that
the amount of data accessed from remote processors de-
creases. Data locality can be increased by taking into ac-
count interactions between objects while making object
mapping decisions: closely interacting objects should be
mapped to the same processor. In order to deduce pat-
terns of inter-object interactions, we construct an object-
interaction graph in which the nodes are objects and edges
represent communication between objects. The weight of
an edge represents the amount of communication (e.g.
number of messages) between the pair of objects it con-
nects. Whether data locality can be exploited for a par-
ticular program or not depends on the inherent communi-
cation patterns for the program. Most programs fall into
one of the categories described below.

Locality is unimportant: There are two cases when lo-
cality need not be taken into consideration while mapping
objects to processors. The first is when all objects execute
independently, without communicating with each other.
This is detected in the object-interaction graph when the
total number of edges is close to the total number of nodes

(since each object must have at least one edge connecting
it with its creator object). The second is when each object
communicates with almost every other object (e.g. when
all objects do a broadcast), so that there is no locality in
the communication pattern. This is detected when the
average degree of a node in the object-interaction graph
is close to the total number of nodes. If no locality exists
in the program, object mapping needs to only take care of
load balance, as determined by the other characteristics.

Tree-structured communication : Here each object
communicates only with its parent (creator) object or its
child objects. This property is detected in the object-
interaction graph by a simple graph traversal.

Graph-structured communication : arises when ob-
jects communicate with neighboring objects. Usually this
pattern of communication is found in spatially decom-
posed applications, where objects represent regions of space
and communicate with adjacent regions. Regular graph
structures arise when the communication pattern between
objects is regular (e.g. neighbor communication among
objects in a parallel object array). Input dependent graph-
structured communication occurs when the exact nature
of the object-interaction graph depends on the input data
(e.g. when each object constructs a list of interacting ob-
jects using input data).

4.1.3 Patterns of object creation

Object creation patterns tell us which processors create
objects, and at what times in the program execution they
are created. The patterns of object creation determine the
times and locations where object mapping decisions have
to be made, and thus determine the strategy for collection
and distribution of load information which is needed for
making the object mapping decisions at run-time. E.g.
For a data-parallel program where arrays of objects are
created at the beginning, no load information needs to be
collected; on the other hand, for state-space search where
the search tree is expanded in the course of the program,
load information must be continuously updated so that
new objects can be sent to underloaded processors.

The locations of object creation may be centralized
(one processor creates all the objects) or distributed (many
processors create objects). This characteristic can be eas-
ily inferred by counting the number of objects created on
each processor. In general distributed object creation re-
quires more complex load balancing strategies. The times
of object creation may be continuous (objects are created
continuously) or bursty (objects are created in bursts,
with intervening periods when no objects are created; a
special case of this is when objects are created just once,
at the beginning of the computation).

4.2 Optimizing static object placement for
programs without phases

In static object placement, objects are created and placed
only at the beginning of the program. Paradise currently
chooses static object placement strategies for programs
written using Charm++’s parallel object array construct.
Essentially, Paradise chooses a strategy which partitions
the array among processors so as to balance load as well

as reduce inter-processor communication. When the com-
munication pattern matches with commonly observed reg-
ular communication patterns (e.g. a grid-based decompo-
sition where each object communicates with the two adja-
cent objects in each dimension), the partitioning strategy
need not be dynamic (i.e. it need not execute at run-
time). In such cases it is possible for Paradise to auto-
matically infer a precise pattern for mapping objects to
Processors.

The first task to be done for array partitioning is to
align interacting object arrays of the same dimensions.
The strategy here is the one used by Li & Chen [13] and
Gupta & Banerjee [7] for compilers, involving construc-
tion and partitioning of a graph whose vertices represent
array dimensions. Each set of aligned arrays represents a
template grid (as in HPF), and each object in each array
is assigned to a grid point.

Next, Paradise partitions the template grids across
processors. For regular array-based programs without
phases, Paradise uses a (block, block, ...) pattern, where
processors are arranged in a grid and a contiguous block
of array elements is placed on each processor. For each
template grid, the amount of communication along each
dimension is calculated by creating a plane perpendicu-
lar to the dimension which bisects the grid, and finding
the number of messages crossing the plane. The amount
of communication is used to determine the block size in
that dimension : the more the communication, the larger
the block size. The final hint generated specifies the as-
pect ratio of the processor grid. At run-time, the object
mapping library uses this aspect ratio and the array size
to determine the block size and assign array elements to
processors. E.g. for a Jacobi relaxation program where
each object communicates with its two adjacent objects
in each dimension, Paradise suggests square regions for
each processor. E.g. for an array where communication
occurs only along one dimension, processors will get long
slabs oriented along the direction of communication so
that there is no inter-processor communication.

4.3 Optimizing static object placement for
computations with phases

The phase structure of a program is important only if ob-
ject activity patterns vary from phase to phase. Paradise
first constructs a list of phases in which a significant num-
ber of objects are not active. It then generates a set of
load balance constraints on object mapping, and evalu-
ates the suitability of well-known mapping patterns with
respect to the constraints.

A constraint is specified between a pair of objects to
indicate that both objects should preferably not be as-
signed to the same processor. Within each phase, con-
straints are attached to every pair of objects. Thus sat-
isfying as many constraints as possible would ensure that
the objects are evenly distributed across processors. In
future we intend to automate object migration to allow
remapping of objects between phases, if there are conflict-
ing constraints on object placement across phases.

Finding patterns of object placement:

It is desirable to express the mapping of objects to pro-
cessors concisely so that it can be communicated to the
runtime libraries as a hint. Ideally, the mapping should

be an expression which maps the object’s id to a proces-
sor number. For parallel object arrays in Charm++, the
expression uses the coordinates of an object in the 1, 2,
or 3-dimensional object array to map it to a processor.
Currently, the mapping patterns supported include :

o all block-cyclic mappings. E.g. for a 2-D array, this
has the form)
Map(i,j) = ZMOD b+ bx (:MOD d)

o the multi-partition mapping scheme [14]. E.g. for
a 3-D array this has the form)
Map(i, j,k) = %MOD b+bx(:=2MOD d)

In the above expressions ¢, 7,k are the coordinates of an
object, and a,b,c,d are the constants that need to be
found by the analyzer. We intend to add more patterns
as the need arises.

4.3.1 Placement for Gaussian Elimination

We demonstrate automatic object placement for a simple
program which performs Gaussian Elimination (only the
triangularization step, without pivoting). The Charm++
program for this has an object for each row in the matrix,
and a parallel array of row objects which constitutes the
matrix. When a row becomes the pivot row, it multicasts
its elements to all rows below it in the matrix.

From the event graph, Paradise was able to deduce
that there is no locality in the communication pattern
(since each row object needs to communicate with all
other rows). Further, the program has phases separated
by initiation points corresponding to the multicasts made
by the pivot rows. The number of objects active in each
phase varies, thus it is necessary to balance load in each
phase separately. Hence Paradise maps objects to proces-
sors phase by phase. The mapping pattern which matches
the load-balance constraints best corresponds to a cyclic
mapping. Paradise now generates a hint (consisting of
the values of the constants in the mapping expression) to
the object-mapping module in the run-time through the
optimization hints file. Table 1 presents times in seconds
for running the Gauss-Elimination program on 32 proces-
sors of the CM-5 for a 1000x1000 matrix, with a random
object mapping strategy and the automatically optimized
strategy.

Automatic
34.90

Random
38.72

Strategy
Time (sec)

Table 1: Object mapping for Gauss-Elimination.

4.4 Optimizing dynamic object placement for
tree-structured programs

Dynamic load balancing is an extensively researched area,
and there are several general-purpose as well as application-
specific strategies. If we know the problem structure, we
can sometimes use better-tuned strategies. Recognizing
this, Paradise uses a special load balancing strategy for
tree-structured computations where there is some amount
of uniformity in the tree. In tree-structured programs,

each object communicates only with its parent (creator)
object or its child objects.

The load balancing strategy for tree-structured com-
putations essentially tries to partition the tree equally
across all processors by assigning a subtree to each pro-
cessor. This maintains locality, results in better load bal-
ance, distributes the tree across processors quickly, as well
as avoids other overheads of general-purpose load balanc-
ing strategies. The types of trees which can be partitioned
by this strategy are :

o Completely uniform trees : every internal node has
the same branching factor, and all its child subtrees
have the same load. This kind of tree may occur in
exhaustive search applications.

o Uniform branchfactor : every internal node has the
same branching factor, and child subtrees have a
consistent ratio of loads.

o Uniform subtree load : all subtrees at an internal
node have the same load, and the branching factor
varies as a linear function of the depth.

The strategy assigns a set of processors to work on each
internal node of the tree (the root is initially assigned
the whole processor set). Each internal node divides its
processors among its child subtrees, based on their loads
as predicted by Paradise. This process continues until a
subtree has just one processor assigned to it. Thereafter
all nodes in the subtree are kept local.

Paradise first does a traversal over the object-interac-
tion graph to determine if the program is tree-structured.
It then systematically traverses the tree in a depth-first
manner, calculating the loads of all leaf and internal nodes.
Then it analyses the branching factors and subtree loads
to check if they are uniform. If so, it generates an appro-
priate hint.

If the tree is too irregular, Paradise reverts to one
of the general purpose load balancing strategies provided
with the Charm—++ run-time system: currently it chooses
between a round-robin strategy (objects are placed on
processors in a round-robin manner), neighbor averaging
(load is balanced among processors in a neighborhood)
and hierarchical manager (a cluster of processors is con-
trolled by a manager). The choice is made depending on
the grain-sizes of objects (e.g. round-robin will not work
well if the grain-sizes are widely varying), the amount
of locality needed (e.g. neigbor-averaging works better
when locality is needed), and the number of objects to be
balanced.

4.4.1 A uniform tree structured problem

We demonstrate automatic dynamic object mapping for
tree-structured programs using a simple parallel program
for computing the factorial of a large number. The pro-
gram has essentially a divide-and-conquer structure. Each
node in the divide-and-conquer tree is a Charm++ object,
which creates two child nodes for computing partial prod-
ucts. The child nodes reply back to the parent when the
result is found. This program was compiled and run on
the TMC CM-5, the traces of program execution were col-
lected and fed into Paradise. Paradise was able to deduce
that the program has a uniform uniform tree structure
(all leaves are at equal depth), and a branch factor of 2 at

every internal node. Moreover, the object creation is con-
tinous and there is no phase-structure. Hence Paradise
chose the object mapping strategy for trees, and also pro-
vided the additional information that the tree was regular
and binary.

The hints generated by Paradise were fed back to the
object-mapping module using an optimization hint file.
The factorial program was again run on the CM-5 to get
the optimized results. Table 2 gives times (in millisec-
onds) for computing the factorial of 4096 on 16 proces-
sors (which results in 8191 objects in the tree). Results
are presented for a random object mapping strategy and
the automatically optimized tree strategy.

Automatic
163

Random
684

Strategy
Time (mS)

Table 2: Dynamic object mapping for factorial program.

5 Scheduling Optimizations

The scheduler in the run-time system determines the or-
der of execution of method invocations in objects on a
processor. This order becomes important when there are
multiple concurrent objects on a processor, any of which
can be allowed to execute. The main aim of the scheduling
strategy is to ensure that all computation paths' in the
parallel program finish at about the same time. In pro-
grams where some computational paths are longer than
others, there are likely to be one or more critical paths.
We can optimize the scheduling by executing tasks on
critical paths with minimal delay. This is a difficult prob-
lem because no global information is normally available:
the scheduler does not know which of the methods to be
invoked lies on the critical path.

Scheduling may be affected through prioritization: ob-
jects or messages can be assigned a priority value, which
is used to select a message for processing when there are
many messages in the scheduler queue. Charm++ al-
ready allows the programmer to assign a priority to a
message before sending it. To implement prioritization
automatically, the scheduler needs to know what priori-
ties need to be assigned to messages, and at what times
in the program.

Paradise first determines if the program has one or
more significant critical paths. The algorithm used to de-
termine critical paths is based on a longest-path heuris-
tic: a depth-first traversal of the event graph reveals the
longest path from each node to the end of the program.
Paradise then determines the method types or message
types lying on the critical paths and the priority values
to be assigned to them. The priority of a type is higher
if it occurs more often on critical paths, and lower if it
occurs more often on non-critical paths. Further, Par-
adise determines which objects are on critical paths and
assigns priorities to objects. The priority of an object is
higher if it occurs more often on the critical path, and

! A path through a parallel program corresponds to a path in
the event graph for the program. The length of a path includes
the computations and communication delays on that path.

also higher if it occurs earlier on the critical path. Then
Paradise tries to find a pattern for relating the object-id
to the priority, using a linear priority expression.

5.1 Prioritizing Gauss-Elimination

The Gauss-Elimination program described in section 4.3.1
has a critical path consisting of the initiation points when
a row broadcasts itself to all rows below it in the matrix.
Each object occurs exactly once on the critical path, and
object id (row number) i occurs before object i+ 1 on the
critical path. Thus Paradise deduces that objects should
be assigned a priority based on their object ids. The pri-
ority expression matching routine now tries to relate the
object-id to its priority. Since Charm-+-+ assigns higher
priority to lower numbers, the priority of an object can
be set to its row-id. This hint is generated by Paradise
and read in by the run-time system during the next run
of the program. The performance of the program with
and without prioritization is given in table 3.

Automatic Priorities
34.90

No Priorities
43.58

Strategy
Time (sec)

Table 3: Prioritization for Gauss-Elimination

6 Communication Optimizations

Communication optimizations are necessary to reduce com-
munication volume and overheads, as well as tolerate la-
tency. Here we discuss two of them that are commonly
used in parallel programs.

Message pipelining

Instead of sending a large message at the end of a large
computation to an idle processor, it is possible that by
sending pieces of the message earlier, the idle processor
could start processing the pieces earlier, thus reducing
idle time by overlapping communication and computa-
tion. However, in general, the choice of the number of
pieces the computation should be divided into (the de-
gree of pipelining) must be made at run-time, depend-
ing on the communication latencies and bandwidth of the
target machine, as well as the sizes of the messages and
computations in different phases of the program. In order
to enable this pipelining optimization, the methods to be
pipelined must be parameterized so as to give the run-
time system a control point where the degree of pipelin-
ing parameter can be set. Paradise determines the degree
of pipelining for different message types using heuristics
which reduce idle time and overheads [6].

Message aggregation or combining

When a processor sends many small messages to the same
remote processor and the messages are not immediately
processed, the messages can be combined into one large
message before being sent out, and then broken up after
being received. This reduces message transmission over-
head. When such a message is sent by a processor, the
run-time at the sender needs to know whether to send the
message to the receiving processor right away or delay the

message so that it can be combined with another message
to the same receiver. In this situation Paradise provides
valuable hints regarding which messages to combine, and
at what times in the program.

We give an example of a simple parallel data-collection
operation which benefits from message combining. The
operation involves a parallel object array with a large
number of elements distributed over all processors, each of
which sends messages to one object on processor 0. Par-
adise detects this operation, and generates a hint to the
runtime for enabling message combining for the particular
message type. The number of messages to combine is set
to the number of objects of the array on a processor. Note
that the runtime uses this number only as a hint: a time-
out value is used to limit the maximum amount of time
a message may be delayed in order to wait for another
message to the same processor. Table 4 gives results for
the total time taken for broadcast to and data-collection
from 512 objects on 32 processors of the CM-5, with each
object sending a 4 byte message to processor 0.

Automatic Combining
88

No Combining
182

Strategy
Time

Table 4: Time (in milliseconds) with and without message
combining for broadcast and data-collection over 512 ob-
jects on 32 processors.

7 Summary

In this paper we have described techniques for automating
parallel run-time optimizations using post-mortem anal-
ysis. The specific contributions of this work are:

e automation of a broad set of run-time optimiza-
tions for object placement, load balancing, schedul-
ing and communication, without user involvement.

e systematic classification of the characteristics of par-
allel object-oriented programs and run-time tech-
niques for optimizing programs with those charac-
teristics.

o development of heuristics for automatic post-mortem
analysis of program traces for (a) discovering pro-
gram characteristics, (b) choosing optimizations,
and (c) generating concise hints to runtime opti-
mization libraries.

o evaluation of heuristics on simple programs.

Our results have shown that run-time optimizations
can be automated, thus decreasing the effort required
from application programmers for developing parallel pro-
grams with good performance. In future work, we intend
to evaluate the optimizations using real applications, as
well as broaden the set of optimizations and techniques
as the need arises.

References

[1] D. A. Reed et al. Scalable Performance Analysis
: The Pablo Performance Analysis Environment. In

[10]

[11]

[12]

[13]

[14]

Proceedings of the Scalable Parallel Libraries Confer-
ence, pages 104-113. IEEE Computer Society, 1993.

L.V. Kale and Amitabh Sinha. Projections : A scal-
able performance tool. In Parallel Systems Fair,
International Parallel Processing Sympo sium, April
1993.

V. Adve, J. Mellor-Crummey, M. Anderson,
K. Kennedy, J. Wang, and D. A. Reed. An inte-
grated compilation and performance analysis envi-
ronment for data-parallel programs. In Proceedings
of Supercomputing 1995, December 1995.

B. Mohr, D. Brown, and A. Malony. TAU: A
Portable Parallel Program Analysis Environment for
pC++. In Proceedings of the 3rd Joint Conference
on Parallel Processing: CONPAR 94 - VAPP VI,
September 1994.

J. Kohn and W. Williams. ATExpert. Journal
of Parallel and Distributed Computing, 18:205-222,
1993.

Amitabh B. Sinha. Performance Analysis of Object
Based and Message Driven Programs. PhD thesis,
Department of Computer Science, University of Illi-
nois, Urbana-Champaign, January 1995.

The PARADIGM Compiler for
IEEE Com-

P. Banerjee et al.
Distributed-Memory Multicomputers.
puter, October 1995.

S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang,
R. Das, and J. Saltz. Run-time and compile-time
support for adaptive irregular problems. In Proceed-
ings of Supercomputing 1994, November 1994.

P. P. Chang, S. Mahlke, W. Chen, N. Warter, and
W. Hwu. IMPACT : An Architectural Framework for
Multiple-Instruction Issue Processors. In Proceedings
of the 18th International Symposium on Computer
Architecture, May 1991.

C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L.
Steele Jr., and M.E. Zosel. The High Performance
Fortran Handbook. MIT Press, 1994.

L.V. Kale and Sanjeev Krishnan. Charm++ : A
portable concurrent object oriented system based on
C++. In Proceedings of the Conference on Object
Oriented Programming Systems, Languages and Ap-
plications, September 1993.

L. V. Kale and Sanjeev Krishnan. Charm-++ : Par-
allel Programming with Message-Driven Objects. in
Parallel Programming using C++, MIT Press, 1995.
To be published.

J. Li and M. Chen. Index domain alignment : Min-
imizing the cost of cross-referencing between dis-
tributed arrays. In 3rd Symposium on the Frontiers
of Massively Parallel Computation, October 1990.

N. H. Naik, V. K. Naik, and M. Nicoules. Paralleliza-
tion of a class of implicit finite difference schemes in
computational fluid dynamics. International Journal
of High Speed Computing, 5(1), 1993.

