A PARALLEL ADAPTIVE FAST MULTIPOLE ALGORITHM
FOR N-BODY PROBLEMS*

Sanjeev Krishnan and Laxmikant V. Kalé
Department of Computer Science
University of Illinois

Urbana, IL 61801.

E-mail: {sanjeev kale}@cs.uiuc.edu

Abstract

We describe the design and implementation of a paral-
lel adaptive fast multipole algorithm (AFMA) for N-body
problems. Our AFMA algorithm can organize particles
in cells of arbitrary shape. This simplifies its paralleliza-
tion, so that good locality and load balance are both easily
achieved. We describe a tighter well-separatedness crite-
rion, and improved techniques for constructing the AFMA
tree. We describe how to avoid redundant computation
of pair-wise interactions while maintaining load balance,
using a fast edge-partitioning algorithm. The AFMA al-
gorithm is designed in an object oriented, message-driven
manner, allowing latency tolerance by overlapping compu-
tation and communication easily. It also incorporates sev-
eral optimizations for message prioritization and commu-
nication reduction. Preliminary performance results of our
implementation using the Charm++ parallel programming
system are presented.

1 Introduction

The N-body problem is an important core problem
arising in several simulation applications in astrophysics,
molecular dynamics and fluid dynamics. The computa-
tion in the N-body problem consists of calculating inter-
actions between all pairs of bodies (particles) in the sys-
tem. The order of complexity for a simple formulation of
this problem would thus be O(N?), for a system consist-
ing of N particles. There exist many good algorithms for
solving the N-body problem, of which the Fast Multipole
Algorithm due to Greengard and Rokhlin [?] has O(N)
time complexity for N particles, for any desired bound on
error. Other algorithms include the O(NlogN) Barnes-
Hut method, particle-in-cell methods, and the Distance
Class methods. Although the problem sizes at which the
Fast Multipole method would outperform the Barnes-Hut
method is not clear, there has recently been a lot of interest
in implementing both algorithms on parallel machines.

In the FMA, the effect due to a well-separated (suffi-
ciently far away) group of particles is approximated by a
multipole ezpansion, which is a refined formalization of the

*This research was supported in part by the National Science
Foundation grants CCR-90-07195 and CCR-91-06608.

center-of-mass, leading to provable error bounds. Interac-
tions are computed between particles and groups of par-
ticles, as well as between different groups of particles. In
order to partition the particle set into groups, the FMA
recursively divides the computational space into cubical
“cells”, which are ordered hierarchically in a tree. For
the three dimensional problem an octtree is generated. In
the non-adaptive FMA, a uniform grid is imposed on the
computational space, resulting in a complete tree whose
leaves all have the same depth. However, this is unsuitable
for non-uniform particle distributions. Hence the adaptive
FMA [?] divides cells until the number of particles in a
leaf cell is less than some specified grain-size, leading to an
irregular tree.

The adaptive FMA (AFMA) is difficult to efficiently
program on parallel computers, especially for private mem-
ory ones. This is because of the difficulty of achieving
good load balance and locality simultaneously, distributing
shared data structures such as the tree among processors,
overcoming latencies arising due to the inherent irregular-
ity and unpredictability of the computation, and reducing
communication volume. There are parallel implementa-
tions of the non-adaptive FMA on shared and distributed
memory computers, including the work by Board and oth-
ers [?, 7], and of the adaptive FMA on shared memory
computers [?]. Our work is one of the first parallel imple-
mentations of the AFMA on message passing computers.

2 Modifications to the original AFMA

In the original AFMA [?], tree construction proceeds by
recursively subdividing the computational space (which is
initially cubical at the outermost level) into smaller cubi-
cal boxes of the same size (dimensions) : 4 boxes for the
two-dimensional case and 8 in three dimensions. All boxes
at the same level in the tree are the same size. For adap-
tiveness, the decision to subdivide a box depends on the
number of particles it contains, so that the resulting tree
is irregular.

The primary difficulty the original AFMA poses, espe-
cially for parallel implementations, is that the partitioning
of space is dictated by the AFMA algorithm, and cannot be
determined by either the parallel partitioning strategy or
by the application using the AFMA code. While there is a

lot of research into good libraries for parallel partitioning
techniques and heuristics (which achieve good load balance
and minimal communication), none of these techniques can
be used because of the cubical subdivision of space the orig-
inal AFMA requires. Instead new constrained techniques
have to be developed, such as the costzones scheme [?].
These special techniques can give good load balance, but
degrade locality since they cannot ensure that the regions
mapped to processors are convex in shape.

Again, the application itself often has its own require-
ments for partitioning : e.g. in a molecular dynamics appli-
cation NAMD [?] used in a Grand Challenge applications
group at the University of Illinois, the partitioning of atoms
into cells is determined by cutoff distances for other force
calculations. In order to use the AFMA for long range
Coulomb force calculations, the atoms have to be redis-
tributed before AFMA and brought back to their original
cells after the AFMA step, incurring significant overhead
both in terms of performance and programmability.

To overcome these problems, we have developed a modi-
fied version of the FMA which does not require subdivision
into cubical boxes (note that cubical subdivision is not the-
oretically required). In the modified algorithm, the com-
putational space can be divided into regions of any shape,
as determined by the partitioning algorithm or the applica-
tion itself. In our implementation we have used orthogonal
bisection for partitioning’, in which each processor gets
a contiguous, convex (rectangular) region of space, which
ensures good load balance and low inter-processor commu-
nication.

In the original AFMA, two boxes of the same size are
said to be well-separated if they are separated by a distance
greater than their width. Implementations in three dimen-
sions [?, 7] require the distance between well-separated
boxes to be twice their width. Well-separation is required
in order to maintain error bounds for the translation op-
erators for multipole expansions. To handle boxes of ar-
bitrary shapes and sizes, we now define a slightly differ-
ent, more general well-separatedness criterion using Green-
gard’s original theorem [?]. C; and C; are two cells, having
r1 and ro as their radii (distance from center to farthest
particle), and z; and z2 as their centers. We say that C
is partially well separated from C; if |z1 — z2| > cr1 + 72,
where ¢ is a constant greater than 1. This corresponds
to a distance of cr; from the center of C; to the nearest
particle in C,. Similarly, C: is partially well separated
from C; if |z1 — 22| > ecra + r1. We say that C; and C;
are well-separated if they are both partially well-separated
from each other, i.e. |z1 — z2| > maz{cr1 + r2,cr2 + 7r1}.

Using the above definition of well-separatedness, the
four types of interaction lists for C; in the AFMA [?] can
be defined as :

- Vilist : A cell C; is in the V list of C; if C; and C;
are well-separated. Then C;’s multipole expansion can be
converted to a local ezpansion at C;’s center.

- W list (leaf cells only) : if C; and C; are not well-

1We emphasize, however, that in our modified AFMA, the
partitioning strategy used can be quite general.

separated, but C; is partially well-separated from C;, and
C} is a leaf cell, then C3’s multipole expansion needs to be
evaluated directly at C;’s particles.

- X list : if C; and C; are not well-separated, but C; is
partially well-separated from C3, and C; is a leaf cell, then
individual particle fields from C: need to be converted to
a local expansion at C;’s center.

- U list : (leaf cells only) if none of the above three condi-
tions apply between C; and C;, then interactions have to
be computed directly, between each pair of their particles.

In the original non-adaptive FMA, the well-separation
criterion between spherical regions is applied to the cubi-
cal boxes case by requiring two intervening boxes (for 3-D)
between the boxes being compared [?]. This is clearly an
overkill, since for example, corner boxes in a cubical region
are more distant from the center than other boxes. Intu-
itively, the volume enclosed by a cube is greater than the
the volume enclosed by a sphere inscribed in the cube. By
comparing boxes for well-separation using a tighter spher-
ical criterion, there are fewer of the expensive pair-wise
interactions. E.g in the three dimensional case, instead of
computing 125 interactions with neighboring cells at the
leaf level with the cubical criterion, there are only 93 in-
teractions with our tighter criterion.

We have also developed an optimization for formation
of interaction lists for cells. In the original FMA, the in-
teraction list for a cell C consists of those cells at the same
level in the tree which are well separated from C, but whose
parents are not well separated from C’s parent. Thus com-
parisons for well-separatedness are always between cells of
the same size and hence at the same level of the tree. In-
stead, if we use our more general well-separatedness crite-
rion, we can compare cells at different levels in the tree.
E.g. C and D are two non-leaf cells, with 8 children each.
If they are not well separated, there will be totally 64 in-
teractions (for each pair of children). However, if C is well
separated from 6 of D’s children, then those 6 interactions
can be computed directly, and the remaining pair-wise, re-
sulting in only 6 + 8 * 2 = 22 interactions. Thus we can
further reduce the number of interactions that need to be
computed.

3 Partitioning and tree construction

We first describe a fast parallel partitioning algorithm.
We use orthogonal recursive bisection (ORB), which is a
well known technique which recursively partitions the com-
putational space by planes parallel to the coordinate axes.
The load measure for partitioning is obtained from the pre-
vious AFMA iteration by a scheme similar to [?]. The
partitions resulting from ORB are rectangular, resulting
in less communication with neighboring partitions. Also,
since partitions are not restricted to be cubical, much bet-
ter load balance can be achieved. If there are P proces-
sors, the number of parallel bisection operations needed is
usually P — 1. However, all these bisections need not be
serialized. In fact, the critical path involves only log: P
bisections, corresponding to the height of the binary tree
formed by hierarchically ordering the partitions. Hence we

overlap the parallel bisection operations to significantly re-
duce idle times of all processors. This is done with little
programming effort because of the message-driven model
of our design (see section 5).

At the end of partitioning, processors exchange particles
so that each processor has its own set of particles. A copy
of the top loga P levels of the AFMA tree is also made on
all processors, so that all processors have the root cell of all
other processors’ local trees. Now each processor proceeds
to construct its own local part of the tree by recursively
dividing the space assigned to it by ORB. The division
continues till the load on each leaf cell is less than some pre-
specified grainsize. After tree construction is completed,
interaction lists for the shared (top logs P levels) and local
trees are computed.

After each processor builds its local tree, it needs to get
parts of other processors’ trees in order to compute the
remote members of the interaction lists required for the
AFMA. The purpose of this step is similar to the Locally
Essential Tree (LET) construction step in [?], however, we
avoid the overheads associated with their implementation
by two optimizations. First, we assemble only the struc-
ture of the LET and the coordinates for each cell; the parti-
cles and multipoles for each cell are not transferred because
they are not required for interaction list formation. Second,
instead of fine-grained receiver initiated communication for
expanding the tree one level at a time [?], each processor
sends to its neighbors (the processors it needs to interact
with, as determined by the list-formation algorithm) the
ezact part of its own local tree that they will require, re-
sulting in just one message per neighbor. The key insight
that allows us to do this for the AFMA is the following : if
a local cell C is partially well separated from the root cell
for processor P, then from the definition, C must appear
in the V or W lists of all cells in P, and hence C’s children
do not need to be sent to P. Thus we identify all cells that
need to be sent to neighboring processors using just the
shared top levels of the AFMA tree.

Once each processor has received parts of the LET from
other processors (no exchange of the LET is needed with
well-separated processors), and attached them to its copy
of the shared top levels of the tree, it has the entire LET,
and can start computing members of the four lists for each
of its cells. The list forming algorithm consists of a recur-
sive depth first traversal of the tree starting at the root cell
of the tree. Each cell has a list of “candidate cells” which
is built while traversing its parents. For internal cells in
the tree, the algorithm tries to classify candidate cells into
either the V or X lists. Those cells that cannot be classified
are added to the candidate-lists of all child cells, so that
they can be classified at a lower (finer) level in the tree.
Finally, at the leaf cells, all remaining candidate cells are
added to the U or W lists. Details of this algorithm are
not described here due to space limitations.

4 Balancing pair-wise interactions

Pair-wise (U list) interactions take up a major portion of
the time for computing interactions between cells. To elim-

inate redundant pair-wise interactions, Newton’s third law
is usually used. For a pair of cells A and B, particle data is
sent from A to B, where the forces are computed and sent
back to A. Although this insight for removing redundant
computation is well known, in the parallel context we are
faced with the problem of deciding, for every U list com-
putation, which processor it should be computed on. If U
list computations are not assigned to processors carefully,
it is possible that some processors will get overloaded.

We can arrive at a heuristic solution to this load bal-
ancing problem by formulating it as an edge-partitioning
problem on a graph. The vertices of the graph are proces-
sors. An edge is drawn between a pair of processors P and
Q if there is a U list interaction between a cell on P and a
cell on Q. The weight of this edge is the total computation
cost of all cross-processor U list interactions between cells
on P and cells on Q. The problem now reduces to that of
partitioning the load of each edge among the processors it
connects such that all processors have approximately equal
loads after all edges have been assigned. Although this
edge-partitioning problem can be solved optimally, we re-
quire a fast, easily parallelizable algorithm.

We have developed a heuristic algorithm by making
use of spatial information which is already present in the
AFMA tree. This spatial information is in the form of
the repeated bisections performed while constructing the
shared levels of the tree. The main idea in our edge-
partitioning algorithm is hence to recursively divide the
edge loads between sibling cells (which represent adjacent
partitions) in the hierarchical tree. The heuristic for di-
viding cross-partition edges between two partitions takes
into account local as well as global criteria. The global re-
quirement is that the loads of the two partitions should be
balanced. The local requirement is that the edge should
not be assigned to a processor which is already heavily
loaded. We have obtained excellent results by using the
local criterion when processor loads are close to the av-
erage load (as would be the case towards the end of this
algorithm), and using the global criterion otherwise. Each
processor recursively bisects only the subtrees it belongs to.
If E is the total number of edges and V is the number of
processors, then in the best case each processor has to ex-
amine E + E/2 + E/4 + ... edges, which means that the
algorithm has a best case complexity of O(E) and a worst
case complexity of O(E * logV)z. In practice the running
time is close to the best case because the initial ORB parti-
tioning of particles ensures that the number of edges across
partitions is balanced to some extent. Together with the
ORB partitioning, this edge-partitioning heuristic results
in good load balance, as well as good locality.

5 Overlapping communication latency

We have implemented our algorithm in the Charm-++
parallel programming language [?, 7], which is an exten-
sion of C++. Charm++ has a message driven model, in
which functions inside objects are invoked in response to

20ptimal algorithms for this have a complexity of O(V * E)
or more.

the receipt of messages; there are no explicit blocking “re-
ceive” calls. Cells in the AFMA tree are modeled as objects
having functions for computing the different interactions.
Thus the design consists of concurrently executing objects
which interact by asynchronous function invocations.

As discussed in section 3, the partitioning by ORB can
be optimized by performing bisections concurrently. This
allows idle times during one bisection to be overlapped with
computation from the other. Again, during the construc-
tion of the Locally Essential Tree, it is not necessary for a
processor to wait for the parts of the tree from other proces-
sors ; it can continue with the construction of its own local
tree. When a message containing tree-data from another
processor arrives, the code for processing it is scheduled
and that part of the tree is attached to the local tree.

Each of the four types of interactions (corresponding to
the four lists) involve highly parallel and irregular inter-
actions between cells in the AFMA tree. For each of the
interactions, all processors iterate over their cells, comput-
ing local interactions and sending/receiving messages for
remote ones. Interactions with remote processors are com-
puted completely asynchronously: when a message con-
taining remote data arrives, the object to which it is di-
rected is automatically scheduled by the Charm runtime
system, and the proper function for computing the inter-
action is invoked. Thus no time is wasted in waiting for
remote data, and an almost ideal overlap of communication
and computation is achieved.

Although there is much parallelism within each stage of
the AFMA, executing them sequentially (as has been done
in almost all previous implementations) can lead to seri-
ous imbalances and processor idling. This is because it is
difficult to balance the load in each stage by itself. In [?]
an attempt has been made to explicitly overlap two stages
(in the context of the Barnes-Hut method) using a “non-
synchronizing” global communication protocol. However,
this requires some programming effort, and is difficult to
achieve when there are many stages with complex depen-
dences.

Tree Building

Upward Pass
Xlist U list

interactions interactions

V list interactions

Downward pass /

Force Calculation

W list
interactions

Figure 1: Dependences between stages of the AFMA.

Figure 1 shows the dependences across the various
stages of the AFMA. It can be seen that there is a lot
of scope for overlapping the idle times in one stage with

computation from other stages. This is achieved naturally,
and with no eztra programming effort, because of the asyn-
chronous, message driven nature of our design. Each pro-
cessor just starts off all the interactions, and then depen-
dences between stages are enforced at the granularity of
the cell objects, thus avoiding any need for global synchro-
nization between stages. This overlap across stages enables
us to prevent processors from idling when there is work in
other stages left.

6 Priorities and other optimizations

From Figure 1, it is clear that the dependence between
stages is complex, and needs to be exploited carefully.
There is a significant critical path consisting of tree con-
struction, the upward pass in the AFMA tree, the V-list
interactions, the downward pass in the tree, and finally
the force evaluations. On the other hand, U-list interac-
tions can proceed independently for all cells, and depend
on only the tree construction to complete. Hence they can
be thought of as “background computations” running at
lower priority, which are used to fill up idle times during
the other stages. We use the message prioritization feature
of the Charm run-time system [?] to give the highest pri-
ority to messages traversing up and down the tree, while
the V-, X-, W- and U-list interactions are given succes-
sively lower priorities. This enables the scheduler on each
processor to always schedule computations on the critical
path ahead of the others.

The communication patterns in the parallel AFMA are
unpredictable and irregular. This is especially a problem
for distributed memory computers which have high mes-
sage latencies. Thus it is not possible to get good per-
formance with fine-grained, receiver initiated communica-
tion, as is possible for shared memory machines [?]. We
have extensively used a sender-initiated advance-send pro-
tocol to reduce communication overhead in our implemen-
tation. In [?, ?] a form of advance-send is used in the con-
text of the Barnes-Hut method by sending particle data
to remote nodes instead of requesting for their particles.
For the AFMA, the basic problem to be solved before us-
ing advance-send is for each processor to determine which
other processors will be consumers of its particle and mul-
tipole data. The key insight is to find, for each interaction
list, the dual interaction list. From the definition of the
four lists, we find that the U list is its own dual, the V list
is its own dual, and the W and X lists are duals of each
other. Thus each cell simply has to advance-send its parti-
cles to all cells in its U list, its multipole expansions to all
V and X list cells, and a converted local expansion to all
W list cells. In the AFMA, sending multipole expansions
instead of particles has the advantage that a single multi-
pole expansion is usually much less voluminous than the
particle data itself, for cells containing tens or hundreds
of particles. As described earlier, when a message carry-
ing this data arrives at a processor, the Charm run-time
automatically schedules the correct interactions in the ap-
propriate cell objects. Thus advance-send is achieved with
almost no programming effort.

To increase the granularity of communication, it is nec-
essary to combine or aggregate messages going to the same
destination processor. All-to-all personalized communica-
tion is also required during the partitioning stage. We have
implemented library classes for these operations, which are
used by simply inheriting a message class from them.

7 Preliminary performance results

We have implemented our parallel AFMA algorithm us-
ing the Charm++ portable object-oriented parallel pro-
gramming system. Table 1 presents preliminary re-
sults on the TMC CM-5 and Intel Paragon for our 3-D
AFMA implementation. The timings are for a nonuniform
distribution® of 20,000 particles, for one time-step. The
number of multipole expansion terms is 8, corresponding
to the high-accuracy simulations in the work by Board [?].
The results do not include the parallel tree formation step.
It was observed that several computation steps can be car-
ried out before a tree formation is required; also a new
tree-partitioning every time-step is not required for the cor-
rectness of the algorithm, as long as particles are moved to
their new cells after a computation step. A detailed anal-
ysis of performance is not presented here due to lack of
space.

Processors	16	32	64	128
138.3	72.8	37.8	19.7	
315.4	147.1	74.9	42.2	

| Paragon

[CM5

Table 1: Time (in seconds) to simulate one time-step
for 20,000 particles on the Intel Paragon and TMC
CM-5.

8 Summary

In summary, the contributions of this work are :

o Our work is one of the first parallel implementations of
the adaptive fast multipole algorithm on distributed
memory computers.

o The algorithm is based on a modified version of the
Greengard-Rokhlin AFMA; it allows particles to be
organized in cells of arbitrary shape, instead of re-
stricting them to be cubical. This simplifies parallel
partitioning, so that good locality and load balance
are both easily achieved.

o We have developed a tighter well-separatedness crite-
rion which reduces the number of expensive pair-wise
interactions, and an improved technique for construct-
ing the locally essential tree.

3Each coordinate value in this distribution was generated by
doing a bitwise AND of two random integers, and then normal-
izing it within the computational box. Thus most particles are
concentrated at one of the corners of the box.

o We have designed a fast edge-partitioning heuristic to
solve the load-balancing problem caused when redun-
dant pair-wise interactions are eliminated.

e Our implementation automatically overlaps computa-
tion and communication within and across stages of
the algorithm.

e Our implementation is optimized using message pri-
oritization, advance-sends, and other communication
optimizations.

Acknowledgements

We would like to thank John Board at Duke University
for the sequential FMA code on which our implementation
is based.

