A Parallel Array Abstraction for Data-Driven Objects®

Sanjeev Krishnan and Laxmikant V. Kalé
Dept of Computer Science, University of Illinois, Urbana, IL 61801
E-mail: {sanjeev kale}@cs.uiuc.edu

Abstract

We describe design and implementation of an abstraction for parallel arrays of data-driven objects. The
arrays may be multi-dimensional, and the number of elements in an array is independent of the number of
processors. The elements are mapped to processors by a user-controllable mapping function. The mapping may
be changed during the parallel computation, which facilitates load balancing, and communication optimization,
for example. Asynchronous method invocation is supported, with multicast, broadcast, and dimension-wide
broadcast. The abstraction is illustrated using examples in fluid dynamics and molecular simulations.

1 Introduction

Parallel computing, by its very nature, often involves identical or similar computations being repeated on different
pieces of data. In object oriented methodology, the data is encapsulated in objects. Therefore, an array of
objects that are distributed across processors is likely to be a useful abstraction. An extreme case of object-based
parallelism occurs when almost identical operations are applied to all array elements in a synchronous — lock-step
— manner; this case is well supported by data parallel languages such as HPF [6]. However, many applications
require going beyond such lock-step mode. The progression through the life-cycle for each element object may be
different, depending on the needs of the application, although all the elements object of an array may share the
same structure of data and sets of methods.

This paper describes a parallel array-object abstraction that supports such applications. It supports asyn-
chronous method invocation via message driven execution, which leads to efficient programs that can adaptively
tolerate communication latencies. It has been implemented as an extension to the Charm++ [8] language.
Charm++ supports message driven objects, and provides several useful features for parallel programming. In
addition to enhancing the utility of Charm++ , the new abstraction can be used directly in C++ based parallel
programs, using the Converse [7] interoperability framework.

2 Description

A parallel array is a group of objects (the array elements) with a common global name (id), which are organized
in a multidimensional, distributed array, with each array element identified by its coordinates. The mapping of
array elements to processors is specified by a user-provided mapping function. A default mapping is also provided
for cases when the mapping is not significant.

2.1 Parallel Array Definition

A parallel array is defined as a normal parallel object (chare) class in Charm-++, except that it must inherit from
the system-defined base class array. This base class provides the following data fields :

e thishandle : this gives the unique handle (global pointer) of the array element.

*This research was supported in part by the NASA grant NAG 2-897 and NSF grant ASC-93-18159.



e thisgroup : this gives the global id by which the whole array is known.

e thisi, thisj, thisk : these give the coordinates of the array element®.

Messages that are sent between array elements must inherit from the system-defined message class arraymsg.
The following code gives an example of an array definition.

message class MessageType : public arraymsg {
// list of data fields to be sent

1

chare class MyArray : public array {
// list of private and public data and function members
entry:
// list of "entry functions" where messages are received
MyArray(MessageType *m) ; // constructor
void EntryFunction(MessageType *m) ;

}s
2.2 Parallel Array Creation

A parallel array is created using the operator newgroup, which has the following syntax :

MapFunctionType mymapfn ;

MessageType *msgptr ;

MyArray group arrayidl = newgroup MyArray[XSize] [Ysize] (msgptr) ;

MyArray group arrayid2 = newgroup (mymapfn) MyArray[XSize] [Ysize] (msgptr) ;

The code above creates two-dimensional parallel arrays. The newgroup operator causes all the array element
objects to be created (and their constructors invoked) on their respective processors. The parameter msgptr is
sent to all processors as the parameter to the constructor for each array element. The first array above uses
the default mapping function. The second array has a user-specified mapping function mymapfn, which takes
the coordinates of an element as input and returns the processor where the element is located. newgroup is a
non-blocking operator that immediately returns the id of the newly created array, which has the type MyArray
group, and is analogous to a global pointer to an array. Because of its non-blocking nature, the elements of
an array might not have been created when newgroup returns the array id. If necessary, the programmer may
explicitly synchronize after initialization of all array elements on all processors by using a suitable reduction or
synchronization operation. Currently, parallel arrays may be created only from processor 0.

2.3 Asynchronous messaging: remote method invocation

The parallel array library provides both point-to-point as well as multicast messaging. All messaging is asyn-
chronous (no reply value is allowed), in keeping with the non-blocking communication paradigm of Charm++. If
a reply is desired, the receiving object must send a reply message back to the sender object.

The syntax for point-to-point asynchronous messaging is :

arrayid[i] [j]1=>EntryFunction(msgptr) ;

where arrayid is the “global pointer” to the parallel array, %, j are the coordinates of the recipient array element,
EntryFunction is the function to be invoked in the receiving object, and msgptr is the message to be sent across,
which is passed as the sole parameter to the function.

The syntax for multicast asynchronous messaging is :

! Currently, only 1, 2, or 3-dimensional arrays are supported, although this can be easily extended to higher dimensions. For
brevity, all the examples in this section assume a 2-dimensional array.



arrayid[iil..i2][j1..j2]=>EntryFunction(msgptr) ; // multicast to sub-array

arrayid[ALL] [j]1=>EntryFunction(msgptr) ; // multicast to column
arrayid[i] [ALL]=>EntryFunction(msgptr) ; // multicast to row
arrayid[ALL] [ALL]=>EntryFunction(msgptr) ; // multicast to whole array

If an array element is known to be on the local processor, its data members may be accessed as usual :

arrayid[i] [j]->datamember ;

2.4 Remapping and migration

The parallel array library supports both synchronous remapping and asynchronous object migration. Synchronous
remapping must be initiated from processor 0 as follows :

arrayid->remap ((MapFunctionType)newmapfn, return _chare handle, &(ReturnChareType::ReturnFunction)) ;

newmapfn is the new mapping function. All array elements will be moved from their original locations to their new
locations as specified by the new mapping function. After all elements have been installed on their new locations,
a message is sent to the function ReturnFunction in the chare object specified by return chare handle. This
provides a synchronization point after remapping. The user program must ensure that no messages are sent to
any elements of the array being re-mapped.

Sometimes such synchronization is impossible or inefficient. Asynchronous remapping or “migration” is acti-
vated by each array element independently, by calling the function migrate((MapFunctionType)newmapfn) on
the array element to be moved. The newmapfn parameter specifies the new mapping function, which tells the
run-time library the destination processor for the array element. The call results in only the specified object
being moved to its destination processor. The run-time library will correctly forward messages directed to the
migrating array element to its new location.

The actual steps performed by the runtime system while migrating an object are :

1. Before migrating an object, the runtime library calls a user-provided pack function on the object, which
copies the object’s data area into a contiguous message buffer. The programmer must provide a pack
function for every object type that needs migration.

2. Send the message to the object’s destination processor
3. Create the new object

4. Initialize the object’s data area using the message buffer. This is done by another user-provided unpack
function. Note: the pack and unpack functions are virtual functions defined in the base class array.

5. Forward messages directed to the object from the old processor to the new processor.

2.5 Implementation

The parallel array library is implemented on top of the Converse interoperable run-time framework [7]. The library
can thus be used in conjunction with modules written in other programming systems such as PVM and MPI.
Although the parallel array concepts we developed were implemented in the context of the Charm++ parallel
object-oriented language, the essential features are language-independent. Currently we are in the process of
modifying the Charm++ translator to translate the parallel array syntax into calls to C++ functions in the
runtime library.

3 Example Applications

In this section we describe two examples of the utility of the parallel array library.
NAS SP benchmark:



The NAS Scalar Pentadiagonal (SP) benchmark [1] is a Computational Fluid Dynamics program which uses an
Alternating Direction Implicit (ADI) method to solve a system of partial differential equations. The computational
space is a large three-dimensional cube consisting of an array of grid points, and the computation involves several
iterations. In each iteration there is a “sweep” successively along each of the three coordinate axes. Parallelizing
this computation involves decomposing the three-dimensional array among processors. Two of the most common
methods to achieve this are :

e The “transpose” method : the array is divided into slabs oriented along the X direction first. After the
X-direction sweep completes a transpose operation is done to orient the slabs along the Y-direction, in
preparation for the Y-sweep. Thus there are a total of three transpose operations needed per iteration. The
advantage of this method is that computations within the sweep are hence completely local to a processor.
However, the transpose operation between sweeps can result in significant overhead.

e The multi-partition method [9, 4] : the array is divided into cubes, and each cube is assigned to a processor
such that no two cubes with the same X, Y or Z coordinates are assigned to the same processor. This ensures
that processor loads are balanced during all sweeps, and also that no transpose operations are needed.

Our objective in using the parallel array library for the SP benchmark was to develop an implementation that
could be used to easily experiment with different decomposition strategies. This was done by representing the
computational space as a parallel array of cubical sub-spaces. Each cube is a parallel object, which communicates
with other cubes by sending/receiving messages. The different decomposition/mapping strategies are expressed
by simply specifying a different mapping function for the parallel array. E.g. for the transpose method, all
adjacent cubes along the direction of the sweep are mapped to the same processor; the transpose is effected by
simply doing a remap operation on the parallel array. Thus we have a very flexible, elegant code which allows
us to concentrate on experiments with the application, instead of getting involved in the details of implementing
the decomposition.

The asynchronous migration facility provided with parallel arrays allows us to further optimize the transpose
method by overlapping communication and computation. Each cube object migrates itself as soon as it has com-
pleted its work along one sweep. Thus the communication overhead of transferring its data to another processor is
overlapped with the computation performed by other cubes. This overlap gives significant performance advantages
over the traditional loosely-synchronous (separate phases of computation and communication) implementations.
Parallel molecular dynamics:

As another example, consider the parallel molecular dynamics simulation program NAMD [2]. The program
consists of a three-dimensional computational space which is divided into cubical “cells” or “patches”. The
patches are distributed over processors by a sophisticated algorithm which maintains load balance as well as
reduces communication. Patches need to exchange data (such as atomic parameters and forces) with each other.
Each patch is an element in a three-dimensional parallel array. The parallel array construct can be used to provide
a common global name using which patches can address each other. Further, the array mapping function can
handle irregular mappings generated by the distribution strategy, by maintaining a global array of mappings.
The dynamic remapping facility provided with parallel arrays is particularly useful for moving objects in order
to balance load periodically.

4 Previous work

Parallel arrays have been used in various forms in several parallel programming systems. In data-parallel languages
such as HPF [6] programmers have a shared-memory model in which arrays in the program are distributed over
processors using compiler directives, and computations are assigned to processors using the “owner-computes”
rule. The advantages of our parallel array abstraction are :

e in contrast to the lock-step operations on array elements in HPF, our array elements may proceed indepen-
dently of each other executing different methods as necessitated by the application.

e the ability to increase performance through asynchronous operations (e.g. method invocation and object
migration) which overlap communication and computation.



e more flexibility in specifying mappings of parallel arrays (e.g. the multi-partition mapping scheme we used
in the NAS SP benchmark cannot be specified using HPF’s compiler directives).

Some parallel object-oriented languages provide constructs similar to parallel arrays. Concurrent Aggregates

[5] allows the programmer to create an aggregate of objects which has a common global name. Other objects
interact with this aggregate as a whole, instead of individual objects. Collections in pC++ [3] provides parallel
arrays with an HPF-like loosely-synchronous object-parallel model. Branched chares [8] are a related construct

provided in Charm++, which are essentially parallel arrays with exactly one element per processor.

References

[1]
[2]

(3]

D. Bailey et al. The NAS Parallel Benchmarks. Intl. Journal of Supercomputer Applications, 5(3), 1996.

J. Board, L. V. Kale, K. Schulten, R. Skeel, and T. Schlick. Modeling biomolecules: Larger scales, longer
durations. IEEE Computational Science and Engineering, 1(4), 1994.

F. Bodin, P. Beckman, D. Gannon, and S. Narayana, S. an d Yang. Distributed pC++: Basic Ideas for an
Object Parallel Langua ge. Scientific Programming, 2(3), 1993.

J. Bruno and P. Capello. Implementing the Beam and Warming method on the hypercube. In Proceedings of
the 3rd Conference on Hypercube Concurrent Computers and Applications, Jan. 1988.

A. Chien. Concurrent Aggregates. MIT Press, 1993.

High Performance Fortran Forum. High Performance Fortran Language Specification (Draft), 1.0 edition,
January 1993.

L. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon. Converse: An Interoperable Framework
for Parallel Programming. In Proceedings of the 10th International Parallel Processing Symposium, April 1996.

L. Kale and S. Krishnan. Charm++ : A portable concurrent object oriented system based on C++. In Pro-
ceedings of the Conference on Object Oriented Programmi ng Systems, Languages and Applications, September

1993.

N. H. Naik, V. K. Naik, and M. Nicoules. Parallelization of a class of implicit finite difference schemes in
computational fluid dynamics. International Journal of High Speed Computing, 5(1), 1993.



