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Abstract

Many different parallel languages and paradigms have been developed, each with its own
advantages and niches. To benefit from all of them, it should be possible to link together modules
written in different parallel languages in a single application. As the paradigms sometime differ
in fundamental ways, this is hard to accomplish. This document describes a proposed framework
that will support such multi-lingual interoperability. The framework is meant to be inclusive, and
has been verified to support paradigms including: SPMD programming style, message-driven
programming, parallel object-oriented programming, and thread-based paradigms. Suggestions
and criticisms of this design are anticipated from the community of language designers, which
we hope to incorporate into the design. The framework aims at extracting only the essential
aspects of the runtime support into a common core, so that language-specific code does not have
to pay overhead for features that it does not need.

1 Introduction

Research on parallel computing has produced a number of different parallel programming paradigms,
architectures and algorithms. There is a wealth of parallel programming paradigms such as SPMD
[GS91, Mes93], data-parallel [HKT92, Hig93, BBG192], message-driven [Kal90, KK93], object-
oriented [Chi93, Yon90, CK92, Gri93, Agh86], thread-based (Chant [HCM94], CC++), macro-
dataflow (Nikhil’s P-RISC), functional languages, logic programming languages, and combinations
of these.

However, not all parallel algorithms can be efficiently implemented using a single parallel
programming paradigm. It may be desirable to be able to write different components of an appli-
cation in different languages. It is also beneficial to combine pre-written modules from different
languages into a new application. Therefore we need to support interoperability among multiple
paradigms. Such interoperability is not currently possible, except for a specific subset of languages
designed together for this purpose (e.g. HPF and PVM).

This document describes Converse, an interoperable framework for combining multiple lan-
guages and their runtime libraries into a single parallel program, which is under development at the
Parallel Programming Laboratory at the University of Illinois, Urbana. It is based on a software
architecture that uses message driven execution and “thread objects” to compose multiple sepa-
rately compiled modules written in different languages without losing performance. Converse will



also facilitate development of new languages and notations for specific purposes, as well as support
new runtime libraries for these new languages. This multi-paradigm framework has been veri-
fied to support traditional SPMD systems, thread-based languages, and message-driven concurrent
object-based languages, and is designed to be suitable for a wide variety of other languages. Our
initial implementation includes Charm, Charm++, DP (a data parallel language), PVM, Nxlib,
and possibly MPI in the near future. The latter three will be supported both in SPMD as well as
multithreaded mode.

The next few sections describe the rationale used in the design of Converse. Section 2
describes the model of computation the framework targets, and establishes a classification of parallel
languages based on their control structures. Section 3 describes the core runtime system and
scheduling model we have developed. Section 4 describes the thread objects used for supporting
thread-based languages. Section 5 describes a minimal machine interface which is used as the
abstraction for the underlying parallel machine. The appendix gives details of all the runtime
library calls provided by the various modules in the framework.

2 Model of Computation

This section describes the general parallel computational model our framework will support. For
the sake of simplicity, we confine this description to a private memory model (section 3.2.1 describes
how it extends to a shared memory architecture). A computation consists of multiple processes,
which communicate by explicit message passing. A parallel program in this model consists of a set
of parallel modules written possibly in different languages. It is possible to have more than one
module of a single language.

In this context how do modules from different languages coexist? Languages and their im-
plementations differ from each other in many aspects. However, the aspect that is critical from the
point of view of interoperability is how the language deals with concurrency within a single process
(i.e. within a single processor, in the common implementations). Concurrency within a process
arises when there is more than one action the process could take at some point/s in time. There
are three categories of languages in this context :

e No concurrency : some languages such as PVM, do not allow concurrency within a process.
They require that the programmer of a module fully specify what the next action should be,
given the current state. Thus the programmer may issue a wild-card receive, but must then
continue execution based on the message received. More typically, modules in such languages
block after issuing a “receive” for specific messages (identified by tags and source processors,
for example); during this “blocking” the semantics requires that no other actions should take
place within the same process (i.e. there should be no side effects, when the receive returns,
beyond the expected side effect of returning the message). Thus such languages do not require
scheduling.

e Concurrent object-oriented languages such as Charm allow concurrency by permitting more
than one object to be waiting for messages simultaneously, and handle it via message driven
scheduling. Such languages have many objects active on a processor, any of which can be
scheduled depending on the arrival of a message. There is no stack associated with an object
: it is assumed that the entire state of the object is encapsulated inside its local data.

e Another set of languages allow concurrency by threads : they permit multiple threads of
control to be active simultaneously, each with its own stack and program counter. The
threads execute concurrently under the control of a thread scheduler.



Most languages can be seen to fall within one of these three categories, as far as internal concurrency
is concerned. Languages and paradigms such as data parallel languages and functional languages
can be implemented in one of the above categories. For example, HPF can be implemented using
a statically scheduled SPMD style and DP using message driven objects on top of Charm.

Another related aspect is the control regime for a language, which specifies how and when
control transfers from one program component to another within a single process. We have identified
two regimes for modules in different languages to interact in the same parallel program : ezplicit,
and implicit interoperability.

The ezplicit interoperability regime consists of non-overlapping modules of a parallel program
from different languages, as described in Figure 1. The transfer of control from module to module is
explicitly coded in the application program in the form of function calls. Thus all processors execute
modules from different languages in a deterministic, loosely synchronous manner. All processors
transfer control to the next module only when the current module has completed all its work ; there
are no outstanding messages, hence a module cannot receive a message sent by another module.
This explicit interoperability is sufficient for many scientific applications which can be programmed
in a loosely synchronous manner ; it enables different non-overlapping phases of a program to be
coded in different languages. It is suitable for languages of the first type which have no concurrency
within a process.
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Figure 1: Explicit interoperability

The implicit interoperability regime (Figure 2) is motivated by a need to reuse parallel software
components from different languages in an overlapped manner, so that entities in different modules
can be simultaneously active. The transfer of control from module to module is implicit : it is not
decided by the application program, instead it is decided dynamically by a scheduling policy in the
run-time system. This model allows an adaptive sequence of execution of application code with a
view to providing maximal overlap of modules for reducing idle time. Thus, for example, when a
thread in a module executes a “receive” statement and is waiting for a message, code from another
module can be executed during that idle time. Implicit interoperability is suitable for languages



having concurrent objects or threads which allow concurrency within a process®.
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Figure 2: Implicit interoperability

For modules written in the explicit control regime, control stays within the user code all
the time. However, for modules in the implicit control regime, control must shift back and forth
between a system scheduler and user code. How can these apparently incompatible regimes coexist
in a single framework ? For concreteness, imagine a PVM process and a Charm module. It is
clear that for the Charm computations to execute, the PVM module must relinquish control to
the scheduler. For this purpose, we provide the scheduler as a user callable function instead of
keeping it buried inside the run-time system. A typical interaction between the two control regimes
is shown below.
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! Preemptive threads is the only control regime not included in the computational model to be supported, at least
for now. The reasons for this decision include program complexity and implementation complexity. Preemptive
threads can interleave in many unexpected ways that lead to difficult bugs. Also, their implementation requires
operating system support for cheap user-level interrupts. Note though that the model does not preclude the underlying
implementation from using preemptive threads underneath. For example, the “processes” mentioned above may be
implemented on a shared memory machine via preemptive threads.



The three lines including the scheduler invocation may also be separated out into a function
to be provided by the Charm module writer for the explicit purpose of interfacing with SPMD
programs. The Charm module initiates its computations by sending some messages into the system.
When the scheduler is invoked, these deposited messages trigger the Charm computation.

Modules from one language may interact with those in another language through function
invocations. For now, we will assume that that is the only method of interaction — in particular
that modules in one language cannot send a message to a module in another language. This
restriction will be eliminated at a later time.

To summarize, then, the computational model allows three kinds of entities : SPMD modules,
message driven objects, and threads. Modules in languages with implicit control regimes interleave
their execution with each other under the control of a scheduler. Those with explicit control regimes
communicate via sends and receives (blocking as well as nonblocking) and invoke the scheduler at
their will at any time. In the next section we describe the run time framework that follows from
this computational model.

3 The core runtime system

This section describes the software components required for supporting the two models of interop-
erability described above.

3.1 Message Formats

In order to allow implicit interoperability between modules from different languages, it is necessary
for the core runtime to be able to distinguish messages from different languages. To achieve the
latter, message formats must adhere to a minimum standard so that the core runtime system can
extract the required information from the message. The fields required by the core include :

e a language index which identifies the language-specific handler to be invoked when the message
is delivered

e a queueing category which specifies whether the message is to be queued or it is non-queueable.
On machines which support interrupts this field also specifies whether the message is a pre-
emptive message, in which case the machine layer directly invokes the language-specific han-
dler as soon as the message is received.

e a flag to indicate whether the message is prioritized or not.

e an optional message priority field can be also used when prioritized queuing strategies are
needed. The format of this will be specified later.

In the initial prototype implementation these fields will be placed in the first two bytes of the
message as follows :

8 hits 2 bits 1 bit

Languageindex | Queueing Category | Has-priority flag

The core runtime will export macros for accessing and setting these fields, and a global
variable which indicates the length of the core-specific fields. Thus the format of these fields does
not need to be part of the standard. The macros are described in the Appendix.



3.2 Scheduling

In order to support the implicit interoperability model, we need a scheduler which dynamically
decides the order of execution of application modules, and a loop which repeatedly polls the un-
derlying machine interface for messages. Figure 3 describes the software architecture involving all
these components. Note that these components could also be used by message-driven or thread
based languages instead of their own language-specific schedulers.
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Figure 3: Software Architecture for Interoperability

The scheduling support in our framework consists of two components :

e A scheduler which repeatedly picks messages from the underlying machine’s interconnection
network, inserts them into a queue, removes a message from the queue and delivers it to the



SchedulerLoop()

{
while ( not dome ) {
while ( there is a message available from the machine layer ) {
Get message from the machine layer
if (message is non-queueable)
Deliver it to language-specific handler
(Transfer control to language runtime)
else
Enqueue the message into scheduler queue
}
Dequeue a message from scheduler queue
Deliver it to language-specific handler
}
}

Figure 4: Pseudo code for scheduler loop in core runtime system

appropriate language-specific library. This scheduler is described in pseudo code in Figure 4.

o A set of queueing libraries which define the queueing strategy to be used, such as FIFO, LIFO,
priority-based, etc. The specific queuing strategy is chosen by the application programmer
at link time.

The need for user-selectable queueing strategies is an important factor in the design of the
scheduler. For example, many applications critically depend on the support for a prioritization
mechanism to select an action to execute among the many possible ones on a single processor. These
include: discrete event simulation (especially with the optimistic concurrency control protocols)
where time must be used as a priority); branch-and-bound problems, where the lower-bound of a
node must be used as a priority to get good speedups [SK93]; state space search problems, where
bit-vector priorities are needed to ensure consistent and monotonic speedups [SK90]; and numerical
computations with critical paths where priorities can be used to speed up the critical path [Gur94].
Such prioritization mechanisms can be provided only by allowing the application to select the type
of queueing strategy it wants to use.

At the same time, the framework does not penalize languages/paradigms that do not need
scheduling (prioritized or otherwise). Such a language’s runtime library would simply set the
category of their messages to be non-queueable, which allows the messages to bypass the queues.
The message is delivered to language-specific runtime as soon as the core scheduler finds the message
(i-e. gets it from the network).

It may be noted that the above message-driven scheduling model is similar to a non-preemptive
thread-based scheduling model. In a thread-based model, each processor has several threads which
are scheduled by a scheduler in a non-preemptive manner. When a scheduler dispatches a thread,
the thread executes atomically until it explicitly relinquishes control, (perhaps when it is waiting
for a message) or completes execution, whereupon control returns to the scheduler, which schedules
the next thread. A priority queue is used to decide which thread is to be scheduled. We model the
“ready queue” in the thread scheduler as a message-queue ; in our model, a thread is ready to be
executed only if there is a message for it. In order to relinquish control even if there is no message
expected, a thread can inform the scheduler to add itself to the scheduler’s queue (or, for example,



send a “message” to itself) and then relinquish control. Thus the message-driven scheduling model
we propose subsumes the functionality of a thread-based model.

Could we not use an existing threads package, say one compatible with Posix threads, for
the purpose of this scheduling ? Yes, provided it supports user-selectable queueing strategies, and
a mechanism for threads to wait for messages and resume after their arrival (see the discussion on
message managers in section 3.4).

The core runtime library calls provided by the framework are described in the Appendix.

3.2.1 Shared memory architecture

The preceding discussion has concentrated on a private memory architecture. For machines with
a shared address space, a similar software architecture will be required. The implementation can,
however, be optimized by directly delivering messages to the core runtime. Additional features like
“get” and “put” operations, and global pointers will also be supported. The suggestions made in
the recent proposal for PORTS1 [BMH95] seem to be adequate for this purpose.

3.3 Standards for Language Implementors

In order to use various performance feedback, simulation and debugging tools on programs devel-
oped in the above framework, it is necessary to develop a standard for an event trace format. This
will consist of two parts : a standard format which must be adhered to by all language imple-
mentors, and an extensible self-describing format which may be language-specific. For the sake of
uniformity (so that generic tools can be developed), each entity in the system that is the source
or destination of a message must be classified as one of the three types (SPMD module, thread, or
object). In addition to recording message send and receive events, object or thread creation and
dispatch must also be recorded.

3.4 Message Managers

Message managers are entities that are used in the system to organize a subset of messages that
are yet to be processed. A message manager typically stores the messages in an indexible data
structure, retrievable on one or more indices. For example, a message manager for PVM might
store messages such that they are retrievable by “source processor” and “tag”. The language
specific routines attached to this handler may query the message manager for particular messages.
A scheduler of the message manager handles the cases when a requested message has not yet arrived
by storing the request and suspending the routine until the message that was requested arrives.

A message manager based scheduler can be implemented in conjunction with a message
manager that stores unclaimed messages that have been received and requests for messages. The
scheduler is given control whenever a message arrives for it. The scheduler checks to see if a thread
has been waiting for this message and if so, resumes the thread, else stores the message until a
request for it arrives. The thread then executes until it (a) completes or (b) needs to wait for
another message at which point of time it suspends informing the scheduler about the message it
is waiting for, or (c) it needs to wait for a lock. Threads which wait for locks are eventually added
to the ready list of threads when the lock becomes available.

A listing of the calls to be provided by the message manager is provided in the Appendix in
Section A.3.
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Figure 5: Message managers

4 Thread Objects

Most programs have a single thread of control. This is reflected in them having a single stack
and a single program counter. However many complex programs are difficult to express in a single
threaded manner. This is particularly true for programs that involve asynchronous events, internal
or external (such as receipt of messages) . Many such programs can be expressed or thought of
easily as a collection of multiple objects, each one with its thread of control and making progress
at a rate independent of that of other objects. Of course if there is only one processor, control
needs to switch back and forth among these objects, under the control of some scheduler, and
concurrency control mechanisms such as locks must be provided to allow threads to share data in
a safe manner inspite of the interleaving of control among them. Expressing a program in this
fashion is facilitated by the threads packages.

A threads package typically consists of these components

An ability to freeze or suspend the execution or running of an object and to resume the
execution of a previously suspended object.

A scheduler that manages the transfer of control among the objects.
e A concurrency control mechanism such as locks.

e Process management if the threads are created on multiple processors.

Many thread packages have been developed in the past few years. A standard for threads
— Posix threads or pthreads — has also emerged. However the gluing together of scheduling, con-
currency control and other features with the ability to suspend and resume threads is problematic
from the point of view of an interoperable run time system. The particular scheduling strategy
provided by the threads package may not be appropriate for the problem at hand. We suggest that



the capabilities of thread packages be modularly separated. In particular, we propose the definition
and implementation of a thread object [Thr95] that encapsulates the essential capability of a thread
- the ability to suspend and resume a thread of control- by encapsulating the stack and the program
counter.

4.1 Thread object functionality

The modular abstraction of the thread object encapsulates only the stack, program counter and
registers. It contains the following fields (a) an integer id (b) a stack_top (c¢) a pointer to the
resumer and (d) state buffers for holding state of the caller and of this thread.

The switching of threads is primarily implemented through the C language calls to setjmp
and longjmp which allow state information (program counter, stack pointer and registers) to be
saved and later jumped to. The basic calls provided are those to (a) Create a thread, (b) Resume
a thread, (c) Yield control to scheduler (d) Suspend current thread and (e) Exit current thread.
We note that, in this model, when a thread yields, suspends or exits, control returns to the caller
that last resumed the thread. This feature allows hierarchical creation and flexible scheduling of
threads.

Making the functionality for these calls available separately allows one to create a number
of threads and schedule them using different schedulers including the message manager scheduler
discussed earlier.

4.2 Synchronization mechanisms

Two types of synchronization mechanisms are supported — locks (or mutexes) and conditional
variables.

4.2.1 Locks

Locks may be implemented by having queues attached to each lock. The thread trying to obtain a
lock continues if the lock can be obtained. If not, it places itself in a queue (perhaps prioritized) for
the lock, and control is returned to the thread’s scheduler. A thread which releases the lock causes
the shifting of ownership of the lock to the first thread in this queue and moves this thread to its
scheduler’s ready queue so that it can continue executing when it is scheduled. The information
about a thread’s scheduler is available from the thread’s data area.

4.2.2 Condition variables

Condition variables allow semantics where several threads block on a single condition. This case
might occur in a messaging environment for instance, when several threads are blocked waiting for
a particular information to become available through the arrival of a message.

Calls are provided for threads to wait on a condition variable, and for threads to either signal
a condition variable, causing the unblocking of one of the threads or to broadcast a condition
variable which causes the unblocking of all the threads that are waiting on the condition variable.

Queue implementations of locks and condition variables remove the thread from the control of
its scheduler after causing it to block. Therefore the implementation needs to differentiate between
a normally yielding thread which gets put right away on the (perhaps prioritized) ready queue, and
a thread which gets blocked on a lock or condition variable. Another type of thread suspension
is when a thread suspends while requesting a message. This causes the thread to be registered
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with the message manager and the thread returns to the ready queue when the requested message
arrives.

4.3 Compatibility with POSIX threads

The functionality outlined above is an extendible subset of the functionality provided by other
thread packages like pthreads and the PORTSO interface, the only notable difference being
that the scheduler is separated out. This allows one to have different implementations of thread
schedulers, and further allows a certain amount of freedom in the manipulation of thread objects
in the user program when so desired.

The extra calls to be exported are the calls to resume a thread and to suspend a thread
without the thread being placed on the ready queue of a scheduler. These calls are used internally
in the scheduler of any thread package.

A description of the function calls associated with threads can be found in the Appendix in
Section A.4.

5 MMI: A Minimal Machine Interface

The Minimal Machine Interface defines a minimal interface between the machine independent part
of the runtime such as the scheduler, language dependent libraries, etc., and the machine dependent
part which is different for different parallel computers. Portability layers such as PVM and MPI
also provide such a portable interface, however, they represent an overkill for our requirements.
E.g. MPI provides a “receive” call based on context, tag and source processor. The overhead of
maintaining messages indexed for such retrieval is unnecessary for message driven programs. The
interface we propose to develop is minimal, yet it is possible to provide an equally efficient MPI style
retrieval on top of this interface. We have implemented this interface on a variety of distributed as
well as shared memory machines.

Following are the minimum facilities to be provided by the machine-layer. Each of these
functions could be provided as a macro in a standard file such as machine.h or could be inlined
to avoid the overhead of a function call. Not all the functions described here are exported to the
user of this framework. Some are used internally by the other components of the run-time such as
scheduler and load balancing.

Process Creation: The machine layer should allow creation of processes initially on each pro-
cessor in the machine (or a network of machines) either from command-line (for host-less
architectures such as SPMD) or from a program (for machines that need a host).

Distributed Memory Machines: Currently there are two main classes of distributed mem-
ory machines. We describe the process creation primitives needed for both these classes
below.

SPMD Architectures: Most SPMD architectures allow creation of processes on mul-
tiple processors from command line. Typically processes are created on all the
processors in the partition. Partition creation and modification is done external
to the run-time system. Therefore, it is not a requirement for Minimal Machine
Interface. However, the interface should allow for each process to assign a unique
id (starting with 0) to itself. This ID could be set at startup (e.g. in main) and
could be returned in McMyPeNum(). Each process should also be able to know the
total number of processes in the system (in SPMD, this is equal to total number of
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processors in partition). But this does not present a significant difficulty because
it could be passed as a command-line parameter and could be extracted at startup
time.

Networks of Workstations: Launching processes on remote workstations through mech-
anisms such as rsh is a key requirement for network of workstations. Total number
and addresses of nodes could be read from a nodes file. Parallel programs on net-
works of workstations can be launched on each node specified in nodes file from a
special process on the user’s workstation. Capability to terminate a process is also
required if one plans to allow user interrupts. Since there is no way to determine
the logical node ID of a process on such machines, the process which spawns remote
processes also has to do some initial hand-holding to communicate this necessary
information to the nodes. However, this can be done using the send and receive
capability of the MMI.

Shared Memory Machines Shared memory machines should allow creation of processes or
threads; at least one on each processor in the machine. Dynamic creation and destruction
of threads is not necessary. The main program (which is launched from command line)
should be able to start a number of threads running. Also there should be a way to
determine that all threads have terminated. On most systems, this could be implemented
using Fork and Join constructs. Each thread should have a unique ID. (IDs need not
start from 0 because system developer can set up a translation table to convert them.
But it would be more efficient to have thread identifiers in the range 0. .nproc-1.)

Communication Minimal communications interface differs significantly for two main types of
machines; those with shared and distributed memory.

Distributed Memory Machines The underlying architecture should provide facilities for
setting up and carrying out point-to-point communication between any two processes.
In particular, a process should be able to send a message (an array of bytes) of any
length across processes. The run-time system could take advantage of the availability of
asynchronous sends to make programs more efficient. On the receiving side, a process
should be able to check for incoming messages and also to check for the length of arrived
message. With this ability of the machine layer, a simple blocking receive suffices. The
run-time should be able to receive a message irrespective of its source. Therefore, the
underlying architecture should allow source parameter in the probe or receive call to
be wildcarded.

In most SPMD machines, a call such as Probe serves the purpose along with a blocking
receive. However, in many machines, asynchronous receives serve both purposes and
make runtime more efficient. Having a tag attached to each message is an extra overhead
because our run-time does not use it. If the message-passing library requires use of
additional system-level tags, they should be set to a constant for all messages.

The run-time system would be more efficient if the system allows invoking a handler on
the arrival of a message. In this case, the handler should just buffer the arrived message
and return it upon a receive request from the run-time.

Shared Memory Machines The machine programming interfaces (usually in the form
of libraries) should allow for creation, locking and unlocking of spinlocks to handle
critical sections. Other primitives for creating and maintaining critical sections are
also acceptable as long as they allow for the following three calls: InitCriticalSec-
tion, EnterCriticalSection and LeaveCriticalSection.

Miscellaneous The MMI should provide calls to read the timer value. A timer value could be
an integer (or a long integer) representing milliseconds (or some unit which can be easily
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converted to milliseconds). Absolute value of this timer is not important but the difference
should correctly represent the time elapsed between two calls to timer functions.

Any process on the machine should be able to determine its processor number (starting from
0). For machines with hosts, any process should also know the processor number of the Host.
Capability of input and output (in the form of scanf and printf) from any node is not essential.
But the runtime can take advantage of this if such facility is available.

5.1 EMI: Extended Machine Interface

Functionality commonly used in developing parallel programs such as multicasts over process groups
is not required in the MMI because they could be built on top of it. However, it is possible to
produce a customized implementation of these functions for specific machines. We include such
functions in an Extended Machine Interface (EMI). For any specific machine the implementor is
free to use either the generic EMI implementation or to develop a customized implementation.

6 Summary and Future Work

The different modules of the interoperable framework described in this paper can be seen in Figure
6. Once an interface has been defined between these modules, it is easy to see that we can use
different implementations of each module in the framework as long as these implementations adhere
to the interface specifications.

Some issues remain to be worked out in the interoperable framework we have described.
These include :

e A standardization of support for message priorities, including priority field formats.
e Support for pre-emptive, interrupt-driven scheduling

e Dynamic Load balancing needs to be coordinated across all languages (because the load in
one module affects load balancing decisions in the other). Therefore support for language-
independent dynamic load balancing is necessary. Also, as applications differ in their char-
acteristics one should allow selection of a load balancing module at link time from a suite
of libraries. Our current intention is to use the load-balancing framework from Charm with
necessary extensions.

e Support for objects and first class continuations Object management functions are imple-
mented differently for different languages; they may not be necessary for languages which are
not object based. This module is responsible for looking up object data areas using object
ids. The format of the object id may be language dependent. This module may, for example,
also be responsible for object migration services : messages to migratable objects can be
non-schedulable, so they are immediately delivered to the language-specific module. If the
object to which a message is directed has been migrated to a different processor, the message
is simply redirected on to that processor, otherwise it is enqueued into the scheduler queue.
First class continuations are necessary for objects in one language to request a reply from
objects in another language. First class continuations include an object id and a method id.
We will develop a standard format for continuations which will enable the run-time system
to extract relevant information from the continuation structure.
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A Function Call Interface

This appendix describes all the library calls provided by various modules in the described frame-
work. Actual names of the calls may be changed for compatibility with the Posix or PORTS
standards.

A.1 Message format macros

GetLanguagelndex(message)

SetLanguagelndex(message)

GetQueueCategory(message)

SetQueueCategory(message)
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o GetPriorityFlag(message)

e SetPriorityFlag(message)

A.2 Core runtime library calls

The communication calls provided by the core runtime system to support interoperability include :

e void BasicSendMessage(void *MsgBuf, int MsgSize, int DestPE) : this assumes that the mes-
sage buffer has been initialized with information for all the core-runtime’s fields. This call is
directly routed to the underlying machine interface.

e void SendData(void *Buf, int MsgSize, int DestPE, int DestLang, int QCat, int NewWorkFlag,
int HasPriorityFlag) : this call assumes that the space for the core runtime system’s fields
has not been allocated ; it may allocate a new message buffer which includes those fields and
copy the data from Buf, or it may use more efficient mechanisms if provided by the underlying
machine layer.

e int BlockingReceive(int Language, int MsgBuf, int Size) : this call blocks the processor until a
message for the specified language has been received. No other application code will execute
until this call returns. The call copies the received message into MsgBuf ; a maximum of Size
bytes are copied. The call returns the size of the received message.

e int NonBlockingReceive(int Language, int MsgBuf, int Size) : this call returns with a message
for the specified language if one is available; if not, it returns -1 immediately.

The message-send functions perform a broadcast when the DestPE field is -1.

The scheduler related calls provided by the core runtime are :

e int Scheduler(int Niterations) : When modules in explicit and implicit models need to interact,
this call allows the explicit module to give control over to the scheduler for the implicit
modules. This call hands over control to the scheduler of the implicit modules to handle a
certain number of messages, and the corresponding processing. A value of -1 for Niterations
causes the scheduler to keep handling messages for the implicit modules until the application
code specifies a termination condition.

e int ThreadBlockingReceive(int Language, int MsgBuf, int Size) : this call blocks only the
calling thread until a message for the specified language has been received. Other threads in
the program may execute before control returns to the calling thread.

e void RelinquishControl() : this is called by a thread when it wishes to relinquish control to the
scheduler. The calling thread will be rescheduled at a later time.

o int RegisterHandler(FUNCTION_PTR handler) : this is called by an application module to
register a language-specific handler with the core runtime. (Note : this must be called only
once per language, even if there are more than one module of a language). It returns a
language index which can be used to specify the language a message must be delivered to
upon receipt.

A.3 Message manager calls

The message manager needs to export the following functions :
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e MMNGR *create_ mmngr(int num _indices, int *offset_array);
creates and returns a pointerr to a message manager which will receive and store message
indexed upon num_indices indices which are to found at the offsets in the message denoted
by the offset_array.

e int insert(MMNGR *mmngr, void *msg);
inserts the message into the message manager mmngr.

e int b_recv(MMNGR *mngr, index *index_array, void **msg, int *size);
returns when a message is available at the message manager mngr that has the attributes
stored in the array index array.

e int probe(MMNGR *mngr, index *index_array);
returns 1 if such a message is available or 0 if no such message is available in the message
manager mngr.

e int nb_recv(MMNGR *mngr, index *index_array, void **msg, int *size);
returns immediately with a return value of 1 and *msg set to the message if the requested
message is available with the message manager. If the message is not available, the call
returns a value of 0.

A.4 Thread Function Calls
A.4.1 Thread Object Functionality

e THREAD ck_thr_create(THRFN fn, void *args);
(AND)

THREAD ck_thr_create_of stack(THRFN fn, void *args, int stacksize);
are calls to create a thread. This function takes a function pointer and a void pointer as
an argument to the function. The second function call can be used if a stacksize other than

STACKSIZE is to be allocated for the thread.

e int ck_thr resume(THREAD thread);
is used to start a newly created thread or one that has run earlier and suspended. Returns
the value -1 if the thread which was resumed has exited, 0 if it has yielded and is ready to
run, and 1 if the thread has suspended but is not yet ready.

e int ck_thr_yield();
can be called by a thread to yield control of the processor back to its scheduler. A thread
that yields may be immediately added to the ready queue of the scheduler.

e int ck_thr_suspend();
can be called by a thread to suspend itself. This call is made when the suspending thread is
not to be placed immediately on the ready queue.

e int ck_thr_exit();
can be called by a thread which is exiting.

e THREAD ck_thr_self();

returns the id of the currently executing thread.
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A.4.2 Scheduler Functions

e int ck_add_to_q(THREAD thr);
is to be provided by a scheduler so that a thread which has been waiting on synchronization
mechanisms can be placed on the ready queue.

A.4.3 Synchronization Mechanisms

e Mutexes (or locks)

— int ck_mutex_init(MUTEX *mutex);
to initialize and return a mutex variable.

— int ck_mutex_destroy(MUTEX *mutex);
to destroy the mutex variable. No further use of the mutex is allowed.

— int ck_mutex_lock(MUTEX *mutex);
a blocking call which returns when the mutex has been obtained by the calling thread.

— int ck_mutex_trylock( MUTEX *mutex);
a nonblocking call which returns with 1 if the mutex is locked already or 0 if the mutex
is obtained.

— int ck_mutex_unlock(MUTEX *mutex);
Unlock a mutex which the thread currently holds.

e Condition variables

— int ck_condn_init(CONDN *condn);
to initialize and return a condition variable.

— int ck_condn_destroy(CONDN *condn);
to destroy the condition variable. No further use of the condition variable is allowed.

— int ck_condn_wait(CONDN *condn, MUTEX *mutex);
automatically releases the mutex, and returns when the condition variable being waited
on is released by a ck_condn_signal() or a ck_condn_broadcast().

— int ck_condn_signal(CONDN *condn);
unblocks one thread that is blocked on the condition variable pointed to by the condition
variable.

— int ck_condn_broadcast(CONDN *condn);
unblocks all the threads that are waiting on the condition variable.

A.5 MMI Calls

This is the list of functions that are needed for the minimal machine interface.

Distributed Memory machines: Following functions are required by the run-time on distributed-
memory machines.

void McInit(int argc, char*argv[]): Initializes MMI.

void *McGetMsg(void): Returns with a message addressed to calling process and removes
the message from the pending queue. Memory for receiving this message has to be
allocated inside this function. If no message is pending, this function returns NULL.
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void McSyncSend(int destPE, int size, char *msg):: Send message msg of size size
to processor destPE synchronously. (A blocking send is acceptable.)

void McAsyncSend(int destPE, int size, char *msg): Send message msg of size size
to processor destPE asynchronously. This function need not copy the message to a local
buffer. Also, keep the communication handle for future reference. (It is needed for
McReleaseSentMessages, McAllAsyncMsgsSent)

Boolean McAllAsyncMsgsSent(void): Returns TRUE if all the asynchronous message sends
have been completed. Returns FALSE otherwise.

void McReleaseSentMessages(void): Removes asynchronously sent messages for which
communication is complete from the internal list. Also frees the data area associated
with these messages.

Broadcast calls: The MMI should provide capability to broadcast a message to all the
processes belonging to a parallel program. In addition, all processes except for the

calling process should be able to receive this message with McGetMsg. The following
functions should be provided by the MMI:

void McBroadcast(int size, char *msg, Boolean Free, Boolean Self): Send mes-
sage msg with size size to all processes. If Self is FALSE, do not send this message
to the calling process.If Free is TRUE, free the message after communication is
complete. This function can be implemented using McSyncSend in the absence of
specialized broadcast functionality from the system.

void McAsyncBroadcast(int size, char *msg): Broadcast asynchronously to all the
processes except for the calling process. Could be implemented using McAsyncSend
in absence of specialized broadcast facility in the system. Do not free the message.

Anticipatory receive calls: A feature to be included in MMI is anticipatory receives to
avoid copying. There are three forms of such receives :

int McAsyncReceive(int LanguageIndex, ...Filter..., ...Action... ) : where
the filter identifies the message (for example, using a tag and source processor num-
ber) whereas the action specifies where to copy which parts of the message. Details
for specifying the filter and action fields are yet to be finalized. The call returns an
id which can be used to query if the receive has completed.

McExpect(int LanguageIndex, ...Filter..., ...Action... ) : thisis similar to
the above except that it causes a token message to be delivered to the scheduler
when the message is received.

McBlockingReceive(int LanguageIndex, ...Filter..., ...Action... ) : thiscall
blocks until the message is received.

Shared Memory Machines: Following functions are required by the run-time on shared-memory
machines.

void Fork(int nprocs, void *(func)()): Forks nprocs processes/threads which execute
func.

void Wait(int nprocs): Waits for nprocs threads to terminate.
void McSpinInit(Lock 1): Initializes spin lock 1.

void McSpinLock(Lock 1): Locks spinlock 1. If it is already locked, blocks until it is re-
leased. Busy waiting is allowed if exactly one process is created on each processor.

void McSpinUnlock(Lock 1): Unlocks spinlock 1. Activates any processes waiting on that
lock.
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Common: These functions are required by the run-time on both shared and distributed memory
machines.

Input/Output: Following three primitives for input/output should be provided by the
machine-layer.

int McFlushPrintfs(void): Flushes any pending print requests from current node.
On most systems where I/O is allowed from any node, this will correspond to
fflush(stdout). On systems where I/O has to be implemented using messages
to the main PE, this function will have to check that all printf messages sent asyn-
chronously have been completed.

void McPrintf(char *format, argl,arg2,...) This can be #defined to printf if
the underlying environment allows printing from any node of the system. Otherwise,
it typically converts the argument list to a character string to be output on the host
and sends it as an asynchronous message to the main PE. Also keeps track of all
the printf messages sent. (See McFlushPrintfs).

void McScanf(char *format, argl, arg2,...) This can be #defined to scanf if
the underlying environment allows input on any node of the system. Otherwise, it
must send the format string as a synchronous message to host PE and block on reply
from the host (or the main PE). On reply from host, it should fill in the arguments
and return.

Timer Calls: Following calls that provide both per-process and wallclock timer should be
implemented in the machine-layer.

void McTimerInit(void): Initializes a per-process timer and a wall-clock timer. Both
timers return values in milliseconds since start of program. Thus both of them
should be initialized to zero. If a more accurate timer is available, it should be used
to serve McUTimer call and should be initialized in this function.

unsigned int McTimer(void): Returns current value of wall-clock timer in millisec-
onds.

unsigned int McUTimer(void): Returns current value of wall-clock timer in microsec-
onds.

int McHTimer(void): Returns current value of wall-clock timer in hours truncated to
integer. Should return (-1) if not implemented.

unsigned int McPTimer(void): Returns current value of per-process timer in millisec-
onds. For most systems it is the sum of system and user times spent by process
since its beginning.

int McMyPeNum(void): Returns index of processor on which the calling process is running.

int McTotalNumPe(void): Returns total number of processors on which this parallel pro-
gram is running.
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