Efficient, Language-Based Checkpointing for

Massively Parallel Programs

Sanjeev Krishnan Laxmikant V. Kale
Department of Computer Science, Department of Computer Science,
University of Illinois, Urbana-Champaign. University of Illinois, Urbana-Champaign.
email : sanjeev@cs.uiuc.edu email : kale@Qcs.uiuc.edu

Phone : (217) 333-5827 Phone : (217) 244-0094

Abstract

Checkpointing and restart is an approach to ensuring forward progress of a program in spite
of system failures or planned interruptions. We investigate issues in checkpointing and restart
of programs running on massively parallel computers. We identify a new set of issues that have
to be considered for the MPP platform, based on which we have designed an approach based on
the language and run-time system. Hence our checkpointing facility can be used on virtually any
parallel machine in a portable manner, irrespective of whether the operating system supports
checkpointing. We present methods to make checkpointing and restart space- and time-efficient,
including object-specific functions that save the state of an object. We present techniques to au-
tomatically generate checkpointing code for parallel objects, without programmer intervention.
We also present mechanisms to allow the programmer to easily incorporate application specific
knowledge selectively to make the checkpointing more efficient. The techniques developed here
have been implemented in the Charm++ parallel object-oriented programming language and

run-time system. Performance results are presented for the checkpointing overhead of programs

running on parallel machines.

Keywords : Checkpointing, rollback recovery, parallel object-oriented techniques, massively parallel

software, object state reduction.

1 Introduction

Parallel computers are increasingly being used to satisfy the growing computational needs of scien-
tific and commercial applications which are at the edge of computational feasibility. A large number
of applications have been made tractable by massively parallel computers such as the TMC CM5,
Intel Paragon, nCUBE/2 and many others. Such applications often have long running times, taking
a few days or even longer for production runs, especially if run on smaller parallel computers which

are more easily accessible.

Reliability on massively parallel machines is more difficult to ensure than in the sequential
case, because an increase in the number of components causes the mean time to failure of the
system as a whole to decrease. When an application aborts due to a fault, restarting it from the

beginning is wasteful, and still provides no guarantee of the application executing to completion.

In order to reliably execute long running applications on systems which may fail, one approach
is to keep a record (a checkpoint) of the program state at intervals. The checkpointed state is usually
saved in stable storage. When a fault occurs, the program can be rolled back to the last checkpoint

and restarted, thus ensuring forward progress if faults are less frequent than checkpoints.

In the massively parallel computing world, checkpointing and restart provides other important
benefits. Often users run their applications in dedicated time slots on massively parallel computers
in national laboratories and other supercomputer centers. Checkpointing and restart allows longer

applications to be executed than a single time slot would allow. Another potential use is when

different phases of a parallel program require different resources which are available on different
machines. Instead of writing a separate program for each machine or occupying all the machines
with a single “heterogenously” executing program, the program can be checkpointed on one machine
and then restarted on another, thereby making the resources of the second machine available to

the program.

1.1 Checkpointing for massively parallel systems

Although there has been extensive research into checkpointing and rollback recovery in the past
few years in the context of distributed systems [KT87, BP93, Joh93], some new issues have to be

considered in the context of massively parallel systems :

1. Most massively parallel systems do not support checkpointing at the operating system or
hardware level, leading application programmers to implement checkpointing in their appli-

cation, using existing OS mechanisms.

2. Portability of parallel applications across different parallel computers is an essential require-
ment because many real applications need to be run on more than one parallel computer.

Proprietary solutions that depend on a machine-specific feature are hence not acceptable.

3. Massively parallel systems have a large number of processors, because of which the state of
the parallel program is very large. So a large amount of stable storage would be required for

saving the checkpointed state.

4. Processors in massively parallel systems are usually more tightly coupled, and have less auton-
omy. The processes in a parallel program are usually instances of the same program executing

in a loosely synchronous, SPMD manner. Inter-processor communication latencies are small,

of the order of tens of microseconds on typical systems. So it is acceptable to synchronize the

whole computation for checkpointing.

Thus massively parallel systems provide different opportunities for optimizing a checkpointing fa-

cility.

2 Goals of a Checkpoint and Restart facility for MPPs

Taking into account the different issues that arise while checkpointing massively parallel programs,

we have formulated the following goals for a checkpointing facility for such a platform :

Space efficiency: Massively parallel machines have hundreds or thousands of processors, and
for each checkpoint, every processor can potentially generate a checkpoint file. If each processor
were to simply write out its entire memory space (equivalent to a “core dump” on Unix computers
which can require Megabytes of storage), the total disk space requirement would be in Gigabytes
for each checkpoint, which is clearly not practical. Hence a checkpointing facility should try to

minimize the size of the checkpoint file.

Time efficiency: Checkpointing introduces a performance overhead, a major portion of which is
the I/O time required for writing out the parallel program state to disk. The cost of coordinating
processors at the beginning or end of the checkpoint also adds a small overhead to the checkpointing
process. It is desirable to reduce the performance overhead of checkpointing and achieve time-
efficiency. While the I/O overhead can be minimized by reducing the size of the program state
that has to be saved, and also by using asynchronous parallel 1/0, the coordination overhead can

be reduced by overlapping computation with the coordination step.

Language-based: To date, most checkpointing facilities have been implemented in the operating

system, sometimes with hardware support. This is not feasible for massively parallel programs

because of the lack of vendor support for checkpointing and because of the need for portability. As
a response to these two problems we have based our approach on the language and run-time system
level. Moreover, language-based checkpointing can give significant advantages in terms of space
efficiency and incorporation of application specific knowledge. Thus language-based checkpointing

effectively meets the problems raised by the first three issues described in section 1.1.

Automation: A language-based checkpointing facility should automate the task of writing check-
pointing code so that the programmer does not have to write code separately for each application.
It should be possible to use the language-based checkpointing facility with the same ease as a

hardware or OS based facility.

Programmer control: Recognizing that the application programmer sometimes knows best
when to checkpoint and what part of the program state to checkpoint, the programmer should
be allowed to control these decisions, only if so desired. In general, it is desirable to increase the
efficiency of a checkpointing facility by allowing the programmer to provide application-specific

knowledge which is not available to the operating system or hardware.

3 Our approach to checkpointing and recovery

In this section we describe our approach to achieving the goals motivated in the previous section.
Our approach is oriented towards incorporating checkpointing and recovery at the language and
run-time system level. Qur discussion concentrates on the checkpointing phase; recovering from a
checkpoint simply requires each processor to restore the program state from the checkpoint file, and
does not require any coordination between processes. Since we have implemented our approach in
the Charm++ language, a brief overview of Charm++ is first given. We emphasize, however, that

the techniques we describe can also be applied to other languages.

3.1 The Charm parallel programming model

Charm and Charm++[Kal90, KK93] are explicitly parallel object-oriented programming languages
based on C and C++, respectively. The basic unit of work in Charm++ is a chare, which is similar
to a concurrent object. Chares are dynamically created and communicate with other chares by
messages. There can be hundreds or thousands of chares on every processor. A chare type is
like a C4++ class, and contains data, functions and entry points, which are special functions where
messages can be received. The Charm and Charm++ languages are supported by the Chare Kernel
run-time system[FRS+91]. Charm and Charm++ programs run without change on shared as well
as private address space parallel computers. Currently, the platforms supported include the TMC
CM-5, Intel Paragon, IBM SP-1, nCUBE/2, workstation networks, Sequent Symmetry and Encore

Multimax. The Charm run-time system is being ported to the Cray T3D and Convex Exemplar.

An essential feature of the Charm parallel programming model is asynchronous message
driven ereculion. Recognizing that latency of remote communication is a significant cause of per-
formance degradation, the Charm model is oriented towards overlapping communication and com-
putation. All calls to the run-time are non-blocking and there are no “receive” calls. Remote
accesses are performed by a split-phase transaction: a chare sends a request message to a second
chare and returns control to the run-time. When the second chare replies, the run-time schedules
the first chare for execution again. Thus when one chare is waiting for a message from a remote
chare, another can be scheduled for execution. The run-time system maintains a pool of messages;
user computations (entry-points) are executed on receipt of messages (hence the message-driven

model), and once started, an entry-point is not pre-empted.

3.2 Invoking a Checkpoint

The best location (i.e. position in the parallel program) of a checkpoint is application dependent.
Often the user may want to invoke a checkpoint at the end of one phase of a computation when the
state of the program is smallest. The appropriate checkpoint interval (i.e. how often to checkpoint a
program) depends on both the frequency of faults and the overhead due to a checkpoint. In addition
to periodic checkpointing, the user may want to do on-demand checkpointing. Our checkpointing
facility can be invoked by a run-time system call : “void CCheckPoint() 7, which can be made from
any part of the application code on any processor. It can also be invoked by the run-time system
at intervals using the command line parameter “+interval” which specifies the checkpoint interval
in seconds. The checkpoint phase is started as soon as control returns to the run-time system after

the interval has passed.

3.3 Steps in coordinated checkpointing

As discussed in Section 1.1, in massively parallel systems, all processors usually run an instance
of the same program, and the communication latencies between processors are small. Moreover, a
fault on one processor usually makes the whole system unusable. Hence it is sufficient to coordinate
all the processors to attain a consistent parallel program state. We employ a coordination strategy
having the same high level steps as in [CL85]. However, our algorithm is more general in that it

does not assume that messages are received in the order in which they are sent.

Figure 1 describes the our coordination strategy with a time-line diagram. The steps involved

in a coordinated checkpoint are :

1. Broadcast Initiate : The coordinating processor broadcasts a message to all other processors

to initiate a checkpoint.

2. Stop all processing : When a processor receives the “initiate checkpoint” message it stops all
processing and does not send out any more application program messages; these messages are

just received and logged.

3. Start saving stale : Processors start saving their state (including memory state) to disk.

4. Delect Quiescence : A necessary condition for ensuring a consistent state of the parallel
program (after all processors have stopped executing application code) is that all messages
which have been sent must also have been received. In the absence of low level support for
clearing the network and if machine independence is desired, the processors need to wait till
all messages in transit are received. A scalable quiescence detection algorithm [SKR93] is used
to detect this. Since message-order reversal is possible, marker messages cannot be used to
indicate that a channel is cleared. Hence the quiescence algorithm is based on counting the
total number of messages sent and received over all processors. When quiescence is detected,
all pre-checkpoint messages have been received. The coordinating processor then broadcasts

a Quiescence message to all processors whereupon they start saving their message states to

disk.

5. A final synchronization : After all processors have received the Quiescence message, they
inform the coordinating processor, which then broadcasts a “resume” message. This final
synchronization is required to prevent post-checkpoint messages from reaching a processor
before the Quiescence message!. On receiving the resumption messages, processors unfreeze

their state and continue with the application.

One additional problem faced during checkpointing is that of logging messages which have

!The final synchronization ensures that all messages received before the Quiescence message are pre-checkpoint

messages. Thus we do not need to tag messages as pre- or post-checkpoint messages.

[1] Application code] Checkpointing I/O

____ Application message ____- Runtime system message

PO o q0 r0
I T N 7 4‘ ‘

Pl st/ PN

| = &

\ / ! “\ ql / I’l
e e 1 |

) g2 r2
time

0, s1, s2 : Start checkpoint
g0, g1, g2: Detect quiescence, save message state
rO, rl, r2: Resume application

Figure 1: Time-line for processor coordination steps.

been received but are in system buffers. In the traditional SPMD style, the checkpoint code

will have to execute a string of “receive” statements with wildcards and save the messages thus
received. After restart, to deliver these messages back to the user program, the user code needs to
be modified to pick up messages that were received but not processed before checkpointing, leading
to significant code change just for the purpose of checkpointing. Charm++4, however, prevents this

problem because of its message-driven model. We have modified the Charm++ runtime system to
receive messages from the network while checkpointing, enqueue them separately, save them in the

checkpointed state, and deliver them back into the system queues for processing.

3.4 Reducing the state of a parallel program

The actual process of writing out the program state on each processor is now explained. For the

purpose of checkpointing, we need to identify the state of a parallel program. Since there are no

messages in transit after all processors have been coordinated, the state of the parallel program is
simply the sum of the states of all processors. On each processor, the state includes the stack of
procedure activation records; dynamically allocated memory (the heap); and registers including the
program counter. Of these, the stack and the heap contribute the largest portion of the state. In
this section we describe how to reduce the stack state, and the next section describes our techniques

for reducing the state due to dynamically allocated objects in the heap.

The following observations can be made about the stack in the context of checkpointing :

e The stack state is temporary : often the stack state can decrease considerably in very little
time when the program returns from a deep nest of procedure calls. Hence to reduce the
stack state we should checkpoint the program at a location where it is in a shallow level of

nesting.

e Method invocations in a object oriented program are usually fine- or medium-grained. This
means that in order to reduce the stack state, it is acceptable to wait for a method invocation

to complete before checkpointing the processor.

e Operations for saving and restoring the stack can be non-portable, since the stack pointer is
usually in a machine register, and different compilers have different conventions for allocating

and de-allocating procedure activation records.

As described earlier, the Charm model is a message-driven one, in which messages are directed
to objects, and invoke methods in them. The run-time system thus has a pool of messages, and
invokes a medium-grained method in a user-object for each of them. Based on this model and the
observations in the preceding paragraph, we have designed the following scheme to reduce the stack
state : a checkpoint is taken only when control has returned from a user-object to the run-time.

This ensures that there is no user stack state when a consistent parallel program state is reached.

10

The Charm++ run-time system’s stack state is known, and we have developed special code to save
its data structures. Thus we not only attain much greater space efliciency, we can also use more

portable techniques.

4 Reducing dynamically-allocated object state

In this section we describe how to reduce the size of the dynamically allocated heap state of a
processor that needs to be saved. In an OS or hardware provided checkpointing facility, the heap
state is saved by simply writing out to disk all pages in memory that are allocated to the heap.
This is equivalent to a “core dump”, and can occupy a large amount of storage because it is likely

that the whole of a memory page is not used.

In our checkpointing facility, we have used our own memory-manager which keeps track
of dynamic memory allocation, freeing, and management of free memory blocks. This provides a
mechanism for saving objects in the program heap state : while checkpointing, the memory manager
writes to disk only allocated memory blocks. While this first scheme alone is better than storing
memory pages, it will not work if memory-block addresses change when the program is recovered
from the checkpoint. This is because pointers to memory may not be valid after the program is

restored. We now discuss a scheme which can modify pointer values.

Recognizing that the state of an object is known to its member functions, we can devise a
second scheme, which can intelligently use information from the application about objects in the
program. We define an object-specific function which saves the state of the object (called a Pack
function), and another complementary function which restores the state of the object (called the
Unpack function). The pack function transforms the object into a contiguous array of bytes, and

the corresponding unpack function reconstructs the original structure from the byte array.

11

Pointer linked data structures such as linked lists or trees can packed by invoking the pack
function on each item in the structure in a recursive manner. Thus a complicated structure can
be packed by traversing all pointers in the structure. However, this cannot handle aliased pointers
(more than one pointer to the same address) and structures with circularities such as a circular

linked list : the latter can result in an infinite loop of pack functions. So we need a better scheme.

In our third scheme we combine the capabilities of the memory manager with the capabilities
of pack functions in the following manner. The memory manager maintains the heap as a collection
of typed blocks. A type is assigned to a block at the time it is allocated. While checkpointing, the
memory manager uses the type field to invoke the correct pack function on the object. The type
field is also saved; while recovering the program from the checkpoint the type field is again used to
invoke the correct unpack function. The memory manager also invokes unpack functions in exactly
the same order as the pack functions : this ensures that only a linear access is required to the saved

disk file; also it obviates the need for storing each block’s location, thereby saving some space.

In this third scheme, pointers to other elements in a pointer-linked structure are not followed

i.e. there is no recursive traversal of the pointer linked structure. Instead, a pointer in an
object is written out as a special primitive data type by the pack function for that object. Now
while recovering the program from the checkpoint, we need to make sure that the saved pointer is
converted to a new valid pointer. The memory manager enables this by ensuring that the memory
map, i.e. the relative addresses of allocated blocks remains the same when the program is recovered
from a checkpoint. So a saved pointer needs to be simply shifted by a constant amount in order to

be valid. The third and final scheme can thus handle all cases successfully.

Automatic pack function generation : The most efficient pack function for a data structure
depends on its internal structure and semantics. However, correct pack functions can be auto-

matically generated by the compiler for all data structures. We extended the Charm++ compiler

12

to automatically generate pack and unpack functions for all complex data types. Pack functions
for primitive data types such as integers, floating point numbers and pointers are provided by the
run-time library. For complex data types (structures or classes in C++), since the compiler knows
the type of each field, it generates a call to the appropriate pack function for storing that field.
Figure 2 shows a C++ linked list class and automatically generated pack and unpack functions for
it. With pack functions for every object, the entire pointer-linked object state of the Charm++
program can be saved to disk by calling the pack function for all the allocated memory blocks on

a Processor.

Providing programmer control with pack functions : Pack functions (either automatically
generated or programmer defined) provide a powerful mechanism for minimizing the size of the saved
application dependent object state. F.g. in many iterative computations involving operations on a
matrix, each processor computes a new matrix on every iteration from the previous one. Often two
matrices are maintained, so that the old matrix is not destroyed when the new one is computed,
and each matrix is computed from the other on alternate iterations. Thus it is possible for the
application programmer to reduce the size of the object state considerably by checkpointing only
one of the two matrices. Again, programmers commonly allocate more memory than they need for
arrays and other structures whose size is not known beforehand; in this case too, the saved data
can be considerably smaller than the actual memory space allocated. Application programmers
may write their own pack and unpack functions for selected objects when they desire to minimize
the checkpointed object state. For the remaining objects the Charm++ compiler automatically
generates pack functions. This method thus provides the application programmer complete control

while at the same time automating the process to the extent desired.

13

class ListElement { => class ListElement {

int data ; int data ;
Y
public:
virtual void Pack()
{
PackInteger(data) ;
}
virtual void Unpack()
{
UnpackInteger(&data) ;
}
¥
class List { => class List {
ListElement element ; ListElement element ;
List *next ; List *next ;
Y
public:
virtual void Pack()
{
element.Pack() ;
PackPointer(next);
}
virtual void Unpack()
{
element .Unpack() ;
UnpackPointer(&next);
}
¥

Figure 2: Simple automatically generated Pack and Unpack functions for a linked list class. The
Pack and Unpack primitive functions are part of the I/O library in the run-time system.

5 Performance results

We have implemented our checkpoint and recovery techniques in the Charm++ parallel program-
ming system by modifying the Charm++ translator and the run-time system for adding check-
pointing functionality. The checkpointing code is machine-independent. Our implementation has
been tested on a network of Sun workstations, TMC CM-5, nCUBE/2 and the Intel Paragon. Per-
formance results are presented here for a 64 processor CM-5. The programs for which checkpointing

was evaluated are :

14

- Jacobi : a simple implementation of the Jacobi method for solving a 5 point stencil problem. The
subdomain on each processor is a 16 x 16 grid.
- TSP : a branch-and-bound solution for the Traveling Salesperson Problem. The input is a 20

cities problem.

These programs were run without any source code change for the purpose of checkpointing,
except for the actual checkpoint invocation using the “CCheckPoint() ” call. Table 1 presents results
for average per-processor checkpoint file size in Kilobytes and checkpointing overhead in seconds for
the above Charm++ programs. One checkpoint file per processor was created on a single common
disk. The overhead includes the time for the coordination steps in Section 3.4 as well as the actual

sequential I/O time.

Program | Quantity | Program state | Checkpoint file
size size

Jacobi File size 36.0 K 7.0 K
Overhead 15.4s

TSP File size 41.5 K 14.5 K
Overhead 21.5s

Table 1: Checkpointing overhead (seconds) and average per-processor file size (Kbytes) on a 64

processor CM-5.

From the results for file size it is clear that the pack function method is able to substantially
reduce the size of the checkpoint file by saving only application specific objects and using application

dependent information to further reduce file size.

The overhead for checkpointing is large, and is primarily due to the sequential I/O bottleneck

15

of writing on a shared disk, and other operating system reasons. The I/O time was observed to
be greater than 95% of the overhead for most runs. For these experiments we used simple Unix

blocking I/0O with no optimizations, since our emphasis in this work was on reducing file size.

6 Previous work

Plank and Li [PL94] have developed one of the only implementations of checkpointing on a mul-
ticomputer. An earlier version of our work [KK94] was completed around the same time as their
work. Their work is restricted to the Intel i860 platform; in contrast our checkpointing facility
is completely portable. They have demonstrated that consistent or coordinated checkpointing is
a viable strategy for multicomputers because I/O overhead dominates the coordination overhead.
They have used two optimizations — memory based checkpointing and on-line compression — to
increase space- and time-efficiency. Both these techniques are orthogonal to our techniques : all of

them can be profitably combined to increase efficiency.

There has been a lot of work on consistent or coordinated checkpointing algorithms, starting
from Chandy and Lamport’s algorithm [CL85]. Our coordination scheme is similar to theirs in
requiring O(N?) coordination messages in the worst case. However it can handle message order

reversal.

The concept of using object-specific functions to save and restore objects has been investigated
to some extent in the context of I/O for objects and persistent objects. The C++ iostream library
allows the programmer to define the “<<” operator for saving and the “>>” operator for restoring
the object. Pack functions have also been used to transfer pointer-linked structures across processors
in a private address space architecture. The Concert/C[AGKR94] system marshals pointer-linked

structures by following pointers before sending them as remote procedure call parameters. However,

16

there seem to be few implementations which automatically generate the pack- and unpack-functions.
Our compiler automatically generates these functions for all objects. Most implementations also
need complicated mechanisms to take care of pointer-linked structures : aliasing and circular linked
structures are two difficult problems; the latter can cause an infinite loop of recursive save-function
calls. Our strategy uses the idea of typed memory blocks to avoid these problems. Finally, there
has been no previous work on the use of pack and unpack functions in the context of program state

reduction for checkpointing.

Performance studies of consistent checkpointing on a distributed system have shown the
overhead to be low. In [EJZ92] two techniques that decrease checkpointing overhead are explored.
Incremental checkpointing involves checkpointing only modified pages in memory. In the copy-
on-write technique, checkpointing I/O continues concurrently with the application, but when a
page is written to, it is copied to a separate area in memory from where it can be asynchronously
written to disk. While these techniques have been shown to decrease checkpoint file size and
overhead, they require operating system support and are thus difficult to implement in a machine
independent manner. Moreover, they operate at the level of operating system pages. In our scheme,
we checkpoint typed objects in the application, which allows more efficient techniques to be used.

Incremental checkpointing ideas can also be incorporated at an object level, thus combining the

benefits of both.

In [LNP91] some issues in checkpointing multicomputer applications are surveyed. An effi-
cient coordination algorithm is proposed for finding a consistent global state in which all messages
are distinguished as being pre-checkpoint or post-checkpoint. For this the algorithm uses either
tags in messages or checkpoint demarcation messages. The quiescence algorithm we use in Section

3.3 has comparable efficiency and is topology independent.

There is no previous work in issues related to language-based checkpointing that we know

17

of. Also, little attention has been devoted to issues in using application information to make
checkpointing efficient and easy to use. In [LF90] an adaptive checkpointing scheme is used where
the position of the checkpoint can be set by the compiler depending on the size of the program state,
in an attempt to decrease the size of the checkpoint file. However, their approach does not make
use of application knowledge, so it saves the whole of the program state instead of only selected
objects, and moreover, requires a “training run” so that the compiler can estimate the size of the

program state at different points.

7 Conclusions and future work

In this work we have demonstrated that for massively parallel programs, language-based check-
pointing is competitive with OS/hardware provided checkpointing in terms of ease-of-use, while
providing significant advantages in portability and space and time efficiency. The specific contri-

butions made in this work are :

o We have identified new issues that need to be considered for checkpointing massively par-
allel programs. These lead to different opportunities for optimization than do traditional

considerations for checkpointing in distributed systems.

o We have described a checkpointing facility which is provided at the language and run-time
system level. Thus it does not depend on operating system or hardware support, and is
completely portable to different massively parallel computers. We believe our implementation

is one of the first portable implementations of a checkpointing facility.

o We have designed a strategy which minimizes the stack state of the parallel program, reducing

the size of the checkpoint file.

18

e We have presented the mechanism of pack- and unpack functions to efficiently checkpoint

objects in the application, while at the same time giving the programmer the mechanism to

use application specific knowledge to increase efliciency. We have also developed techniques

to automatically generate pack functions for objects.

There are many interesting issues that have been raised by this work. We plan to explore

issues in checkpointing a parallel program on one machine and restarting it on another. We also

plan to improve time efficiency by using asynchronous parallel 1/0.

References

[AGKRY94] Joshua S. Auerbach, Ajei S. Gopal, Mark T. Kennedy, and James R. Russell. Con-

[BP93]

[CL85]

[EJZ92]

cert/c: Supporting distributed programming with language extensions and a portable
multiprotocol runtime. In Proceedings of the Inlernational Conference on Distributed

Computer Systems, 1994.

N. Bowen and D. Pradhan. Processor- and memory-based checkpoint and rollback

recovery. Computer, February 1993.

K. M. Chandy and L. Lamport. Distributed snapshots : Determining global states of

distributed systems. ACM Transactions on Computer Systems, February 1985.

E. Elzonahy, D. Johnson, and W. Zwaenepoel. The performance of consistent check-
pointing. In Proceedings of the 11th Symposium on Reliable Distributed Systems, Octo-

ber 1992.

19

[FRST91] W. Fenton, B. Ramkumar, V.A. Saletore, A.B. Sinha, and L.V. Kale. Supporting

[Joh93]

[Kal90]

[KK93]

[KK94]

[KT87]

[LF90]

[LNP91]

machine independent programming on diverse parallel architectures. In Proceedings of

the International Conference on Parallel Processing, August 1991.

D. B. Johnson. Efficient transparent optimistic rollback recovery for distributed appli-
cation programs. In Proceedings of the 12th Symposium on Reliable Distributed Systems,

October 1993.

L.V. Kale. The Chare Kernel parallel programming language and system. In Proceedings

of the International Conference on Parallel Processing, August 1990.

L.V. Kale and Sanjeev Krishnan. Charm++4 : A portable concurrent object oriented
system based on C++. In Proceedings of the Conference on Object Oriented Programmsi
ng Systems, Languages and Applications, September 1993. (Also: Technical Report

UIUCDCS-R-93-1796, March 1993, University of [llinois, Urbana, IL.

Sanjeev Krishnan and L. V. Kale. Efficient, machine-independent checkpoint and restart
for parallel programs. Technical Report 94-2, Parallel Programming Laboratory, De-

partment of Computer Science , University of Illinois, Urbana-Champaign, 1994.

R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems.

IEFEFE Transactions on Software Engineering, January 1987.

C. Jim Li and W. K. Fuchs. Catch: Compiler assisted techniques for checkpointing. In
Proceedings of the 20th International Symposium on Fault Tolerant Computing, June

1990.

K. Li, J. Naughton, and J. Plank. Checkpointing multicomputer applications. In

Proceedings of the 10th Symposium on Reliable Distributed Systems, October 1991.

20

[PL94] J. Plank and K. Li. Performance results of ickp — a consistent checkpointer on the
iPSC/860. In Proceedings of the Scalable High Performance Computing Conference,

June 1994.

[SKR93] Amitabh B. Sinha, L. V. Kale, and B. Ramkumar. A dynamic and adaptive quies-
cence detection algorithm. Technical Report 93-11, Parallel Programming Laboratory,

Department of Computer Science , University of Illinois, Urbana-Champaign, 1993.

21

