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Communication latency and unpredictable delays in remote response times constitute sig-
nificant impediments to achieving high performance on massively parallel computers. Message-
driven execution is a promising technique to improve the performance of parallel computations
by overlapping these delays with useful computation. This thesis explores message-driven exe-
cution for improving performance of parallel programs. Programming in message-driven style
is difficult due to the split-phase transactions it requires and due to the nondeterministic ar-
rival of messages. We developed language constructs to express dependences between messages
and computations in order to simplify expression of message-driven programs. Predicting the
performance of message-driven programs via simulations is diflicult because the arrival order
of messages changes as the machine characteristics change. We developed a trace-driven sim-
ulation methodology based on the those language constructs. We also conducted an extensive
performance study of message-driven programs.
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Chapter 1

Introduction

Parallel computers potentially offer much more computational power than uniprocessor ma-
chines. Although recent advances in VLSI and microprocessor technology have improved the
performance of uniprocessor systems, there are many problems that require computational
power well beyond what uniprocessor systems can provide. Therefore, substantial effort is
devoted to developing efficient and cost effective parallel machines.

Currently, there are many commercial parallel computers with very high peak performance.
Machines with tens of gigaflops capacity are already available, and teraflops machines are ex-
pected in the next decade. However, their performance falls substantially short of peak on many
real life applications. A number of factors contribute to this performance loss. For example, the
sequential performance of individual processors itself may fall short of the peak power because
of cache performance and inability to exploit fully features such as multiple instruction issues,
pipelining, etc. Hopefully, this problem can be solved eventually by better compilers, use of
optimized libraries such as BLAS routines [28], and occasional use of assembly code. In any
case, this factor is not specific to parallel computing, as performance of workstations is also
affected by it.

An important factor that is specific to parallel computing is the loss of performance due to
communication latencies and processor idling due to load imbalances and critical paths. These

factors and methods for overcoming them are the focus of this thesis.



1.1 Remote information access latency

A parallel computation is a collection of co-operating processes. The processes and data are
distributed across the parallel machine. Typically, these concurrent processes interact with each
other during the course of computation. This interaction might be due to synchronization or to
data access. In either case, a process needs information that is created or stored by some other
processes. If the needed information is on some other processor, then access to this remote
information will be slower than that to local information. This slowdown generally occurs for
two reasons.

One of the reasons is the delay introduced by the communication network. The communi-
cation networks of large private memory machines are usually multi-hop switching networks.
Messages experience delay of transmission, routing, and buffering. This delay, which we will
call communication delay, is defined as the time interval between the moment data enter into
the communication network and the time the data become available at the destination.

The other source that contributes to the remote information access latency is the delay in
the creation of the information at the remote site (Figure 1.1). Process 1 sends a request for
some particular information. When process 2 receives the request, it performs the required
service, creates the information and sends it back. The time interval between the arrival of
the request and the completion of the requested service is the response delay. The response
delay can be longer than the service time itself and is often unpredictable. For example, the
processor might be scheduled for some other task, or cache performance might delay processing.
Response delays take place not only in request-and-respond type of interaction; it equally affects
prearranged communication (i.e., prepare-and-send) where no request is necessary.

These two types of delays together form the remote information access latency, simply
referred to as latency. Minimizing the impact of this latency is a major objective in parallel

programming on parallel machines, and particularly on massively parallel scalable machines.

1.2 Reducing the impact of latency: message-driven execution

The impact of latency can be reduced in several ways. On the hardware side, this is addressed
by designing architectures that attempt to reduce the communication latency to the minimum.

The ALLCACHE architecture of the KSR-1 machine, and the message-processor architecture



overhead
communication latency

response delay

Process 1 Process 2

Figure 1.1: Remote information access latency.

of J-Machine [22] are examples of these attempts as well as the continuous evolution of commu-
nication hardware in the traditional architectures of Intel and NCUBE machines [77]. However,
physical reality dictates that remote access will always be significantly slower than local access
(overhead can be reduced by better operating system support such as Active messages [31],
SUNMOS).

Since latency cannot be eliminated completely, one may try to minimize the number of
remote data accesses. This requires the placement of computations and data to be reorganized
so that data accesses are localized as much as possible [43, 92].

A complementary approach to reduce the impact of latency, on the software side, is to over-
lap the delay with some useful computation. This idea — doing something else useful while
waiting for data — has been used at different levels in computer systems. Multiple functional
units of a cpu may overlap independent operations. For example, while a floating-point com-
putation unit is busy, the next instruction and data could be fetched from the memory. In the
prevalent parallel programming paradigm (the traditional SPMD paradigm, see Section 2.1),

such overlap is enhanced by moving sends earlier and moving receives later. However, this



strategy is not sufficiently adaptive to the eventualities that may arise at runtime (see Chap-
ter 2).

Message-driven execution is a promising technique in this regard. In the message-driven
execution style (which is distinct from message-passing), there are typically many processes
per processor. A process does not block the processor on which it is running while trying to
receive a message. Instead, the system activates a process when there is a message for it. This
improves latency tolerance in two ways. First, when one process is waiting for data from a
remote process, another ready process may be scheduled for execution. Second, even a single
process may wait for multiple data items simultaneously, and continue execution whenever any
of the expected items arrive. If there are multiple subcomputations, each with ¢; and {3 running
time respectively, the message-driven running time is ¢; + {3 — {operiap as explained in Chapter 2.

As we will see later, this leads to adaptive overlap and modularity.

1.3 Thesis objectives

This thesis will explore the message-driven execution technique for tolerating communication

latencies. The major objectives of this thesis are:

Simplification of expression of message-driven execution:
Although message-driven execution imparts the benefits alluded to above, it often extracts
a price in the form of apparent program complexity. The splil-phase or continuation-
passing style of programming that it requires is sometimes non-intuitive and obfuscates
the flow of control. As the system may execute messages in the order it receives them (as
opposed to a deterministic order imposed by sequential receive statements), the program-
mer must deal with all possible orderings of messages. This involves complex reasoning
about which message-orderings will not arise, which are harmless, and which must be dealt
with by buffering, counters, and flags. Therefore, it is desirable and important to simplify

the expression of message-driven programs, possibly via new languages or annotations.

Performance prediction of message-driven execution:
Predicting the performance of message-driven computations via simulations is necessary
to evaluate the benefits of message driven execution under various machine characteristics.

In such computations, the sequence in which messages are processed is not fully specified.



As a result, at runtime messages may be executed in different sequences depending on
runtime conditions. This makes simulation and performance prediction of message-driven

programs a challenging task.

Evaluation of the performance impact of message driven execution:
The ability to overlap computation with communication provides message-driven exe-
cution with the potential to improve the performance of a parallel program. However,
this potential benefit needs to be established by performance studies. Such performance

studies will help to determine:

o the effectiveness of message-driven execution in increasing performance,
o the factors that influence the performance of message driven programs,

e the conditions under which these performance benefits are realizable.

1.3.1 Selection of computation domain for the performance study

The performance studies in this thesis involve simulation and real machine implementation
of selected computations. For dynamic tree-structured computations such as heuristic search,
divide-and-conquer, game tree search, and evaluation of functional and logic languages, the
performance advantages of message-driven execution is intuitively quite clear. In such problems,
the message-driven strategy can adapt to the unpredictable nature of communication latencies
and computational variations better than the conventional message passing style. For example,
while evaluating a node of an and-or tree, one cannot predict if the node will be a simple leaf
node or will lead to a large subtree. The structure of the tree is data dependent and dynamic.
Due to the unpredictable nature of parallelism, one must assign many tree nodes per processor.
As each node has a complex behavior, it is natural to treat each node as an individual object.
The system must then process every incoming message, decide whether it involves creation
of a new object (i.e., creation of a node), or it is a response from one of the subproblems
of an and-or tree node, and activate the corresponding node to process this message. Each
node itself must be willing to accept solutions (or a failure to find solutions) for any one of
the multiple subproblems it may have started and create new subproblems that may depend

on such solutions. All of this naturally leads to message-driven style for implementation. For



these reasons, many researchers in these areas have used message driven-execution, implicitly
or explicitly [19, 63, 82].

A more interesting question, therefore, is whether message-driven execution is beneficial for
static computations — computations whose overall structure is known ahead of time. Therefore,
investigating the performance advantages of message-driven execution for such computations
will help answer an interesting and important question; if such advantages are established,
it will lead to a stronger endorsement of the message-driven execution. Despite their static
nature, communication latencies and their associated unpredictability make these computations
potential candidates for message-driven execution.

Computational Fluid Dynamics (CFD) appears to be a proper area to conduct the per-
formance studies because (a) many CFD algorithms have a static structure, and (b) it is an
important application area for parallel computing. A review of many CFD applications reveals
that many of them use a few numerical kernel algorithms that have regular computational and
communication structure [4, 7, 10, 11, 24, 42, 75]. We chose a few of these core problems for

our study as described in Chapter 6.

1.4 Main contribution of the thesis

o The thesis develops a set of arguments and lines of reasoning with examples highlighting
the differences between SPMD and message-driven programs and argues for the potential

advantages of message-driven execution.

e The thesis research involves development and implementation of a language, Dagger, for

simplified expression of message-driven programs.

¢ A methodology is devised for trace-driven simulation of message-driven programs, and a

simulator based upon it is implemented.

e The thesis includes an extensive performance study involving several synthetic and real
benchmarks, and performance measurement on real machines as well as simulations with

varying machine parameters.

The idea of message-driven execution was first proposed by Hewitt [53] and later was elab-

orated by Agha [1]. The work on dataflow also relates to the same idea at a finer grain and



at the hardware level. However, there has not been an extensive comparison of this approach
with the now dominant message passing model (receive based SPMD model that is elaborated
in Chapter 2). We argue that modularity and efficiency — in the form of overlapping commu-
nication with computation — can be achieved much more easily in message-driven execution
than in the traditional message passing paradigm. We also show why it is not adequate to
emulate message-driven execution with the message passing style. Section 2.6 discusses other
approaches related to message-driven execution with the Charm system. Charm was one of the
first message-driven systems and is used as an implementation substrate in this thesis.

Programming in message-driven style is difficult due to the split-phase style of programming
it requires and due to the nondeterministic arrival of messages. Therefore, the synchronization
of messages and subcomputations in a process is necessary to maintain the integrity of the
computation. Dagger expresses the partial orders among subcomputations and messages within
an object, and yet retains the advantages of message-driven execution (adaptive scheduling of
subcomputations based on message arrivals).

The issue of synchronization has been dealt with extensively in past research starting from
the mid 1970’s. However, many of the schemes require the caller of a method to block until the
called object finished its service. In most of these approaches, the server is also blocked in a
variety of contexts. None of these features can be used effectively to express adaptive overlap
of different computations based on availability of data, which is an important requirement
for message-driven execution. The distributed process model by Hansen [50] comes closest to
Dagger in many respects. This model as well as others are compared to Dagger in Section 4.4.
More recent work on the Actor model and other concurrent object oriented languages also
address the issue of local synchronization within an object. These studies were also summarized
in Section 4.4.

Although trace-driven simulation is a very efficient method for predicting performance of
parallel programs under varying runtime conditions, such simulation methodology has not been
applied to message-driven programs or to programs that use wild-card receives. The basic
difficulty in such simulations is the fact that if two messages are received in different orders
under different runtime conditions, then the behavior of the program may be altered in a
way that cannot be reconstructed based on the traces obtained with the first sequence. The

thesis presents a methodology for simulation of message-driven programs that exploits the



dependence information provided by Dagger at compile time combined with a special method
for obtaining runtime traces. We know of no other results that can carry out performance
analysis or simulations in a trace driven manner for such programs. Further, existing systems
do not handle the case of a different message ordering during simulation.

The thesis includes an extensive performance study involving several synthetic and real
benchmarks, and performance measurement on real machines as well as simulations with varying
machine parameters. This study establishes the performance advantages of message-driven
execution clearly and quantifies its benefits and cases in which these are realized. It also leads
to new criteria for algorithm design for message-driven programs and emphasizes the importance

of message scheduling.

1.5 Thesis organization

The thesis is organized as follows. Chapter 2 discusses and contrasts message passing and
message-driven paradigms. It establishes preliminary evidence for the utility of message-driven
execution. The Charm language, a message-driven system that we have chosen as a medium for
this study, is presented. Chapter 3 elaborates difficulties encountered using the message driven
style. These difficulties center around programming complexity and performance prediction via
simulations. Chapter 4 describes the techniques we have developed as a part of this thesis for
simplifying message-driven programming. These involve design and implementation of coordi-
nation languages to control the programming complexity. A coordination language to support
message-driven computations in simpler contexts such as functional (divide-and-conquer) com-
putations is described, as well as the Dagger language which allows easier expression of general
purpose message-driven programs. Chapter 4 continues with the discussion of message-driven
libraries. Libraries, in general, ease program development. Issues involved in the interface
between libraries and programs in a message-driven environment are discussed. Dagger also
provides a basis to carry out trace-driven simulations of such programs, eliminating the difficulty
discussed in Chapter 3. Chapter 5 describes a trace-driven simulation methodology for message
driven computations. The information necessary to carry out such simulations is identified, and
a method for extracting such information from Dagger programs during compile-time and pro-

gram execution is described. A general and parameterized model of parallel machines embodied



in the simulator is discussed. In Chapter 6, we evaluate the performance of message-driven com-
putations on the selected problems. The evaluation is carried out with simulations and real
machine implementations. The impact of latency on message-driven and message-passing im-
plementations of the selected problems is observed, and the effect of various runtime conditions
and parameters on their behavior is studied. The chapter concludes with message-driven al-
gorithm design techniques that help improve the performance of message-driven algorithms.

Chapter 7 presents conclusions.



Chapter 2

Message-driven execution and

Charm

This thesis is concerned mainly with distributed-memory machines and with explicitly parallel
programming. Most large parallel machines currently available are distributed-memory ma-
chines, such as nCUBE/2, CM-5, Intel/Paragon (although there are also large scalable shared-
memory machines, such as KSR/1).

There are many programming models for programming parallel machines. A data parallel
programming model with languages such as Fortran D and HPF [35] is useful for array-oriented
applications. There are also parallel languages such as functional and logical languages that
can be used to program these machines. However, neither of these models is general enough
to apply easily to a broad class of applications, and therefore explicitly parallel languages are
widely used. In explicitly parallel languages, the programmer explicitly specifies the partition-
ing of the application into parallel parts and often the mapping of the parts to processors. Such
parallel languages include Linda [14], with a specialized or idiosyncratic programming model.
However, the predominant paradigm used for programming parallel machines is provided by
the traditional SPMD model, which is supported by vendors of parallel machines in their op-
erating systems. Even data parallel and functional languages are often implemented using the
traditional SPMD model as their backend.

This chapter will examine the traditional SPMD model and show its inadequacies in dealing

with communication latency and adaptive overlap. It will elaborate on the message-driven
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execution model and show how it can handle latency better, and will motivate, using analysis
of a simplified computation model, the potential benefits of message-driven execution. It is
possible to emulate message-driven execution within the extended SPMD style programming
using asynchronous receives. How this can be done, and why this is not an adequate solution
is shown in Section 2.4. Instead, a language that incorporates message-driven execution in
its model is better suited for this purpose. Charm, a message-driven language, is used as a
substrate for the work in the rest of the thesis. Other message-driven languages, as well as

other related techniques for tolerating communication latencies, are described in Section 2.6.

2.1 Traditional SPMD model

The SPMD — single program multiple data — model simplifies program development by using
a simple model for internal synchronization and scheduling. The phrase SPMD has been used
with somewhat different meanings by different authors [40, 43, 69, 80, 84]. In the SPMD model,
as used in this thesis, there is one process per processor (usually all processes are executing the
same program). Communication among processes (hence processors) is usually with blocking
primitives. Messages have tags, and the receive primitive blocks the processor until a message
with a specified tag arrives (of course, there is no reason not to use non-blocking communication
occasionally if it does not complicate the code). Moreover, we use “traditional SPMD model”
to mean strict usage of blocking receives.

A single thread of control and blocking receives makes the programming of these machines
relatively easy. Most of the synchronization requirements of the computation are handled
implicitly by the blocking receives. For example, consider the code in Figure 2.1-(a). The
computation of t1 and t2 needs the remote information a and b. Since the recv statements
will not allow the processor to proceed until the required messages are received and made

available to the code, the correct computation of t1,t2 and t3 is guaranteed.

2.1.1 Overlapping communication in SPMD

The simplicity of the flow-of-control attained in SPMD is at the expense of idling processors.
After issuing a blocking receive, the processor must wait idly for the specified message to arrive.

This wait may not always be dictated by the algorithm, i.e., the algorithm may have more
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(a)
t0 = h()
recv(tagl,a);
recv(tag2,b);
t1 = f(a);
t2 = £(b);

(b)

compl1();
call £ft();
call sum();
comp2() ;

recv(tag3,c);
t3 = g(t1,t2,c)

Figure 2.1: Simple SPMD codes (a) with message passing primitives (b) with library/module
calls.

relaxed synchronization requirements. Yet the usage of blocking primitives forces unnecessary
synchronization and may cause idle time.

This idle time can be decreased by rearranging the send and receive operations. This
involves moving the sends ahead and postponing the receives as much as possible in the code,
as illustrated by the following example. A sample SPMD code is shown in Figure 2.2-(a).
The code has a pre-communication phase (t1,t2) and a post-communication phase (t4,t5).
Between these computation phases, it communicates with some remote processors by sending
and receiving messages. This type of structure is common in SPMD programs that are either
written by a programmer or automatically generated by a compiler [40]. The utilization of a
processor during the execution of this code is shown in Figure 2.3-(a). The code is running
on processor P1. After completing t1 and t2, the send is initiated. Then the processor starts
the receive operation, which blocks the processor. Therefore, processor P1 is forced to stay idle
during the communication latency of both send and receive operations (Although the algorithm
does not require the first call to g to wait for the recv to finish, the blocking semantic of recv
forces this synchronization).

Figure 2.2-(b) shows the rearranged code that overlaps the communications latency with
some useful computation. The data dependencies among the computations reveal that the send
can be issued just after the computation of t1, and t3 is needed only for the computation of t5.
Figure 2.3-(b) shows the processor utilization after moving the send and receives appropriately.
Processor P1 initiates sending the message and continues with the computation of t2 and t4

while the message transfer continues in the communication network. The remote processor
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(a) (b)
t1 = £0 t1 = £Q)
= £() send(tagl,tl)
send(tagl,tl) = ()
recv(tagl,t3) = g(t1,t2)
= g(t1,t2) recv(tagl,t3)
= g(t1,t3) = g(t1,t3)

Figure 2.2: Rearranging send and receives (a) a sample code (b) rearranged code.

@)
tl t2  sending civi t5

N = T

. NI

(b)
tl send t2 t4 receive t5

P1

idle
P2

Figure 2.3: Processor utilization for (a) naive code (b) rearranged code.

P2 receives the message (request) and responds with the result message. The latency of this
message is overlapped by the computation t4 on processor P1 since it invokes the receive
operation after t4.

For this simple example, the local rearrangement of communication achieves the desired
objective — increasing the utilization of processors. However, this strategy cannot handle cases
with more complex dependencies and unpredictable latencies. For example, consider again the
code in Figure 2.1-(a). The code contains two receives followed by computations t1,t2, and
t3. t1 and t2 are independent of each other and need data from different receives. One of the

receives can be postponed to overlap latency of the other one. If the latencies for these receives
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Figure 2.4: SPMD modules cannot share the processor time.

are known a priori, then the one with longer latency may be postponed. However, in general,
unpredictable communication delays make it difficult to know the latencies in advance. In case
of such unpredictability, if the one that is postponed turns out to be the wrong one at runtime,
then the idle time on the processor would be the same as the time for the original code. Thus,
the SPMD model cannot adapt to such runtime conditions by rearranging the send and receive

operations.

2.1.2 Traditional SPMD is inadequate to develop efficient large programs

Although SPMD model can achieve limited performance improvements as discussed in the pre-
vious section, it cannot overlap computation and communication across modules and libraries.
A module or library is defined as an independently developed program that can be called from
other programs, as in Figure 2.1-(b), which invokes two modules (fft and sum). In the SPMD
style, invocation of another module passes the flow of control to that module. Until that module
returns control, the calling program cannot do anything. Therefore, the idle times that a mod-
ule experiences cannot be overlapped with computation from another module!. In Figure 2.4,
for example, module A invokes two other modules B and C. Module A cannot activate B and C
concurrently even if the computations in B and C are independent of each other. As a result,
the processor time is not fully utilized, as illustrated in the same figure.

Notice that this problem is independent of communication latency. Even if communication
latency were to be zero, each of the modules may have idle times on individual processors due

to critical paths and load imbalances in them.

!See Section 2.4 for a discussion of how one can use non-blocking message passing primitives for this purpose
in SPMD style and why this is not adequate
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Despite its simplicity, the traditional SPMD model is far from being a programming model
for developing efficient large parallel applications for these reasons. The message-driven execu-

tion helps to solve these problems.

2.2 Message-driven execution

Message-driven execution, in contrast to the SPMD model, supports many small processes (or
objects) per processor. These processes are activated by the availability of messages that are
directed to them. At this level of description, it suffices to say that each process has a state and
a set of functions (methods) for dealing with incoming messages. When a message arrives for
a particular process, the system eventually activates the process. Then the process, depending
on the content and type of the message, executes the appropriate method.

The system has a pool of incoming messages, because during the execution of a previous
process many messages may have arrived. After a process suspends itself, the system selects
one of the messages from the pool to be processed next. This selection procedure — message
scheduling — can be a simple strategy such as FIFO, or can be a more complex strategy such

as prioritized scheduling.

2.2.1 Message-driven execution supports modularity

Message-driven execution overcomes the two difficulties experienced by the SPMD model. It

can effectively overlap latency with useful computation adaptively:
e within a module
e across the modules

The rearrangement of send and receives in SPMD, for example, failed to achieve the overlap
adaptively (the example in Figure 2.2). Message-driven execution could compute either t1
or t2 in Figure 2.1-(a) depending on which message arrived first (or whichever message is
made available for processing by the message-scheduler), hence, adapting itself to the runtime
conditions. The computation of t3, however, now requires internal synchronization necessitated
by message-driven style (i.e., it can be computed only after t1 and t2 are both calculated).

We will discuss a method for expressing such synchronization in the next chapter.
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Figure 2.5: Message-driven modules share the processor time.

The message-driven paradigm, in addition, allows different modules that might have some
concurrent computations to share processor time. Consider the computation discussed in Sec-
tion 2.1.2. Assuming that modules B and C do not depend on each other, the idle times on
a processor can be utilized by another module if it has some work to do. Such a scenario is
illustrated in Figure 2.5. Module C gets processor time (by virtue of having its message selected
by the scheduler) while B waits for some data, and vice versa, thus achieving a better overlap

than the SPMD program in Figure 2.4.

2.3 The potential benefits of message-driven execution

A performance analysis of a simple application model of message-driven execution is now de-
veloped to motivate the performance benefits of message-driven execution.

In this model, each processor performs k£ computations. Each computation is of length ¢,
time units and issues one remote data access at the end (sending and receiving a message).
Each remote access has a latency of [ time units. Some of these computations can be executed
concurrently, as they do not depend on each other. The number of such concurrent computations
is denoted by s, as illustrated in Figure 2.6. In practice, these s concurrent computations may
arise at a particular time due to independent computations within a module or computations
from different modules.

In the SPMD model, these computations will be executed sequentially because, as explained
previously, the SPMD model is not adaptive to variations in latencies and blocks for receives,
and it does not allow computations from different modules to be interleaved. Therefore, it
is reasonable to assume that after every computation of length ¢,, in the SPMD style, the

processor blocks for [ time units. The completion time of the whole computation for SPMD
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Figure 2.7: Overlapping latency.
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can be written as:

Tspmp = k(t, +1)

Message-driven execution, on the other hand, is capable of activating any computation that
is ready to be executed. In order to model message-driven execution, one more parameter, {,,
is introduced to reflect the additional overhead of message-driven execution. This overhead is
due to context switching and message buffering required during the execution of the program.

The completion time for the message-driven case depends on how much of the latency is
overlapped. If all of the latency is overlapped with useful computation, then the completion
time would be k(%, +1,). This happens if the latency is less than the time required to complete
s concurrent computations. If the latency is larger than that, then the time to complete s
concurrent computations will be ¢, 4+ [, where ¢, is the time required for the first computation
out of s computations. The time for the other s — 1 computations will be masked by this

latency. Therefore, the completion time for the message-driven case is:

. I+t
T k(t, +1,) if s> —

E(t,+1) otherwise

In order to determine the effects of the latency, the completion time of the model is plotted
versus latency in Figure 2.8 for both SPMD and message-driven style. The overhead ¢, for
the message-driven execution has been kept zero. The latency is in terms of the computation
time. The plot shows the latency tolerance curves for different concurrencies, s. There are a
number of important observations here. The completion time of the message-driven execution
remains constant as the latency increases up to a certain point, while the time for the SPMD
version increases linearly with the latency. In the flat phase of the message-driven version (i.e.,
the region left of the knee), message-driven execution completely overlaps the latency with
computations. When the latency becomes too large, then the performance of the message-
driven execution also degrades. However, it is asymptotically still better than the SPMD in
the sense that the slope of the curve is lower, because it continues to overlap some parts of the
latency.

In the second graph, Figure 2.9, the effects of the overhead are plotted. In this case, s is

kept fixed and completion time curves for different values of ¢, are plotted against the latency.
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Figure 2.8: Latency tolerance.

The effect of overhead is an upward shift in the first phase (the phases where the latency is
small enough to overlap completely). However, for larger latencies, the overhead is absorbed in
the latency time also.

This simple model shows that it is worthwhile exploring message-driven execution for de-
veloping parallel algorithms. However, there are numerous factors affecting performance that
this model has ignored, such as the scheduling policy, irregular computation times and laten-
cies, and unbalanced load. To predict the performance of message-driven computations under
these conditions becomes very difficult, if not impossible, with analytical methods. What is
needed is an empirical study of the potential benefits of message-driven execution over a range
of architectural parameters and application programs. Such a study is one of the foci of this
thesis. To this end, we have developed a simulation framework to study the performance of

message-driven computations more accurately (see Chapter 5).
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Figure 2.9: Effect of overhead.
2.4 Emulating message-driven style in SPMD

We have defined message-driven execution and shown its potential performance benefits. In
this section, we will discuss how message-driven execution can be emulated within the SPMD
context and examine the adequacy of such an emulation.

The emulation of message-driven execution involves usage of nonblocking message passing
primitives, particularly the nonblocking receive primitive. The examples presented in this
section will use a primitive operation called probe and the blocking receive primitive instead of
nonblocking receive. The probe(tag1) function checks if a message with the tag tag! has arrived.
A probe followed by a blocking receive (if probe succeeds) is equivalent to nonblocking receive

for our purposes.

2.4.1 Using nested if blocks

A simple approach to incorporate message-driven ideas in SPMD programs is to use nested if
statements and nonblocking receives to replace some of the “blocking receive and compute”
sequences. These sequences are the part of the code where the rearrangement of receives does

not help for dynamic situations — as in the example of Section 2.1.1.
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To illustrate this, the SPMD code in Figure 2.1-(a) is rewritten as shown in Figure 2.10.
The if statement in the modified code first checks whether the message with tag tagl has
arrived. If the message has arrived, it computes t1 and blocks to receive the message with tag
tag2. After this message arrives, it computes t2. However, the messages may arrive in the
reverse order. Therefore, in the case the message tagl has not arrived, the else part of the if
repeats the same thing for the reverse order. If both messages have not arrived yet, the code
must wait until they arrive (while statement) in order to continue with the rest of the code
(computation of t3). The while loop must assure that both t1 and t2 have been computed in
order to compute t3. This requires synchronization variables and/or counters. In this simple
dependency case, a flag, not_done, is suflicient. However, in general, the synchronization can
be quite complicated by the dependencies among the receives and computations. In addition,
the complexity of the loop increases with the number of concurrent receives. In general, if there
are n receives, then the code must handle n! permutations of receive sequences. Finally, this
approach will not take full advantage of message-driven execution since these if code-blocks
will be scattered around the code and the computations across the if code-blocks cannot be
executed concurrently. For these reasons, the nested if approach is not sufficient to exploit the

full power of message-driven execution.

2.4.2 Using a global while-switch loop

A more structured approach to approximate message-driven style is to use a global while-
switch construct in a module as shown in the Figure 2.11. This approach requires the SPMD
program to be decomposed into code-blocks (functions £1(),...,fn()) such that these func-
tions can be executed upon receiving a particular message. The processor continuously checks
if a message (with any tag) has arrived. Whenever a message arrives, the processor invokes the
appropriate code-block, depending on the tag of the message. A simple (and clear) application
of this strategy is when the SPMD program can be decomposed into functions such that each
one depends on a single message and there are no dependencies among the functions. Other-
wise (i.e., in the presence of complex dependencies), the functions or the loop itself have to
be augmented with all the synchronization constructs. As a result, the code would not appear

as readable as the one in the example. Although the global while-switch loop appears to
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t0 = h()
not_done = TRUE
while (not_done)
if (probe(tagl)) {
recv(tagl,a)

t1 = £(a)
recv(tag2,b)
t2 = £(b)

not_done = FALSE
}
else if (probe(tag2)) {
recv(tag2,b)
t2 = £(b)
recv(tagl,a)
t1 = f£(a)
not_done = FALSE
}
recv(tag3,c)
t3 = g(t1,t2,c)

Figure 2.10: Using nested if’s to simulate message-driven execution.

while (TRUE) {
if (probe(any message_tag))
switch (message_tag) {
case tagl : recv(tagl,m); f1(m);
case tag2 : recv(tag2,m); f2(m);

case tagn : recv(tagn,m); fn(m);

Figure 2.11: A global while-switch construct to simulate message-driven execution.
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be more powerful than the nested if approximation, it still has some fundamental limitations.

These limitations can be summarized as follows:

Difficulty in supporting multiple modules: Every module must know the entities in other
modules to prevent conflicts. Such global entities include the tags of messages defined in
different modules. Adding a new message tag requires knowing all of the tags used across
the modules, which destroys modularity. The recently proposed MPI message massing
interface [36] solves this tag problem by providing the notion of contezts. Another name
conflict is the function names. Again, the modules must use different names for a multiple

module compilation. These two name conflicts destroy modularity in the compiling phase.

Centralized changes: Any change in the modules, such as addition of more messages, may
result in modifying the global loop structure. One may try to provide one individualized
loop per module to increase modularity. But then, passing the flow of control across
modules becomes difficult (the example discussed in Section 2.1.2). When module B
receives a message that belongs to module C, then it should call the appropriate function

in C. This further complicates a modular design of message-driven programs.

Dependencies must be reflected in the loop: The dependencies among the functions and
messages must be handled either inside the function or in the loop, presenting a further

programming difficulty.

No message scheduling: The basic while-switch loop has no scheduling control strategy.

The messages are processed in the order in which the processor provides them to the

global loop (which is FIFO).

Difficulty in supporting dynamic objects (computations): Finally, this approach in SPMD

does not support dynamic creations of objects (here the functions with their local state).

These limitations prevent the SPMD approach from being a programming model for de-
veloping large, efficient parallel applications. A message-driven language seems to be a better
method for developing such applications. However, such a pick-and-process message loop is a
step in the right direction. In fact, such loops are used in the underlying implementation (or

runtime system) of message-driven languages, which are often done on top of an SPMD system.
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A programmer, in the absence of a message-driven language, should use such a loop to derive

the performance benefits of message-driven execution.

2.5 Charm — a message-driven system

Charm is a C-based portable parallel programming system that consists of a language and a
runtime system. The system allows one to define processes or objects and manages dynamic
creation of processes with user-selectable load balancing or scheduling strategies. We will discuss
the Charm language in some detail because the rest of the work requires some knowledge of
Charm. More detailed information on Charm can be found in the manual and various papers

on the subject [32, 60, 61].

2.5.1 The Charm language

A Charm program is a collection of processes (called chares) and messages. The chares are
potentially small-grained message-driven objects. They have a state and they react to messages
with different behavior. At any time, many chares may exist on each processor, or only a few,

depending on the application.

2.5.1.1 Chare definition

A chare definition consists of local variable declarations, entry point definitions, and private
function definitions as illustrated in Figure 2.12. Local variables of a chare are shared among
the chare’s entry-points and private functions. Private functions are not visible to other chares
and can be called only inside the owner chare. Messages are sent to and received at the entry-
points. An entry-point consists of a message definition of certain type and a code-block. The
code-block can access the message by the name defined in the message definition.

Some of the important Charm system calls are:

CreateChare(chareName,entryPoint,msg)
This call is used to create an instance of a chare named as chareName. As all other
Charm system calls, CreateChare is a non-blocking call, that is, it immediately returns.
Eventually, as the system creates an instance of chare chareName, it starts to execute the

entryPoint with the message msg.
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chare chare-name {
local variable declarations
entry EP1 : (message MSGTYPE *msgptr) {C code block}

entry EPn : (message MSGTYPE *msgptr) {C code-block}
private function-1() {C code block}

private function-m() {C code block }

Figure 2.12: Chare definition.

SendMsg(entryPoint ,msg,charelID)
This call deposits the message msg to be sent to the entryPoint of chare instance chareID.
charelID represents an instance of a chare. It is obtained by a system call MyChareID(),

and it may be passed to other chares in messages.

2.5.1.2 Replicated objects: branch office chares

A branch office chare (BOC) is a form of chare that is replicated on all processors. An instance
of a BOC has a branch chare on every processor. A BOC definition is similar to a chare
definition (with the BranchOffice keyword). In addition to the features of regular chares, a
BOC contains public functions which can be called by other chares on the same processor.
Also, it can send and broadcast messages to the branches of the same instance with the calls

SendMsgBranch and BroadcastMsgBranch.

2.5.1.3 A Charm example

A simple Charm example is given. The rest of the thesis uses the Charm language, therefore a
simple Charm program example will make it easier to understand the other examples.

This example, Figure 2.13, is a branch office chare that implements a ring communication
where processor 0 sends a message to 1, then 1 sends it to 2, etc. When processor 0 receives
the message, the program terminates. In the figure, only the branch office definition is listed.

A Charm program has a main chare in which the execution starts. The branch office ring has
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BranchOffice ring {
int next_node;

entry BranchInit : (message MSG *msg) {
RING_MSG *ring msg;
next node = (McMyPeNum() + 1) % McMaxPeNum();
if (McMyPeNum() == 0) {
ring msg = (RINGMSG *) CkAllocMsg(RINGMSG);
SendMsgBranch(loop,ring msg,next node); }
}
entry loop : (message RINGMSG *msg) {
if (McMyPeNum() == 0) CkExit();
else SendMsgBranch(loop,msg,next node) ;

Figure 2.13: A branch office — ring program.

two entries: BranchInit and loop. The BranchInit entry is the creation entry. That is, in
some other part of the program, for example main, an instance of the ring is created by a

CreateBoc call
ring_instance = CreateBoc(ring,ring@BranchInit,initmsg) ;

which returns a unique identifier for the instance of ring that has been just created. The cre-
ation process includes allocation of the local data structures of the branch chare and execution
of the entry point specified in the CreateBoc call, BranchInit, on each processor.

In the ring example, when the BOC is created, only processor 0 sends a message to the
branch of the same instance on the next processor (directed to the loop entry). Then the
branch on processor 1 receives the message and passes it to processor 2, and this continues
until processor 0 receives the message.

The Charm language has many system calls such as McMyPeNum(), CkAllocMsg etc. The

list and details of these calls and other information can be found in the manual.
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2.5.1.4 Modules

One of the strong points of the Charm system is its support for developing modular message-
driven programs. A Charm program file consists of a module, which contains names (definition)
of messages, specifically shared variables, chares, branched chares, and C functions. These
names are internal to the module. Some of these names can be made external and other
modules can access these names. A name in another module is referred to by prefixing the
name with the module name. For example, in order to access an entry point E of a chare C in
a module M, the prefixed name would be M: :CE.

Without entering in the details, we will give an example of multiple modules because it
is relevant to our discussion in this section and in the following sections. A module uses an
interface construct to declare its exported or imported names. Figure 2.14 shows an example
interface construct. The module M2 imports some entities from the module M1 by including
the interface file of M1 — M1.interface. The interface file defines the entities such as types,
chares, and entry-points that are allowed to be accessed from other modules. In this example,
M2 creates an instance of a chare, charel, defined in M1 by accessing the chare name and entry

point name, and message type. Similarly, other entities can be accessed.

2.5.1.5 Other language features

In addition to messages, Charm provides other ways in which processes (chares and BOCs)
share information. The discussion of these features is not closely relevant to the discussion
here. The details about these mechanisms — namely, readonly, writeonce, monotonic variables,

accumulators, and distributed tables — can be found in [16].

2.5.2 The Charm runtime

The system keeps a pool of messages on each processor. These messages are either for creation
of new objects (CreateChare) or for existing objects (SendMsg). Each message contains the
instance of the chare and the entry point in addition to user data. On each processor, the
runtime system repeatedly selects one of the available messages from the pool and executes the
entry point code indicated by the message. This execution may change the state of the chare

instance and may deposit new messages into the message pool. On a particular processor, an
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(a)

#include ‘‘Mi.interface’’
module M2 {
chare chare2 {
entry e2 : (message MSG2 #*msg) {
m = (M1::MSG1 *) CkAllocMsg(M1::MSG1);
CreateChare(M1::charel, M1i::charelel,m);

interface module M1 {
message {int data;} MSG1;
chare charel {
entry el : (message MSG1 #*msg) { }
}

Figure 2.14: Multiple modules in Charm (a) module M2 accesses entities in module M1 (b)
interface module for M1 M1.interface.

entry point executes until completion and is not interrupted for activating another entry point
code.

The message scheduling — selection of the messages from the pool — is done according to
the scheduler. The system provides FIFO, LIFO, and priority-based scheduling policies, from
which users can select one that suits their application. In addition, they can be substituted

with other user supplied strategies.

2.6 Related work on latency tolerance

The idea of multiple contexts in which a processor switches between contexts in order to hide
latencies is used at various levels in computer systems — from the language level to the archi-
tecture level. An early work in this area includes the future construct of [49]. A future is a

process that can be executed in parallel with its parent process. When the parent needs the
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value of the future, which is produced by the child, it blocks until the child has completed.
This mechanism is analogous in some ways to SPMD style: if creation of a future is considered
analogous to a request to some remote processor, then touching the future is equivalent to a
blocking receive. This is not fully adaptive, because when waiting on multiple futures, the
caller blocks for them in a fixed sequence. A future based system achives a degree of adaptive
overlap, as multiple futures are assigned to the same processor concurrently assuming that a
mechanism is provided for switching between them (by using threads, for instance).

The original Actor model as described in [1] is purely message driven. Actors are self-
contained, interactive, independent components of a computation that communicate by asyn-
chronous messages. Chares are similar to actors. One difference is that the methods of an actor
can be executed concurrently (as defined in the Actor model), but the entry-points of a chare
cannot be executed concurrently. One of the first implementations of the Actor model to run
on parallel computers, HAL [56], was implemented on top of Charm. Other concurrent object
oriented languages include ABCL/1 [6] and Concurrent Aggregates (CA) [17]. In ABCL/1,
objects process one message at a time also, and objects can selectively receive messages. The
CA language supports fine grain parallelism. An aggregate is a collection objects that has a
single name. It supports concurrency within objects which can be distributed across processors.
An object can create threads of computations by using the conc construct (similar to parbegin
parend), and the variable synchronization is done by context futures.

The performance of message-driven execution can be improved significantly with some op-
erating system support. Active Messages[31] is a recent work in this respect. Active Mes-
sages itsell is not a message-driven model, but it provides the operating system support to
build message-driven systems efficiently. It notifies computations of the arrival of a message
by invoking a user-defined message-specific handler. Thus, properly implemented, it provides
an inexpensive user-level interrupt. The split-C language based on Active Messages employs
polling for arrival of messages [20].

The Reactive Kernel/Cosmic Environment developed by Seitz, et al. [5] provides a mech-
anism for switching context based on the next available message. It invokes an appropriate
handler depending on the message received and in this respect it anticipates the functionality
of Active Messages. However, scheduling is not interrupt driven; context switching is done only

when one process blocks for a message.
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At the architecture level, multithreading is used to hide memory access latencies. When a
thread is forced to wait for a remote memory access, the processor can switch to another thread.
Multithreading generally deals with fine grain computations. Multithreading yields improved
performance by overlapping communication latency with computation [9, 71]. However, threads
allow no (or very limited) control over scheduling of messages. Also, a single thread cannot
block for multiple data items at once (i.e., no split phase transactions). Creating another
thread for such cases might be expensive. If scheduling of threads is based on time-slicing then
locking is necessary to ensure the correctness of shared data which will add some overhead
and complexity to the program. The first multithreaded machine was HEP [87]. The TERA
machine, a descendant of HEP, [3] supports very fast context switches between threads, and
activation of threads are based on arrival of data from global memory. Other fine grain multiple-
context architectures include the MIT J-Machine [22] and Mosaic [5]. These are examples of
message-driven architectures. The basic building block of the J-Machine is its message-driven
processor. The processor creates a task for each arriving message, and messages are scheduled

with a FIFO policy.
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Chapter 3

Two obstacles

As shown in the previous chapter, message-driven execution has potential performance benefits
over the traditional SPMD model, especially in developing large and multiple-module parallel
applications efficiently. In order to quantify and study these benefits, we want to write message-
driven programs and conduct performance studies. However, developing such programs and
conducting the proposed performance studies in a pure message-driven language such as Charm
is complicated due to the split-phase transactions necessitated by message-driven execution and
the nondeterministic arrival of messages, which requires complex reasoning about the concurrent
activities in such programs. In this chapter, these difficulties are identified, which then motivate

the work done in Chapter 4 and 5.

3.1 Programming difficulties of message-driven style

In order to illustrate the problems encountered in writing message-driven programs, we will
use the SPMD program presented in Figure 2.1 in Chapter 2. A typical SPMD program, like
this one, contains a sequence of blocking receive points and code-blocks, which are sequences
of instructions that can run without any remote data access. Writing this code in a message-
driven language requires splitting the code into these code-blocks. We will call the code-blocks
entry-functions (following the terminology in Charm).

The operation of accessing remote information is split into two parts that become physically

separated in the program:

e sending the request to fetch the information,
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e the code-block to handle the data when they arrive.

Without loss of generality, we assume that each receive statement and its dependent code-block
becomes an entry-function. As a result, the SPMD program, which is a single entity with a
single thread of control, is transformed into a message-driven program as a collection of many
entities (entry-functions).

A message-driven program (in Charm) for this SPMD example is listed in Figure 3.1. In
a pure message-driven model, an entry-function is immediately scheduled for execution when
its associated message has arrived. However, often there is a dependence relation among these
code-blocks. For example, in this program, the calculation of £3 cannot be performed until t1
and t2 are completed. Hence, the entry-functions must contain additional code, written by the
programmer, to maintain such dependences. The message-driven program in Figure 3.1 does
not perform any dependence check. It thus implicitly assumes that the messages arrive in the
proper order (i.e., the entry-function tag3 is executed last). If messages arrive in a different
order, then this code will execute incorrectly (in practice, if tag3 arrives before either tagl
or tag2). Therefore, message-driven programs must consider the arrival order of messages.
This synchronization dependence in the user code complicates the message-driven programs,

particularly if the order of message arrivals is unpredictable.

3.1.1 Nondeterministic message arrival

The order of message arrivals depends on many runtime conditions. Messages might originate
from different sources, and delay in the creation of messages at the source is one of the possibil-
ities that may change the message sequence. Even the sequence of messages sent by the same
source might be different at the destination on some machines because they may follow differ-
ent paths. In addition to delays in the network, the message scheduler can change the order of
messages to be processed. In short, the order of messages processed may change dynamically
and is unpredictable. Therefore, a message-driven program must handle different sequences of
messages.

In order to adhere to the dependences for correct execution, the message-driven entry-
functions must ensure that the code-blocks that it depends on are completed. The implemen-

tation of this synchronization mechanism necessitates usage of shared control data (such as
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chare incorrect {
int t1,t2,t3;
entry init : { t0 = h(Q); }
entry tagl : (message MSG *a) {
t1 = f(a);
CkFreeMsg(a);
}
entry tag2 : (message MSG *b) {
t2 = £(b);
CkFreeMsg(b);
}
entry tag3 : (message MSG *c) {
t3 = g(t1,t2,c);
CkFreeMsg(c);

Figure 3.1: Incorrect message-driven code.

counts, flags and buffers) among the entry-functions and depends on the atomicity of the entry
function.

A correct message-driven implementation of the SPMD example program in Charm is listed
in Figure 3.2 with the required synchronization mechanism. The required data structure for
this simple example is only a counter (count) and a message buffer buffer. These variables are
declared as local to the chare so that the entry-functions can share them (not at the same time,
since only one of the entries is executing at a given time). Assume the execution of the program
is started at the init entry-function (there always exists such an entry-function for every chare
in Charm programs). This guarantees that the other messages to the other entry-functions
will not be delivered until completion of the init. The entry-function tagl and tag2 can
calculate t1 and t2 respectively without any dependence check whenever they are activated.
The entry-function tag3, on the other hand, must buffer its message if it detects that at least
one of tagl and tag2 is not completed yet. This is accomplished by the count variable. In
the init, we set count to the value 3, which is the number of inter-dependent entry-functions.

Each entry-function decrements this counter by one when it is activated. If an entry-function
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chare correct {
int count;

int t1,t2,t3;
MSG *buffer;

entry init : {
t0 = h();
count = 3;
}

entry tagl : (message MSG *a) {
t1 = f(a);
count = count-1;
if (count == 0) {
t3 = g(t1,t2,buffer);
CkFreeMsg(buffer);

}

CkFreeMsg(a) ;

entry tag2 : (message MSG *b) {
t2 = £(b);
count = count-1;
if (count == 0) {
t3 = g(t1,t2,buffer);
CkFreeMsg(buffer);

}

CkFreeMsg(b) ;

entry tag3 : (message MSG *c) {
count = count-1;
if (count == 0) {
t3 = g(t1,t2,c);

CkFreeMsg(c) ;
}
else
buffer = c;

Figure 3.2: Correct message-driven code.
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detects that the counter is zero, then it knows it is the last one. The entry tag3 calculates
t3 if the count is zero (i.e., others have been completed). Otherwise, it buffers its message.
Since the count is non-zero, at least one of tagl and tag2 must be activated eventually. The
one that is activated last detects this and knows that tag3 buffered its message. Therefore,
after completing its calculation, it fetches the message ¢ and computes t3 on behalf of the
entry-function tag3.

This example illustrates how complicated message-driven programs can become even with
a simple dependence relation. Therefore, a message-driven language must provide necessary

language support to simplify this.

3.1.2 Obscure flow of control

Typical traditional SPMD programs, like the one considered in this chapter, exhibit a relatively
clear flow of control. The flow of control is the sequence of instructions executed by the program.
Since SPMD imposes a total order on the code-blocks, the flow of control is easily identifiable
in such programs.

The actual dependences usually result in a partial order on the code-blocks, and message-
driven style exploits this fact. However, the flow of control for this partial order is not easily
visible in a pure message-driven program text or representation. As can be observed in the
message-driven program written in the previous section, it is difficult to identify the depen-
dences among the code-blocks due to complex synchronization mechanisms, including condi-
tional executions (such as that of t3 based on count).

From the programmer’s point of view, the difference among these models can be visualized
as in Figure 3.3. Part (a) and (b) depict how SPMD and pure message-driven programs are
perceived by the programmer, whereas the dependences among the code-blocks are shown in
part (c). These figures pictorially motivate why it would be useful to have a clear representation
of dependences (as in part (¢)) in message-driven programs. Chapter 4 describes a coordination

language, Dagger, which is essentially based on this observation.
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message E computation D receive O

Figure 3.3: Flow of control (a) SPMD (b) pure message-driven (c) partial order.

3.2 Performance prediction: how to simulate message-driven

computations

Another issue is how to predict the performance of message-driven programs. Simulations
(particularly trace-driven simulations, see Chapter 5) are commonly used for predicting perfor-
mance of computer systems. For reasons given in Chapter 5, we have chosen the trace-driven
simulation approach for performance analysis.

However, the nondeterministic behavior of message-driven programs makes their simulations
difficult. We will illustrate the difficulty by using the same example we used in the previous
sections.

Assuming the entry init is executed at the creation of the process, the process awaits two
messages concurrently. In a particular execution, assume that the message directed at the entry
point tagl arrives first. This will cause the execution of the code t1=f(a). Then, when the
message for tag2 arrives, the processor executes t2=f (b) followed by t3=g(t1,t2,c). However,
if the messages arrive in the reverse order, the code at tag2 would execute only t2=£(b), leaving

the execution of t3=g(t1,t2,c) to the other entry point.
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An accurate trace-driven simulation of this program is not possible, as seen below, without
a complex dependence analysis of various paths through each entry point. A normal trace will
consist of the duration of execution of each entry point (and relative timings of any message sent
during it). If traces are obtained with the former sequence with A time units for the execution
of tagl, and B time units for tag2, and during simulation the machine conditions lead to the
latter sequence, it is not possible to reconstruct the times of tag2 and tagl.

If the individual times of calculations t1, t2 and t3 are recorded, one would be able to
reconstruct the timings in presence of the new sequence. It may seem simple then to record
these times. However, note that £(a), £(b) and g(t1,t2,c) need not be function calls as
shown here. The if statements, as well as the computation blocks, might be deeply buried
inside complex control structures. Therefore, in general, it is not easy to retrieve the timings of
the individual blocks. Furthermore, the connection between the value of the counter becoming
zero and the arrival of messages may not be easy for the compiler to deduce.

Both of these obstacles, programming difficulties and performance prediction difficulties,

will be overcome using the Dagger notation described in the next chapter.
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Chapter 4

Controlling the complexity of

message-driven programs

As we discussed in earlier chapters, message-driven execution has the potential for yielding sub-
stantial performance improvements in parallel programs. However, we also saw that message-
driven programs suffer from a lack of clarity of expression (resulting from code) to deal with
internal synchronization, buffering of messages, the conditional execution of code based on flags,
etc. This can also lead to message-ordering bugs. If message-driven execution is to be widely
used or adopted by the parallel programming community, it must be supported with better
programming notations to eliminate these difliculties.

As argued in the introductory chapter, divide-and-conquer is a paradigm that is naturally
suited for message-driven execution. Divide-and-conquer computations can be programmed in
a language such as Charm. However, Charm is a general purpose language. For this special
application domain, one can customize and simplify the expression of message-driven paral-
lelism by providing certain commonly needed features automatically. This was accomplished
by developing a divide-and-conquer sublanguage [44] on top of Charm that is is described in
Section 4.1.

Based on the experience obtained while designing the divide-and-conquer sublanguage, we
then set out to design a general purpose message-driven language that deals with common
difficulties encountered in pure message-driven languages, such as Charm. In particular, as

shown in Chapter 3, these difficulties include the lack of clarity of flow of control, an increased
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likelihood of message-ordering dependent bugs, and the need to deal with various possible
orderings by using combinations of buffering, flags, conditionals, and reasoning about plausible
and implausible message orderings. The resulting Dagger language [47], which is the central
part of this chapter, is described in Section 4.2. The features of this language are also useful
for carrying out accurate simulation of message-driven programs as shown in Chapter 5.

In traditional SPMD programs, there is a natural disincentive for developing an application
modularly as a collection of separately usable modules, because of the difficulty of overlapping
communication and computations across modules as shown in Chapter 2. As message-driven
systems remove this obstacle, programmers are likely to develop applications as a collection of
many modules, each of which can be used in a different context. The techniques involved in

interfacing various modules in a message-driven context are described in Section 4.3.

4.1 Divide-And-Conquer: a simpler context

In this section the divide-and-conquer coordination language, which is a preliminary step toward
to the development of Dagger language, will be described briefly. More details of the language
are given in [44].

Divide-and-conquer is a naturally parallel paradigm that is broadly applicable [2, 73]. In a
typical divide-and-conquer computation, a computational problem is broken down into smaller
subproblems, some of which may be of the same type as the original problem, but of lesser
complexity. This process is continued recursively as many times as necessary. When the
subcomputations are simple enough they are solved directly, without further subdivision. The
results from the subcomputations are passed to the parents that created them. The parent
node combines the solutions to subproblems to form the solution to itself, which it then sends
to its parent.

Variations on this theme are also possible within the paradigm. In search-type problems
the combination of subproblems is either trivial or absent (if solutions are directly printed). In
some other domains, solutions to some subproblems may lead to creation of new subproblems
that must be solved. This can happen, for example, due to a data or control dependency among

the subproblems.
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Many problems, such as combinatorial optimizations, searches [67], many problems in com-
putational geometry, numerical methods [39, 75], and problem-reduction in Al, are formulated
naturally as divide-and-conquer computations. Divide-and-conquer is identified as an important
strategy for higher level image processing algorithms in [89], and the significance of software
support for expressing parallelism is stressed. An implementation of a software package that
supports tree computations has been discussed in [34]. It is a library of services that are linked
to user-supplied code. Similar approaches have been discussed in [12]. In [38], the imple-
mentation of a software system that supports a divide-and-conquer paradigm is discussed. Its
implementation on nonshared memory machines has not been completed yet, and the author
states that it is a challenging task. Also, neither approach supports arbitrary dependencies

among subproblems.

4.1.1 Language definition

In order to develop this language, we observe that a typical divide-and-conquer computation
needs to fire its subcomputations and express dependences between results of subcomputations
(each subproblem returns one solution) so that, when results of certain of subcomputations are
done, it can carry out some local computations and fire new subproblems; and it must provide
a way of communicating the inputs to the subproblem and the outputs from the subproblems.

These abilities are provided by allowing a definition of a node, Figure 4.1, to include a set of
input parameters, a set of output parameters, statements for firing subproblems, and statements
for expressing synchronization of dependences of the results of subproblems. These are provided

in the form of in, out, fire, and when-block constructs of the divide-and-conquer language.

4.1.2 Data declarations

in : { declaration-list }

Specifies the formal parameters to be received by value.

out : { declaration-list }

Specifies the formal parameters to be sent to the parent instance by value.

node node-declaration-list

Each subcomputation must have a distinct label to differentiate it from others. node-
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node node-name {
in : { variable-declarations }
out: { variable-declarations }
node node-names-list;
cond cond-name-list;
local-variable-declaration
init : { init-body }
when condition-list : { when-body }

Figure 4.1: Divide-and-conquer node definition.

declaration-list declares all labels used in the node, and specifies the node type that each
label refers to. Input and output parameters of a subcomputation are accessed through
the pointers label.in and label.out, respectively. A node can access its own input and

output values through the pointers in and out.

cond cond-declaration-list
Any condition variable that is used in the condition-list’s of when-block’s or in the set

statements (see below) must be declared here.

4.1.3 Blocks

init : { init-body }
When an instance of a node is created, its init-body code is executed. This code ini-
tializes the node instance and usually performs the termination check. It spawns new
subcomputations if it decides to divide the problem further, otherwise it solves the prob-
lem directly. After init-body is completed, the node instance suspends itself until one of

its when-block’s becomes eligible for execution.

when condition-list : {when-body}
A when-block is a synchronization point where the solutions from subcomputations are
combined. The labels in the condition-list refer to subcomputations or condition variables.

If solutions from all of the subcomputations listed in the condition-list are available and
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the condition variables listed in the condition-list have been set (by the set instruction),
then the code when-body is scheduled for execution. If more than one when-block’s are

satisfied, they are executed one after the other with no particular order.

4.1.4 Statements

fire label
Creates an instance of the node that is associated with the node label. The input pa-
rameters of the node that is to be created, label.in, must be initialized before invoking
the fire statement. With the execution of the fire statement, the control of the data
area pointed to by label.in is transferred to the subcomputation, and it must not be
accessed subsequently. Similarly, the data pointed by label.out becomes valid only after

the subcomputation label has been completed.

send result
A node sends its solution (pointed by out) to its parent node with this statement. In addi-
tion, the memory space allocated to all responses that are received from subcomputations

are released, and execution of the node instance is terminated.

4.1.5 An example

A simple example, Fibonacci numbers, is listed in Figure 4.2. A node, fib, is defined to
calculate the computation f(n) = f(n — 1) + f(n — 2) recursively. Assume that an instance
of node fib(n) is created. Then, this node creates two child-nodes: £ib(n-1) and fib(n-2).
In order to do that, it declares two node labels of its own type, p and q. The creation of
subcomputations are done by firing p and q. After p and q completes, they return solutions
to their parent simply by the statement send result (without specifying the details such as
parent’s processor number, etc). The divide-and-conquer system automatically executes the
when-block — when p,q — of the parent node after the solutions from both children have been
received.

As illustrated by this example, parallel implementation of divide-and-conquer algorithms is
significantly simplified by the node construct, and the user is freed from the following laborious

tasks:
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node fib {
in : { int n; }
out: {int result;}
node fib : p, fib : q;

init : {
if (in->n < 2) {
out->result = in->n;
send result;

else {
p.in->n = in->n - 1;
q.in->n = in->n - 2;
fire p;

fire q;

}

when p,q : {
out->result = p.out->result+q.out->result;
send result;

Figure 4.2: Node definition to compute Fibonacci numbers.

synchronization management : keeping track of responses from subcomputations and

execution of when-block’s if their conditions are met.

tree communication : handling parent-child communication.
allocation : automatic allocation and deallocation of messages.
dynamic load balancing.

machine-dependent expression.
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4.2 Dagger

Although the divide-and-conquer language serves for the purpose for which it was designed, it
has narrow applicability. It relies heavily on the fact that every subproblem fired returns exactly
one solution and uses this information to eliminate explicit sending and allocation of messages.
Divide-and-conquer computations also have a causal connection between the firing of a sub-
problem and the receipt of the solution for it, i.e., the solution of a subproblem cannot arrive
before the subproblem is fired. In the general case, such assumptions are not valid, and a more
general language is needed. We now describe Dagger, a more general purpose language [47],
that retains the performance benefits of message-driven execution while capturing some of the
clarity of SPMD programming. The language has been implemented in the Charm parallel

programming system, and Dagger programs run portably on a variety of parallel machines.

4.2.1 Expecting a message

In divide-and-conquer, we used the when-block construct to synchronize with the arrival of more
than one message. In Dagger, we retain the when-block concept as well as augment the language
with the notion of expecting a message. In Charm, an entry point is executed when there is
a message directed to it. If the computation in that entry point depends on computations in
the other entry points within the same chare that are not executed yet, then the programmer
must handle this unexpected message by buffering it and later fetching it whenever the entry
point becomes eligible for execution. In Dagger, on the other hand, a computation is triggered

by the availability of expected messages as illustrated in Figure 4.3.

computation

mmgb message computation

expect

€ (b)

Figure 4.3: A message triggers a computation (a) in pure message-driven (b) in Dagger.

With ezpect and when-block constructs, Dagger allows us to specify processes in terms

of dependences between messages and pieces of computations. We will explain by examples
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how expect and when-block constructs are used to express such dependences along with the
description of the language. Before presenting the details, however, we will start with a simple

example to introduce the dag-chare that represents a process (or chare) in Dagger.

4.2.2 An example

Consider an algorithm for matrix multiplication that uses dynamic load balancing. Such a
formulation may be useful on a machine where different processors operate at different speeds,
for example. We assume that the two matrices to be multiplied have been stored in distributed
tables !. Matrix A is stored as a collection of entries such that each entry is a block of contiguous
rows. Similarly, matrix B is stored as a collection of columns.

First, we will describe the Charm implementation of the matrix multiplication. One of the
chares (mult_chare) used in implementing such an algorithm is shown in Figure 4.4. This
chare is responsible for multiplying a block of rows of A and a block of columns of B. The entry
init is executed when an instance of the chare is created. The message msg contains indices
of the row and column blocks that are to be multiplied.

When an instance of mult-chare is created, it requests the row and columns from Atable
and Btable (these tables store the matrices A and B) by calling Find, which is a system call in
Charm. In the Find call, the row (or column) index, return entry-point, and the chare instance
identifier are supplied. Note that Find is non-blocking, and it immediately returns. Eventually,
the row and the column data will be sent in a message (of type TBL_MSG that is defined in the
Charm language) to the entry-point recv_row and recv_column, respectively.

The multiplication depends on the availability of both rows and columns. The messages for
rows and columns may arrive in any order. Therefore, two variables (shared between entry-
points): a counter, count, and a message buffer, buffer, are utilized. count, set to two initially,
is used to ensure that both messages arrived before calling multiply. When the first message is
received, it is saved in buffer (because it can not be used unless the other one is also available),
and count is decremented by one. When the second message is received, count becomes zero,

and multiply is called with the buffered message and the current message.

! Distributed tables are one of the information sharing mechanisms supported by Charm (hence by Dagger)
where data are distributed across processors and accessed asynchronously.
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chare mult_chare {

int count;
ChareIDType chareid;
TBL_MSG *buffer;

entry init : (message MSG *msg) {
count = 2;
MyChareID(&chareid) ;

Find(Atable, msg->row_index, recv._row, &chareid,TBL NEVER WAIT) ;
Find(Btable, msg->column_index,recv_column,&chareid,TBL NEVER WAIT);

entry recv.row : (message TBL MSG *row) {
if (--count == 0 )
multiply(row->data,buffer->data);
else
buffer = row;

entry recv_column : (message TBL MSG *column) {
if (--count == 0 )
multiply(buffer->data,column->data);
else
buffer = column;

Figure 4.4: Matrix multiplication chare.

Even in this simple example, the handling of messages for correct execution complicates the

code. In the next section, the same algorithm will be presented in Dagger notation.

4.2.2.1 Example with a dag-chare

The Dagger language is defined by augmenting Charm with a special form of chare called a
dag-chare. A dag-chare specifies pieces of computations (when-blocks) and dependences among
computations and messages. A when-block is guarded by some dependences that must be

satisfied before the when-block can be scheduled for execution. These dependences include
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dag chare mult_chare {

entry init : (message MSG *msg) ;
entry recv.row : (message TBL MSG #*row);
entry recv_column : (message TBL MSG *column);

when init : {
MyChareID(&chareid) ;
Find(Atable, msg->row_index, recv._row, &chareid,TBL NEVER WAIT) ;
Find(Btable, msg->column_index,recv_column,&chareid,TBL NEVER WAIT);
expect(recv_row);
expect(recv_column);

}

when recv_row, recv.column : { multiply(row->data,column->data) }

Figure 4.5: Matrix multiplication dag-chare.

arrival of messages and completion of other when-blocks. Before describing the Dagger language
in detail, let us consider the matrix multiplication example and show how it looks in Dagger.

Figure 4.5 shows the matrix multiplication written as a dag-chare. The dag-chare declares
two entry-points for the row and the column messages as well as a initialization entry init (the
init entry has a special meaning in Dagger and it will be discussed later). The when-block
when init is executed when an instance of mult_chare is created. This when-block makes the
table requests and expects the messages for rows and columns, and the dag-chare suspends its
execution. After both of the row and the column messages received, the dag-chare resumes its
execution, and multiply is called (in the second when-block). Note that the messages in the
multiply call are accessed by the variables defined in the corresponding entry-point declarations.

Dagger handles the necessary bookkeeping, such as counters, flags and message buffers.
Therefore, the resulting code is more readable (and easy to program), while still retaining the
benefits of a message-driven model.

In this simple example, the column and row messages cannot arrive before the invocation of

Find statements. This time-dependency is similar to the one in the divide-and-conquer model.
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dag chare template {
local variable declarations
condition variable declarations
entry declarations
when depn_list.1 : when_body_1
when depn_listn : when bodyn

private function £1()

private function fm()

Figure 4.6: Dag-chare template.

Therefore, the expect statements might seem redundant. The purpose of this simple example
was to introduce the basic structure of the dag-chare. In the following sections, other examples

will illustrate the necessity of expect.

4.2.3 Basic language

A process or object is defined by the dag-chare construct. A template for the dag-chare is shown
in Figure 4.6. The dag-chare declares entry-points as well as some other data in the local variable
declaration section. The local variables are shared among when-blocks and private functions of
the dag-chare. Private functions are regular C functions that may contain Charm or Dagger
statements/calls, and they can be called only within the static scope of the dag-chare.
4.2.3.1 Entry points

An entry-point declaration is in the form:

entry entry_name : (message msg_type *msg)

It defines an entry with the name entry_name and associates a variable and a message type

with it. The variable msg is a pointer to the message received by the entry. The message
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received at the entry point is accessed through this variable name. Messages can be sent to
entry points as in Charm by supplying entry_name in the Charm system calls such as SendMsg.
The basic difference between a dag-chare entry and chare entry is that a dag-chare entry does
not associate an action (entry-function) with the entry. Each dag-chare must declare an entry
point called init. Messages for this entry are expected implicitly. An instance of the dag-chare
is created by sending a message to this entry (by CreateChare call), and the corresponding

when-block is executed upon creation of the instance.

4.2.3.2 Expect statement

Receiving a message at an entry point is not sufficient to trigger a computation. A Dagger
program tells the Dagger runtime system when it is ready to process a message by using the

expect statement:
expect (entry_name)

If a message arrives before an expect statement has been issued for it, Dagger will buffer it.

The message becomes available only after the expect statement is executed.

4.2.3.3 Ready statement

A dag-chare may have a special type of variable called condition-variable. A condition-variable

is declared as follows:
CONDVAR cond_var_name

Condition variables are used to signal completion of when-blocks. In other words, they express
the dependences among when-blocks that belong to the same dag-chare instance. The ready
statement is the combination of send and expect operations that involves the entries within
the same dag-chare. A when-block can send a message to an entry that is defined in the same
dag-chare. However utilizing a shared variable (condition-variable) is more efficient for this
purpose. A condition-variable is initialized to the not-ready state when it is declared. It is set

to the ready state by the ready statement:
ready (cond_var_name)

Once a condition-variable is set, Dagger may schedule the when-blocks that are waiting for that

condition-variable to be set.
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4.2.3.4 When-blocks

A when-block is a computation which is guarded by a list of entry names and condition-variables.
when €1,...,€,,¢1,...,¢y : When-body

where e; is an entry name and ¢; is a condition-variable. In order to initiate the execution of
a when-block, the dependence list of the when-block must be satisfied. The dependence list is

satisfied if :

e a message has been received and expect statement has been executed for each entry e;

in the dependence list,
e a ready statement has been executed for each condition-variable ¢; in the list.

The when-body is a block of C code possibly including Charm system calls, and expect
and ready Dagger statements. Messages received by the entries e;’s are accessed inside the
when-body through the message pointers defined in the entry declarations of the corresponding

messages.

4.2.4 Dag-chare example

The example discussed in Chapter 2 and 3 (its Charm code appears in Figure 3.2) is coded in
Dagger in Figure 4.7. As one can see, the code retains the adaptability of the Charm code.
The computation of t1 or t2 will precede, depending on which message arrives first, and t3 is
calculated only after both t1 and t2 have been completed. However, the flow of control is much
more apparent than the one in the corresponding Charm program: the details of synchronization

is hidden from user.

4.2.5 Extended language

The Dagger language as defined so far was kept simple for ease of exposition. Supporting the
full generality of parallel programming requires two extensions embodied in Dagger, which are
motivated and described below.

The expect statement imposes an order on the execution of messages. This is suflicient

for a simple dag computation (a computation where there are no cycles in the dependency
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dag chare examplel {
int t0,t1,t2,t3;

CONDVAR t1_done, t2_done;

entry init : (message MSG
entry tagl : (message MSG
entry tag2 : (message MSG
entry tag3 : (message MSG

when init : {
t0 = h();
expect(tagl);
expect(tag2);
expect (tag3);
}

when tagl : {
t1 = f(a);
ready (t1_done);

when tag2 : {
t2 = £(b);
ready (t1_done);

when t1_done,t2_done, tag3 :

*m) ;
*a) ;
*b) ;
*C) ;

{ t3 = g(t1,t2,c); }

Figure 4.7: Dag-chare illustrating adaptive overlapping.
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graph). However, there are computations where concurrent phases of a dag exist (in time). An
example is that of a dag augmented with a loop where different iterations of the loop may be
executed concurrently. Another example is a client-server type of computation. Client processes
may send multiple requests concurrently to a server dag. The server dag performs the same
computation for different requests concurrently.

In the following sections, we will first demonstrate how loops can be represented in Dagger
notation. Then we will show the necessity of reference numbers, a way of distinguishing messages
belonging to different phases of a dag-chare. An important application of reference numbers
is pipelining independent iterations of a loop which is common in many parallel numerical

algorithms.

4.2.6 Expressing loops in dag-chare

The dag-chare has been used to express directed acyclic dependences so far. Cyclic dependences
can also be expressed in Dagger notation by folding the dependency graph dynamically. Cyclic
dependences arise in algorithms that contain loops, such as numerical iterative methods. We
will illustrate how Dagger supports such computations by presenting examples of some iterative
methods to solve a penta-diagonal linear system (which arises in the solution of partial differen-
tial equations). We will present the problem without getting into the details of the application,
and present the Dagger code for it. This problem involves a 2-dimensional grid of points.
The grid is partitioned into rectangular blocks and each processor is assigned one block. Each
processor performs some local computation on its own block and exchanges some information
(boundary values) with four neighbor processors (east, west, north, south). The computation
continues in this manner until a fixed number of iterations or until the solution is reached. To
determine if the solution has been reached or not usually requires a convergence check, which is
a global operation (reduction). In the following examples, the convergence checks (reductions)
are eliminated to simplify the discussion of loops. The reduction operation will be discussed in
Section 4.3 with message-driven libraries.

There are a number of iterative schemes that can be used. Jacobi and Gauss-Seidel iterative
methods are among the most commonly used ones. For our purpose, we will explain only the

computation and communication structure of these algorithms.
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Figure 4.8: Red-black Gauss-Seidel (a) partitions (b) dependences on one processor.

4.2.6.1 Loop example: Gauss-Seidel red-black

The Gauss-Seidel iterative scheme has been widely used in sequential and parallel applications.
The Gauss-Seidel scheme with the natural ordering of grid points cannot be parallelized effi-
ciently. Instead, reordering of the grid points, which is known as red-black ordering, results in
an easy and efficient parallelization [75]. The basic computation in the red-black scheme is as
follows: each processor holds a subset of the grid points. The points are colored as black and
red as shown in Figure 4.8-(a). A sweep of grid points consists of two steps: updating the black
points, and updating the red points. The dependences (and flow of control) in the computation
on one processor are illustrated in Figure 4.8-(b). First, a processor sends and receives the red
boundary points from its neighbors. Then it updates its black points B11 and B22 using the
red boundaries. Next, it sends and receives the black boundaries that have been just updated.
Finally, the processor updates its red points and computation continues until the iteration limit
is reached.

The Dagger program for this computation is listed in Figure 4.9. For simplicity, we present
only the dag-chare part of the program with necessary details for expressing this computation.
The dag-chare red black is a branched chare. A copy of this branch is executed on every
processor. The chare declares eight entry points for receiving the boundary points from its

neighbors, the four red and four black boundaries, as well as the initialization entry init. When
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the chare instance is created, the when-block init performs initializations, such as determining
neighbors, creating the grid points etc., sends the initial red boundaries to its neighbors, and
issues expect’s for the red messages from its neighbors. Each quarter of the local grid (B11,
B22, R12, and R22) depends on two messages. When those messages become available (and
they are expected), the points in that quarter are updated. Therefore, four when-blocks are
defined (one for each quarter) for sweeping all the grid points. Note that B11 and B22 can be
updated in any order followed by R12 and R21 again with any order in a sweep.

The looping is accomplished by expecting the red boundaries again after the calculation
of red points (both R12 and R21). The correct order of updating black and red points are
guaranteed by the expect statements. This program continues until the when-blocks issue no

more expects for the red points.

4.2.6.2 Loop example- Jacobi iterations

In this section we will present a similar computation, using the Jacobi method, without conver-
gence checks again, to illustrate that the expect statement is not always suflicient to support
the correct execution of loops. This computation (the computational structure is depicted in
Figure 4.10) is an iterative method similar to the red-black scheme. However, the points are not
divided into groups, but all have the same color. At a particular iteration, a processor sends its
boundaries to its neighbors and receives four boundary messages from them. Then it updates
its local points using the boundary values. The computation continues with the next iteration
in this manner.

The partial Dagger code for this computation is shown in Figure 4.11. The Jacobi iteration
loop can be expressed by only one when-block in addition to the one for initialization. The
figure lists only the when-block code which implements the loop. When a processor receives the
initial four boundaries (and they are expected after the initialization), it updates its grid points.
After the update is completed, it sends its newly computed boundary values to its neighbors
to be used in the next iteration. Then it expects new boundary values of its neighbors for
the next iteration. Although this procedure is derived with exactly the same reasoning of the
red-black example, it will work correctly only under some conditions. It implicitly assumes that
a message received at an entry-point is the message meant in the expect statement. The next

section presents what might go wrong in the Jacobi program.
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dag BrancOffice red black {

entry init : (message INIT *msg);

entry red north : (message BOUNDARY *rn);
entry red_south : (message BOUNDARY *rs);
entry red west : (message BOUNDARY *rw);
entry red_east : (message BOUNDARY *re);
entry blacknorth : (message BOUNDARY *bn);
entry black south : (message BOUNDARY *bs);
entry black east : (message BOUNDARY #*be);
entry black west : (message BOUNDARY #*bw);

when init : {
initialize();
send_red_boundaries();
expect(red north);
expect(red_south);
expect(red west);
expect(red_east);
}
when red north,red west :
update_quarterii(rn,rw);
send_black_boundaries();
expect(blacknorth);
expect(black west);
}
when red south,red east :
update _quarter22(rs,re);
send_black_boundaries();
expect(black_south);
expect(black_east);
}
when black south,blackwest : {
update_quarter21(bs,bw);
if (iteration_count < ITERATION LIMIT) {
send_red_boundaries();
expect(red_south);
expect(red west);
}
}
when blacknorth,blackeast : {
update_quarter12(bn,be);
if (iteration_count < ITERATION LIMIT) {
send_red_boundaries();
expect(red north);
expect(red_east);

Figure 4.9: Dag-chare for Gauss-Seidel red-black relaxation.
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Figure 4.10: Jacobi (a) partitioning (b) dependences on one processor.

when north,south,east,west : {

update(n,s,e,w);

iteration_count = iteration_count + 1;

if (iteration_count < ITERATION_LIMIT)

for(neighbor=NORTH; neighbor<=WEST; neighbor++) {

m = createmessage(neighbor);
send message(m) ;
expect (entry name[neighbor]) ;

Figure 4.11: Partial dag-chare for Jacobi relaxation.
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4.2.6.3 Problem with the Jacobi

It is possible that messages belonging to different iterations may arrive out of order due to
network delays and other factors. For instance, when a processor is expecting a message for
iteration 1, it may receive one belonging to iteration 2. Such a scenario, where the computation
goes wrong for the Jacobi method, is illustrated in Figure 4.12. Processors i and j are ex-
changing messages and doing some local computation. The message sent by processor i in the
second iteration is delayed. When processor i receives a message from j in the third iteration,
it performs the local computation and sends the message belonging to the fourth iteration.
Processor j receives the message which belongs to the fourth iteration before the one belonging

to the third iteration.

[processor i

~ . _ processor

iteration: 1 2

Figure 4.12: Out of order messages.

The basic difference between the red-black and Jacobi loops is depicted in Figure 4.13. The
red-black algorithm performs one additional synchronization inside the loop by exchanging the
boundaries a second time. This guarantees that the loop entry receives messages belonging to
the same iteration (i.e., in order to send a red message, black messages must be exchanged,
therefore a processor cannot send consecutively two sets of red messages belonging to different
iterations).

However, in Jacobi, the loop contains only one when-block, and the synchronization is at
the beginning of the loop, therefore this anomaly (overlapping with the next iteration) occurs.
Now we will extend the language to control this case. On the other hand, in some algorithms,
different iterations might be independent. We will show how this extension is useful to overlap
such independent iterations deliberately in a controlled manner. The addition is the reference

numbers which will be discussed next.
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Figure 4.13: Loop structure in (a) red-black (b) Jacobi.

4.2.7 Reference numbers

The Jacobi scenario suggests that messages belonging to different phases of computations must
be distinguished. To accomplish this, the Dagger language is modified to include reference
numbers. Each message may have a reference number. Messages that belong to the same phase
of computations are given the same reference number by the user. Then Dagger matches the
messages with the same reference number to activate a when-block (condition variables may
have reference numbers too). In other words, an instance of a when-block is scheduled for
execution only if the dependence list is satisfied with the availability of messages and condition
variables with matching reference numbers. The entry declaration specifies if messages for an

entry-point have reference numbers with the keyword MATCH as follows:
entry entry_name MATCH : (message msg_type *msg)
The expect and ready statements are modified to support reference numbers as follows:

expect (entry_name,reference_number)

ready(cond_var_name,reference_number)

With this extension, a when-block can be executed many times, each with a different set of mes-
sages that have the same reference number. The reference number of messages are accessed and

set by the function calls provided by the system: GetRefNumber(msg) and SetRefNumber (msg).
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when north,south,east,west : {

update(n,s,e,w);

iteration_count = iteration_count + 1;

if (iteration_count < ITERATION_LIMIT)

for(neighbor=NORTH; neighbor<=WEST; neighbor++) {

m = createmessage(neighbor);
SetRefNumber(m,iteration_count);
send message(m) ;
expect (entry name[neighbor],iteration count) ;

Figure 4.14: Correct Jacobi relaxation with reference numbers.

4.2.7.1 Loop example - Jacobi loop with reference numbers

The Jacobi example is rewritten with the reference numbers in Figure 4.14. The value of the
iteration _count is used as reference numbers for messages belonging to that iteration. After
updating the points at iteration ¢, the new boundary values are sent with the reference number
t+1, and the boundaries from the neighbors with reference number ¢+ 1 is expected. Therefore,
only the when-block instance for ¢ + 1 will be executed with the correct set of messages. Other
messages will be buffered until an expect is issued for them. In the Jacobi case, the overlapping
of consecutive iterations is eliminated on purpose. However, some other computations allow
overlapping of independent iterations. The usage of reference numbers in the pipelined loops

will be discussed in the next section.

4.2.8 Pipelining independent iterations of a loop

Dependences in many numerical algorithms allow us to overlap execution of some iterations
of a loop (for example, asynchronous iterative algorithms). Reference numbers can be used
to accomplish this overlap. A generic example is to overlap the next s iterations in a loop.
Messages belonging to a particular iteration have the iteration number as their reference number
as before. Figure 4.15 lists the code for this generic case. Initially, the first s iterations are

activated in the startup phase (when init) by issuing expect for these s iterations. Now, there
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when init: {
for(neighbor=NORTH; neighbor<=WEST; neighbor++)
for(i=1; i<=pipeline size; i++)
expect (entry name[neighbor],i+initial iteration);

}

when north,south,east,west : {

update(n,s,e,w);

iteration_count = iteration_count + 1;

if (iteration count < ITERATION LIMIT)

for(neighbor=NORTH; neighbor<=WEST; neighbor++) {

m = createmessage(neighbor);
SetRefNumber(m,iteration count+pipeline size);
send message(m) ;
expect (entry name[neighbor],iteration count+pipeline size);

Figure 4.15: Pipelining loop iterations.

are s concurrent iterations that can be executed whenever their messages arrive. If iteration
t is executing, it will activate iteration ¢« + s. Therefore, there will be always a window of s

concurrent iterations.

4.2.9 Multiple message entry points

Another extension to Dagger deals with entry points that receive multiple messages. This
situation arises when the number of messages on which a when-block depends is known only at
runtime or differs from processor to processor. An example of this is the reduction operation.
In a reduction operation, some data values from every processor are combined, and the result
of the reduction operation is distributed to all or some of the processors (for example, a global
sum operation). An efficient and scalable way of implementing the reduction operation is to
utilize a spanning tree of processors. Each processor in the tree collects and reduces the data
from its children and passes the partial result to its parent. When the root receives partial

results from all of its children, the final result is broadcast.
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A simple reduction example (only the combining through a spanning tree) will be presented
to illustrate the usage of multiple entry points. The reduction computation can be expressed in
the basic Dagger language by a when statement which is guarded by the entry points, one for
each child. However, the number of children is not fixed for all processors. In addition, as the
number of processors changes, the spanning tree changes. To solve this problem, the language
is extended by entry-points that can receive multiple number of messages. In Figure 4.16, a

dag-chare for this example is shown. The entry declaration:
entry collect[n] : (message MSG *subresult[]);

associates a variable, n, with the entry collect. This variable is initialized to a user-specified
value at the beginning (in init entry). The entry point collect now expects n messages
stored in an array of message pointers called subresult in order to trigger a when-block. In
the example, n is assigned to the number of children, and the when-block “when collect ..”
is activated only after receiving n messages at the entry point collect, and an expect for the
entry collect has been executed. It is possible to access each of these messages (if an expect

has been executed already) individually immediately after it is received, by using the keyword

ANY in a when-block as follows:
when collect[ANY] : { ... }

This example was kept simple to introduce the concept of multiple message entry points.
The branch office chare reduction performs one reduction as soon as it is created, and then
stops. In a practical parallel programming environment, on the other hand, at many places
in the parallel program a reduction operation is necessary. What is needed is a reduction
module which can be called by others multiple times and possibly concurrently. In order to
achieve such an operation, the reduction module must be written in such a way that it handles
concurrent operations. Furthermore, it must return the result of the completed reductions
to the corresponding caller. The first feature is solved simply using reference numbers. The
second one which requires an invocation mechanism (or interface) for concurrent operations will

be discussed in the message-driven libraries section (Section 4.3).
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dag BranchOffice reduction {

entry init : (message MSG *initmsg);
entry collect[n] : (message MSG *subresult[]);
when init : {

n = McNumSpanTreeChildren(McMyPeNum());
if (i_amleaf)
send(tomy_parent,my partial result);
else
expect(collect);

}

when collect[ANY] : { combine(subresult,my partial result); }

when collect :
if (i_ammnot_root) send(tomy_parent,my _partial result);
}

Figure 4.16: A reduction dag-chare illustrating multiple message entries.

4.2.10 Translation and runtime of Dagger

Dagger has been implemented on top of the Charm system. The implementation has two parts:
translation of a dag-chare and runtime management system. A Dagger program is a Charm
program augmented with dag-chares. The dag-chares are transformed into regular chares by the
Dagger translator. An overview of the translation process from dag-chare to chare is depicted in
Figure 4.17 with a simple example. Entry declarations in the dag-chare are converted into entry-
points. The code-blocks for these entry-points are produced by Dagger translator, and they will
be discussed later. When-blocks are converted into private functions. In order to perform the
required synchronization and buffering operations, a control data structure (manipulated by
the Dagger runtime system) is declared in the local data area of the translated chare, as well
as the user-defined data structures. In addition, the translator produces some other private
functions: expect(), ready(), and when-switch() to handle invocation of when-blocks. The
following sections will discuss the important parts of these translation steps and the runtime

system of Dagger.
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dag chare example{
entry el : (message MSG *ml);
entry €2 : (message MSG *m2);
when el : { code-1}
when el,e2 : {code-2}

Trandation from dag-chare
to chare

chare example {

control-data includes:
- message queue

- waiting queue

- ready queue

Dagger Run-Time

includes functionsto
operate on the control
data structure

control_data declarations
entry el : (message MSG *m) {

/ buffer_message(el,m);
check_when_€e1();

check_when_el_e2();
} process ready _list();

entry €2 : (message MSG *m) {

buffer_message(m);
check_when_el_€2();

} process ready _list();

private when_el(ml) MSG *m1; { code-1}
private when_el_e2(m1,m2) MSG *m1,*m2; { code-2}

/// private expect(er)
EntryPointType €; int r; {

mark_buffer(e,r);

switch (map(e)) {
case el : check_when_el(); check_when_el_e2(); break;
case €2 : check_when el _e2(); break;

process _ready list();

private ready(e,r)
EntryPointType €; int r; { /* similar to expect function */}

private when_switch(when_block_no)
int when_block _no; intr;

switch(when_block_no,r) {
case when_el : t1 = fetch_message from_buffer(el,r);
PrivateCall (when_el(t); break;
casewhen_el_e2:t1 =fetch_message from_buffer(el,r);
t2 = fetch_message_from_buffer(e2,r);
PrivateCall(when_el _e2(t1,t2); break;

Figure 4.17: Translation of a dag-chare.
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4.2.10.1 Data structures

One of the reasons for developing Dagger was to free the programmer from the tedious job of
handling synchronization and out-of-order message arrivals. A dag-chare, in order to handle
these problems, maintains a complex data structure. The most important part of this data
structure is the message and when-block queues. These queues are not shared; each dag-chare

has its own private set of these queues. A dag-chare instance maintains three queues:
e message queue,
¢ waiting queue,
e ready queue,

The message queue holds messages that are received but not consumed yet. It contains message
buffers, which have a flag for expect and a pointer to the message (in addition to other fields).
When a message is received by the dag-chare, it is placed in the message queue. If the message
is expected, it becomes available to when-blocks. Messages stay in the queue until all the
when-blocks that need the messages are completed.

The waiting queue holds the instances of when-blocks that are waiting for synchronization.
These when-block instances are in the queue because their dependency list is partially satisfied
(they are waiting for the rest of messages and/or condition variables). Each element of the
waiting queue has a counter and a list of message pointers. This counter is initialized to
the number of entry-points and condition-variables in the dependence list. The counter is
decremented whenever one of the condition-variables in the dependency list is set or a message
becomes available for an entry in the list.

The third queue is a list of when-block instances that are ready to execute. A when-block
instance is transferred from the waiting queue to the ready queue when its dependence list is
completely satisfied (i.e., synchronization counter is zero). The Dagger runtime consumes this
queue by executing the when-block instances.

For all of these queues, the most common operation is a search with a key “entry-point and
reference number” (or when-block and reference number). The information about entry-points
and when-blocks (number of them, their range, etc.) is known at compile time. The search for

this part of the key is done by a direct array access. However, reference numbers are dynamic
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entities (i.e., their range cannot be predicted statically). Therefore, this access requires a search

operation.

4.2.10.2 Entry-point functions

As shown in Figure 4.17, each entry declaration is converted into an entry-point with a code-
block. This code-block (produced by the Dagger translator) first enqueues the message. If
the message is already expected, the code-block checks the when-blocks that depends on this
message. The list of dependent when-blocks is known at compile time, therefore the Dagger
translator produces the proper code that checks those when-blocks only. The when-block in-
stances are searched in the waiting queue first. If no instance of a dependent when-block is

found, then an instance is created and put into the waiting queue.

4.2.10.3 Expect and Ready functions

The translator produces separate expect() and ready() functions for each dag-chare in the
Dagger program. These functions perform work similar to the entry functions.

4.2.10.4 When-switch function

Remember that when-block definitions are converted into functions, these functions are called
from the when-switch function, which is produced by the Dagger language for each dag-chare.
when-switch prepares messages as input to the when-block functions and then invokes the

functions.

4.2.10.5 Process-ready-list function

This function executes when-block instances that are in the ready-list. When there are no more
instances in the list, the control is returned to the Dagger runtime system. It is called from
entry points.

4.2.10.6 Miscellaneous functions

In addition to these basic implementation details, there are a few more points specific to Dagger.

The DagExit () function is provided to exit a dag-chare instead of the return statement of C.

65



This call was necessary in order to to keep the consistency of the runtime data structure of
Dagger. The runtime system automatically frees messages also. It keeps track of when-block
executions. When it detects that all the dependent when-blocks of a particular message have
been executed, the memory hold by the message is freed. This option can be cancelled if the
user prefers to reuse messages. However, the user must do exactly the same bookkeeping as

Dagger does in order to free messages.

4.3 Message-driven libraries

Libraries constitute an important part of software development process. They provide reusable,
portable code, and they hide details from application programmers. There are many SPMD
parallel libraries for commonly used kernel operations, such as numerical solvers, fft, etc. As
discussed in Chapter 2, SPMD style does not encourage usage of multiple concurrent libraries.
On the other hand, message-driven style encourages creation of smaller and more reusable
modules. Therefore, we expect libraries to be a major strength of message-driven systems in
the future.

However, developing message-driven libraries requires a different set of assumptions. The
organization of the code and the nature of the interfaces across modules is different. The issues
involved in message-driven inter-module interfaces must therefore be understood before one can
undertake development of large sets of message-driven libraries. The main reason why message-
driven libraries have to be treated differently from SPMD libraries is the split-phase nature of
inter-module exchanges. When a module calls another module, it must simply deposit the data
it wishes to deposit, and then continue or suspend. Eventually, the other module will return

data and control to the calling module in the form of a message.

4.3.1 Problems with libraries in SPMD style

In traditional SPMD model, library computations are invoked by regular function calls. The
library call blocks the caller. After the library computation has been completed, the library
module returns the result and control to the calling modules. There are major performance

disadvantages of libraries in SPMD style. These can be listed as:
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1. Idle times in the library computation cannot be utilized if there are other independent

computations (as discussed in Chapter 2).

2. Caller modules must invoke the library even though only a subset of the processors are

involved in the library computation from the caller’s point of view.
3. Library computations must be called in the same sequence on each processor.

These drawbacks force SPMD style programmers to use flat codes (i.e., merging potential
library modules into the main or caller module) for better performance. The second require-
ment, namely “every processor has to call”, might be a real bottleneck for developing large
efficient programs. Consider the following scenario. Assume that only one processor initiates
and needs the result of a library computation. The computation is a parallel one and involves
a set of processors. Figure 4.18 depicts the interaction of an SPMD and a message-driven pro-
gram to such a library. In this particular example, the message-driven program (part (a)) calls
the library if it is the processor that initiates and needs the result of the library computation.
Note that the call is nonblocking. Therefore, the calling processor can potentially continue to
execute its next computation block while the library computation is going on concurrently. The
library itself may involve computations on an arbitrary subset (or all) of the processors. In the
message-driven program, the caller module does not have to call the library module on all the
processors. The library itself will send messages to its components only in those processors
involved. The SPMD program, on the other hand, has to call the library on all processors.
When the library returns the control, the program checks if it really needed to call the library.
If that is the case, then it performs post-library computation.

Finally, library calls must be made in the same sequence on every processor. For example,
assume two reduction operations, r1 and r2 needed to be computed. If one processor first calls

r1 and the other calls r2, then neither of them can succeed.

4.3.2 Message-driven execution and library interface techniques

The interface between message-driven programs and message-driven libraries are different from
the interface for SPMD style. Since computations are split-phase in message-driven style, library
calls must provide a return address for the result or completion. The three steps of a simple

library interaction in message-driven style are: a) creation of the library object, b) invocation
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Figure 4.18: Library call.

of a library computation, c) reception of the result. These points will be discussed within the
Charm environment and a library calling scheme will be defined.

The first step in a typical Charm program is to create instances of library modules. Once
the instance is created, it can be invoked by all the participating computations using its unique
instance identifier. This requires the participating computations (or chares) to have the library’s
instance identifier. The creation phase, thus, consists of creating the instances of the library
and distributing the instance identifier to users of the library (clients). The creation of a library
module can be encapsulated into a function. The library exports this function, create, that
handles all the steps of a creating the library (the user does not have to know the details of the
library). There are two ways to invoke the create function:

lib_instance = LIB::create()
or

LIB::create(chareid,entrypoint)
The first form can be used only at the beginning of the program (i.e., in the Charmlnit entry
point), while the second one is a nonblocking create() function, which returns the instance

number to the address (chareid,entrypoint) in a message.
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A library can be invoked by sending a message to it. The library module exports definitions
of types that clients need, such as messages and names of chares and entry points in an interface
file (see Section 2.5.1.4). The message has to be allocated, filled, and sent to the library module.
All these steps can be encapsulated into a function that the library exports. This function needs
input data from the caller (optional) and a return address. The result can be returned in a
message. In this case, the library invocation call is as follows:

LIB::request(lib_instance,data,my chare instance,entry point)
The library instance 1ib_instance is invoked, and the result will be returned in a message to
entry_point of the caller chare. A second option is to receive the result by function call
LIB::request(lib_instance,data,result buffer,function ptr)
This call provides the library with input data, a pointer to the result area, result_buffer,
where the library directly puts the result there, and function ptr which is a public function

that the library module calls when the result is ready.

4.3.2.1 Concurrent library calls

In the previous section, the interface for creating and invoking message-driven library computa-
tions is described. If the same library module needs to be called multiple times and concurrently,
what should the interface be? There are two options; the first one is to create multiple instances
of the library module as shown below:
idl = LIB::create();
id2 = LIB::create();
and different instances can be invoked concurrently as follows:
LIB::request(idl,datal,mychareid,el);
LIB::request(id2,data2,mychareid,e2);
The second option is to design the library module such that it handles concurrent calls (as
described in Section 4.2.7). The caller provides a reference number. The library maintains a
separate environment for each reference number to service the requests concurrently. A typical
usage of this scheme is to create an instance of the library and invoke the same instance with
different reference numbers for each distinct request.

idl = LIB::create();
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LIB::request(idl,datal,1,REQUEST_1,mychareid,el);
LIB::request(idl,data2,1,REQUEST 2,mychareid,el);
The reference number of the result message is set to the REQUEST_1 or REQUEST 2. If the
return is by a function call, then the reference number is passed as an additional parameter to

the return function.

4.3.2.2 An example of message-driven library usage

Figure 4.19 lists a sample code showing how to use a library. The library (a global sum
operation) exports the functions for creation and depositing data to be summed. The main
chare creates two instances of it (in order to show concurrent usage of library instances). Then it
makes the instances known to everybody (ReadOnly variable is a type of abstract data structure
which is supported by Charm for this purpose). Every node of redn_client deposits its data
by calling the deposit function. The library provides two deposit calls. Deposit_msg supports
return-by-message mechanism. Deposit_{ supports return-by-call. Note that, Deposit_f takes
one additional parameter, z, a pointer to store the result. The library stores the result at this

area and calls the return-function. Then the function accesses the result.
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interface module Sum {
message {ChareNumType id; varSize int datal[]; } MSG;

Create();
Deposit £();
Depositmsg() ;
}
#include ‘‘sum.int’’

module redn_example {
#define VSIZE 10
readonly ChareNumType rednl,redn2;

chare main {
entry CharmlInit {
rednl = Sum::Create(VSIZE);
redn2 = Sum::Create(VSIZE);
client = CreateBoc(redn client,redn client@start,msg);
ReadlInit(rednl);
ReadlInit(redn2);
}
}
BranchOffice redn client {
int x[VSIZE],y[VSIZE],z[VSIZE];
ChareNumType mybocnum;
ChareIDType mybranchid;
entry start :(message MSG *msg) {
mybocnum = MyBocNum();
MyBranchID(&mycid) ;
Sum: :Deposit_f(ReadValue(rednl) ,x,recv.result,&mybocnum) ;
Sum: :Deposit.msg(ReadValue(redn2),y,z,recv_entry,&mybranchid) ;
}
entry recv_entry : (message Sum::MSG *msg) {
use(msg->data);
}

public recv_result(id)
ChareNumType id;
{ use(z) }

Figure 4.19: Using the reduction library.

71




4.4 Related work

The Dagger notation was developed to specify the partial order between subcomputations
(or methods) within an object or process. The syntactic mechanism used for this purpose
included when-blocks, which are sequential blocks of computations guarded by conditions. To
put Dagger in context, we now compare it with past work on the use of guards and other
methods for coordinating subcomputations within an object.
Guarded Commands

The idea of associating guards with computations, as done for when-blocks, is related to the
notion of guarded commands [27]. Guarded commands are sequential statements where each
statement is prefixed by a boolean expression. The statement is said to be open if its guard
is true. The nondeterminism in a sequential code is controlled by two guarded constructs: the

alternative construct and the repetitive construct. An alternative construct is of the form:

if guard; — statement,
[| guard, — statement,
[

[| guard, — statement,

fi

The alternative construct is executed by selecting any one of the open guarded statements. If
none of the statements are open, then an error occurs. The repetitive construct is similar to
the alternative one, i.e., it selects the open statements arbitrarily, but it repetitively evaluates
guards and executes them until all the guards are false. If none of the guards are true, the
command is skipped (or an error occurs). Guarded constructs are a generalization of non-
deterministic if statements. They do not express concurrent subcomputations. On the other
hand, Dagger is a language to express concurrent computations. Furthermore, when-blocks in
Dagger are executed whenever their conditions are satisfied, i.e., a when-block is delayed until
its condition is satisfied, whereas guarded commands are skipped if the condition is not true at
the time the control reaches them.

In the context of concurrent programs, guard-like notations have been used to specify various

synchronization properties. Such use of these notations can be found in studies including
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Communicating Sequential Processors [54], Distributed Processes [50], Path Expressions [13],
and Ada.
Communicating Sequential Processes (CSP)

CSP, described by Hoare, incorporates the guarded commands and Dijkstra’s parbegin con-
structs [26] for concurrent programming. Processes communicate through synchronous mes-
sages. During the communication both sender and receiver processes block. The guard expres-
sions can include the readiness of a sender or receiver process. An input guard is satisfied when
the sender process is ready to communicate its output. With this extension, a process can wait
for multiple inputs by using the alternative guard construct. When a sender process in the al-
ternative list is ready, then the receiver synchronizes with that sender. After the communication
is completed, the corresponding statement is executed in the guarded construct.

The guarded inputs together with the alternative construct have similarities to the when-
block construct of Dagger. However, it is difficult in CSP to achieve the adaptive overlap of
subcomputations of a process as in Dagger due to the blocking nature of the communication
scheme between processes.

Distributed Processes

Distributed Processes was proposed by Hansen to support concurrent real time programs.
A Distributed Processes program contains a fixed number of concurrent processes. Processes
can call procedures defined within other processes. The synchronization among processes is
achieved through guarded commands and guarded regions. Guarded regions are similar to
guarded commands, but they are not skipped if the guard expressions are false. They suspend
the process until their conditions become true. The state of a suspended process can change
when another process invokes a procedure in the suspended process. If this invocation causes
the guard of a suspended region to be true, then the process resumes.

The when-block construct of Dagger is closely related to the guarded regions. There are

two types of guarded regions that one can use in a process, when and cycle regions:

when By:51 | B2:52 | -+ | B,:S, end
cycle By:S1 | By:Sy | -+ | Bp: S, end

where B; are guard expressions and 5; are statements. The when guarded region waits until

at least one of the guards becomes true. If more than one guard is true, then one of them is
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cycle
Bi:
S11
cycle B12 : S12 | B13 : $S13 end
S14
B2: S2
end

Figure 4.20: Distributed Processes example.

selected arbitrarily. The cycle region is the repetitive version of when. Cycle completes its
execution when all the guarded statements in the cycle are processed.

Major differences between Dagger and Distributed processes (within the context of ability
to overlap adaptively) that makes Dagger advantageous are (a) in Distributed Processes, the
caller process blocks until its request is accepted and completed, (b) If the guarded regions are
nested, then the process can not switch between regions.

A blocking caller (a) prevents a process from issuing multiple concurrent requests. However,
in Dagger, many programs benefit from being able to issue multiple requests as shown in
Chapter 6. The nested regions construct decreases the opportunities for adaptive selection
(nondeterministic selection) of requests as illustrated by the following example. Consider the
Distributed Processes code in Figure 4.20. If B1 becomes true before B2, then the sequence
of statements, which includes another guarded region, is executed until completion. It might
happen that, while the process is waiting idly for some guard in the inner cycle, B2 might
become true and the process cannot switch to it.

However, cycle regions can be flattened to overcome this problem. But, it requires intro-
ducing additional flags and counters in the guard expression to express the partial order in the
nested structure. Finally, implementation of guarded regions is more expensive. The guards
have to be evaluated whenever the state of a process changes. The state of the process can
change whenever an assignment involves variables in the guard expressions. In Dagger, only
message arrival and expect /ready statements trigger such evaluations, and it is easier to produce

optimized code.

74



Path Expressions

Path expressions provided by Campell and Habermann was developed to ease the expression
of synchronization between concurrent processes. The explicit programming of such synchro-
nization requirements with P and V operations complicates the program. The purpose of path
expressions is to provide the user with a better way to express such synchronization. The mech-
anism specifies how a procedure (subcomputation) is allowed to execute in relation to others.
Processes, which are executing concurrently, are allowed to call the procedures according to
a specified order given in the path expressions. A path expression has two synchronization
actions: sequence and selection actions. The sequencing specifies that the procedures are called

in a sequence. For example, the path expression

path p;q end

specifies that procedures q cannot be called before p is completed. Any process that attempts
to call q is blocked until another process calls p. The selection action permits only one of the

procedures to be called from a set of them. The path expression

path p,q end

specifies that only one of p and q can be called. These two forms of synchronization can be
combined in one expression.

Path expressions are not adequate to express partial orders in the way when-blocks express
them. Consider the following example. The dependences among the procedures p, q, r,and s
are such that q and r must follow execution of p, s can be executed after q and r are completed,
and q and r can be invoked in any order. When-block constructs allows us to choose q and r in
any order, whichever is requested first, after p is completed. However, in path expressions, we
have to enumerate all possible total orderings in order to represent the partial order. In other

words, we can write the path expressions as:

path p;(q;r,r;q); s end
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select
when conditionl = accept entryl
or when condition2 =- accept entry2
or ...
else statement

end select

Figure 4.21: Ada select statement.

This is not practical since number of enumerations is exponential in the number of procedures.
Finally the caller process blocks which further limits the concurrency.
Ada

In Ada, synchronization amongst concurrent processes is achieved with the rendezvous mech-
anism. This mechanism of Ada is heavily influenced by CSP and Distributed Processes. Two
processes, a caller and a server, synchronize when the caller calls a particular entry in the server,
and the server issues an accept statement to receive the call. The nondeterministic choice of
accepting requests comes from the select statement. Figure 4.21 shows the select statement.
When the server reaches the select statement, it evaluates the conditions (guards). If one or
more conditions are true, then one of them is selected arbitrarily, and the rendezvous occurs
with the corresponding caller.

Dagger is more powerful, within the context of adaptive selection of requests, because, in
Ada, the caller process blocks until the server accepts and completes the request. In addition,
the server may also block. This happens when one of the conditions is true in the select
statement and the corresponding caller process is not ready for the rendezvous.

HeNCE

Partial orders are also used to express task graphs. HeNCE [8] (Heterogeneous Network
Computing Environment) is an integrated graphical environment for creating and running par-
allel programs over a heterogeneous collection of computers. It allows one to define dependences
among subroutines and a mapping of subroutines to processors. A task starts after all of its

predecessors have completed, and it returns its output to its successor tasks. Task graphs are
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only marginally related to Dagger because Dagger deals with coordination of subcomputations
within an object, and the subcomputations are on the same processor.
Message/Data Driven Models

More pertinently, the problem of local synchronization within a parallel object (process) has
been dealt with in other research including that on Actors, ABCL, TAM and macro dataflow.

The work on enable sets was done in the context of a broad problem that arises in concurrent
object oriented systems. This is the problem of how to inherit synchronization constraints.
When a subclass is created from an existing class, the individual methods are inherited as well
as synchronization constraints. Inheriting the synchronization constraints is not as easy. This
fundamental problem has been addressed by many other object oriented systems. A system
such as Dagger can be thought of as specifying synchronization constraints on the object to
decide in what sequence different methods can execute.

The original Actor model as described in [1] is purely message driven. The issue of synchro-
nization within an actor was addressed in [91] which proposed the enable set construct. Using
this, one may specify which messages may be processed in the new state. Any other messages
that are received by an actor are buffered until the current enable set includes them. Thus,
this construct is analogous to the expect statement in Dagger. However, there is no analogue of
the when-block, viz. a computation block, that can be executed only when a specific group of
messages have arrived. A more recent paper [37] supports a much more complex model which
subsumes synchronization of multiple actors depending on message sets. It should be noted
that Dagger/Charm provides a programming model that differs from Actors in many ways.
The discussion above focuses only on how they deal with message driven execution.

Other languages, such as CC++ [15], also address to some extent the issue of synchronization
within an object. In CC++, the par construct can be used to express partial orders. However,
CC++ is a thread based model and the actions in alternate threads (or par constructs) can
interleave at any granularity. In contrast, in Dagger a when-block, once it begins execution,
will finish its execution before control is transferred to another when-block in the same object.
Although there may be advantages of finer granularity of interleaving in a thread based model,
we believe that the Dagger method leads to cleaner code which reduces possibilities for bugs
because of interleaving. Secondly, Dagger does not depend on the availability of a threads

package on the underlying machine, and neither is it affected by inefficiencies of such a package.
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More recent work on ABCL, a concurrent object oriented system, includes synchronization
schemes. A object uses synchronizer constructs to express dependences between the object and
the set of messages that it can process. A synchronizer is a combination of guard expressions
and method sets (subcomputations in the object). The guarded expressions allow one to express
dependences involving multiple messages. Therefore, they are similar to when-blocks of Dagger.

The TAM compiler [30] built on Active Messages has some similarities to Dagger. In TAM,
as messages always enable the corresponding threads of an activation frame, there appears to
be no way of buffering unexpected messages. Counters and flags for synchronizing on arrival
of multiple messages are explicitly maintained. However, TAM is meant as the back end for a
dataflow compiler as opposed to a language meant for the application programmer. So these
inconveniences may not be of much consequence.

Macro dataflow [33, 41, 70] approaches share with us the objective of message driven ex-
ecution and local synchronization. Initially dataflow computations were defined with static
dataflow graphs. Dagger programs without reference numbers corresponds to this model. Later,
multiple instances of loop iterations and functions are handled in the tagged token model. The
Dagger programs with reference numbers corresponds to this model. Dagger can be thought
as a software implementation of tagged dataflow model on message passing machines. Much
of the past dataflow work in this area was aimed at special purpose hardware. Also, these
approaches were often meant to be used as a back-end for compilers. Thus the inconvenience
of maintaining counters and buffers explicitly is not considered significant. On the other hand,
Dagger is meant to be used at the programming language level. Dagger can be used to build
higher level systems also. Our experience with using Dagger as back-end for a compiler for a
data parallel language [66] indicates that Dagger might provide a more convenient intermediate

language than macro dataflow.
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Chapter 5

Simulating message-driven

Prograruns

In this chapter, a methodology for simulating message-driven programs is presented. The
information that is necessary to carry out such simulations is identified, and a method for
extracting such information from program executions is described. It takes advantage of Dagger
for simulations. As we will be describing, Dagger notation developed in Chapter 4 plays an
important role in the methodology for simulation. The simulation developed here is used for

studies reported in Chapter 6.

5.1 Introduction

An accurate performance prediction of parallel computations plays an important role in de-
signing parallel algorithms and machines. Many computational complexity models have been
derived for parallel algorithms. Although these analytical approaches are very useful to de-
termine the fundamental performance limits of parallel algorithms, they are often inadequate
to analyze parallel computations and the interactions between computations and parallel ar-
chitecture. Particularly, the load unbalance, scheduling, synchronization, and the dynamic
properties of parallel computations make analytical approaches too difficult, if not impossible,
for this purpose.

Simulation techniques offer a more realistic analysis in this regard, and they have been used

extensively to predict the performance of computers. There are various simulation techniques
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which are suitable for different purposes depending on the accuracy of the prediction desired and
the complexity of the simulator itself. For example, one can emulate the user code instruction by
instruction in the simulated environment. Although this method provides very accurate results,
the simulator is itself very costly in terms of both development and computation (for instance,
emulating every instruction of a parallel code on a 1000 processors). Another approach, which
makes simulations more affordable, is to use an abstract model of the computation instead of
emulating a specific computation. The model may contain some statistical properties such as
average number of messages sent, average computation size, etc. As no user computation is
executed during the simulation, the simulation time (and the computation power required) is
small. However, this approach too may not capture enough details of the computation and is
not useful to predict the performance of a specific program. Trace-driven simulation is another
approach which combines the advantages of both. Its complexity is in between and yet it is
powerful enough to capture the details of the computation. In a trace-driven approach, the
simulator uses the traces of a computation. A trace is a timely ordered sequence of events that
happened during the execution of a program. Traces are collected from an actual execution of
the program, and they are fed to the simulator. The simulator, then, executes these traces on
a model of the new system. Trace-driven simulation has been successfully used in studies of
uniprocessor systems such as memory designs, cache performance, [86], etc. In such studies, the
order of events in the system to be simulated has been assumed to be deterministic. Therefore,
the changes in the simulated environment affects only the length of the time interval between
the events, not the actual sequence of events.

Trace-driven simulation has been extended to study parallel computations also [23, 29, 58,
93]. However, application of trace-driven simulations to the study of parallel systems poses a
problem. The behavior of a parallel computation may change under a new environment. Some
of trace-driven studies of parallel computations considered SPMD style computations where the
behavior of the algorithm was the same despite the changes in the environment [58]. In some
other works, this problem has been addressed [23, 55]. These studies combined trace-driven
simulation and real execution of user code (hybrid method: trace-driven and execution-driven)
to study the performance of shared memory systems. This approach is difficult and expensive
since it requires execution of a part of user code during simulation. Doing the hybrid simulation

for message passing systems would be more difficult and impractical.
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Message-driven execution is based on the ability to run computations in different orders.
Therefore, the simulation of message-driven computations involves dealing with this difficulty.
In a message-driven computation, messages may arrive in a different order due to numerous
reasons in the new simulated environment. The execution trace of the program becomes invalid
at that point because the rest of the computation is different from the traces. In order to achieve
accurate simulation, it is necessary to reconstruct the remaining sequence of computation steps.
This is impossible, in general, without rerunning or interpreting the program instruction by
instruction as discussed in Chapter 3. In some special cases, using the knowledge about the
algorithm /computation model, the sequence of computations can be reconstructed.

In the next sections, we will describe a method to simulate a particular class of message-

driven computations accurately.

5.2 A sufficient condition for accurate simulation

In this section, we will define a special class of message-driven computation, and we will show
how a trace-driven simulation of these computations can be achieved accurately. In this compu-
tation model, a parallel computation is composed of processes that respond to messages directed
to them. A process has entry points at which messages are received and subcomputations that
are triggered by the availability of messages. These subcomputations (which belong to the same
process) are atomic in the sense that they execute sequentially until the completion.

The messages and subcomputations in a process can be visualized as a dependency graph.
As an example, consider the computation, which is expressed as a directed acyclic graph (dag)
G, in Figure 5.1. The vertices of G are subcomputations represented by rectangles, and message
availability points are represented by circles. A subcomputation may be executed if and only
if its immediate predecessor nodes are completed. If the predecessor is a computation node,
then it is completed if it is executed. If the predecessor is a circle, then “completed” means
that it received its message and its predecessor nodes are completed. Note that message arrival
and message availability are different from each other. A message may arrive at any time,
but it becomes available only after the predecessors of its corresponding circle node have been
completed. For example, the computation C1 in Figure 5.1 can be executed after a message has

arrived at E1 and the computation CO has been finished. The whole computation is a collection
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Figure 5.1: A dag computation

of such processes. Some of processes may exist on different processors that may execute in

parallel, or some of them may exist on the same processor that execute in a timesharing manner.

The execution trace of a program is a timely ordered sequence of events that happened
during the actual run of the program. As the runtime conditions (and communication delays)
change, the execution trace of the program changes also. In order to simulate a message-driven
program by trace-driven simulation, the simulator needs to reconstruct the traces under the
new runtime conditions. The new sequence of traces can be reconstructed from a particular
execution trace by using the dependence information. The dependences among the blocks and
messages forms a partial ordering. The blocks that are incomparable! in this order belong to
concurrent paths that may be executed in an arbitrary sequence. Depending on the order of
arrival of messages, we can construct a new total order of computations that does not violate
this partial order. Consider the previous example again. Let’s assume that message arrival order
in the real execution traces is (E0,E1,E2) and the order of subcomputations is (C0,C1,C2,C3).
During simulation in a new environment, assume that messages arrive in the order (E2,E0,E1).
When a message has been received at E2, the subcomputation C2 can not be executed because
C0 is not completed yet. Later, when the message for EQ arrives, we can execute C0. Now
the subcomputation C2 is ready for execution. However, in the execution trace, the next one
is the subcomputation C1. In the partial order, C1 and C2 are incomparable, that is, they
can be executed in any order. So we can execute C2. When E1 receives a message, then we
can execute C1 and then C3. So we executed the blocks in the order (C0 C2 C1 C3) without

violating the partial order.

!Two blocks are incomparable if neither is a successor or predecessor of the other.
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If the parallel computations are expressed in the model we just described, then
e dependences among messages and computations, and
e an instance of execution trace

are sufficient to achieve an accurate trace-driven simulation of such programs.

Dagger notation which was developed in Chapter 4 provides a way of expressing such de-
pendences. Instead of tracing the arrival and processing of messages, one can obtain somewhat
more refined traces by tracing the execution of individual when-blocks as explained in the
next section. Message dependence graphs generated at compile time along with runtime traces
of when-blocks are adequate to simulate message-driven execution under varying message se-

quences as long as the following condition is met:

e two when-blocks that are incomparable do not have data dependence between them (i.e.,

all data used in a when-block is defined in one of the predecessors only).

This condition is usually satisfied in most application programs since violation of this condition

would lead to indeterminate output.

5.3 Dagger programs and automatic trace generation

The traces that are necessary for the simulator can be produced in different ways. One way
is to generate them synthetically. Another way is to implement the program and get traces
from the real execution. In this section, we will describe how Dagger can help to produce the
required dependence information and traces.

The dependence information is extracted from programs by the Dagger translator. This
part is relatively easy because the language is designed to express such dependences.

In order to get the execution traces, the Dagger translator modifies the user program by
inserting the necessary code that will produce traces. A minimal set of events are defined that

contain enough information for the simulation. These events are listed below:
begin when-block : instance, when-block-id, time

send : destination(processor,instance,entry-id),length,priority,time
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broadcast : destination(instance,entry-id),length,priority,time
expect : instance, entry-id

ready : instance, condition-var

set multiple message entry entry-id, count

set condition variables condition-var, count

end when-block time

Note that, the reception of a message is not traced because that information will be created
by the simulator during simulation. The traces are collected in a buffer in the main memory.
When the buffer becomes full, it is written into a trace file. Every processor produces its own

trace file.

5.4 The parallel machine model

We have defined the computation (programming) model in the previous sections. In this section,
we will define a model for the parallel machine on which these computations are to be simulated.

Despite the large diversities among the parallel machines, they have a common property:
accessing remote data takes longer than accessing local data. The machine model, which will
be described here, emphasizes this property. In this model, a parallel machine is a collection of
complete processing nodes interconnected by a communication network as shown in Figure 5.2.

Each node consists of a processor, a local memory, and possibly a communication processor.
The communication processor interfaces the processor to the network. It can access the local
memory and interact with the network without blocking the processor, therefore it releases the
processor from most of the communication-related tasks. The network provides communica-
tion between any two processor nodes. In reality, there exist various communication network
structures with different topologies and communication protocols. From our point of view, the
network provides data transfer with a latency that may depend on the network load in an
arbitrary fashion, and it has a finite capacity.

Communication between two processes involves a number of steps (and delays at each of

these steps). We will explain these steps by an example which is depicted in Figure 5.3. In this
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Figure 5.2: The parallel machine

P1 I |

Figure 5.3: Sending a message

example, Process P sends a message to process P5. At time A, P; starts sending the message.
The processor spends oy time units for the send operation. Then the communication processor
interacts with the network and spends g, time units. After [ time units, the message arrives at
the destination node. The receiving communication processor receives the message, and after
gr time units, the message becomes available to the processor. The receive operation takes o,
time units at the processor.

The total delay that a message experiences, or the time between the process issues a send
operation, and the message becoming available for the receiving process, is the sum of these
delays:

os+gs+1+g-+or
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symbol | definition
P number of processors
minimum time difference between handling of two messages by the receive
gr communication co-processor
minimum time difference between handling of two messages by the send
9s communication co-processor
0y the overhead incurred in receiving a message by the processor
05 the overhead incurred in sending a message by the processor
) latency of the network which depends on network load.

Table 5.1: Machine parameters

The sender processor is blocked only o, time units (similarly the receiving processor is blocked
o, time units). During the other parts of the delay, the processor is free to perform computa-
tion. Similarly, a coprocessor is blocked by gs (or g,) time units. This limits the amount of
and the number of messages a processor can inject and receive from the network per unit of
time. Therefore, a message-driven computation can tolerate the g; + [ 4+ g, part of the remote
information access delay.

Each of these parameters has a fixed part and a variable part that depends on the size of

messages. As in many studies, we chose to model each of the parameters as:

a+ fn

where « is the startup cost, § is the time per data item, and n is the number of data items in
the message. The network latency has been modelled by one more factor — the network load —
in addition to a and . Table 5.1 lists the communication parameters.

In addition to these parameters, the model includes capacity limitations similar to those
described by [21] for a more realistic approach. The network has a finite capacity. This is
modelled by blocking the sender communication processor if the volume of messages traveling
in the network is above a threshold. The sender communication processor has a finite buffer to
hold messages deposited by the processor also. If the sender runs out of buffer space, then the
processor is blocked. These capacity constraints may cause deadlocks during the simulation (for

example, when a circular dependency forms among the processors and all of them run out of
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Figure 5.4: Message queues

buffers). Deadlock can happen rarely, and the simulator does not try to avoid such situations.
This model subsumes the LogP model presented in [21].

Before discussing the simulator in the next section, some brief description of the message
queues in the model within the context of message-driven execution will be useful. Due to the
asynchronous (or nonblocking) nature of the communication, messages are queued at different
states. Figure 5.4 shows the various message queues in the machine model. The coprocessors
have FIFO queues for incoming and outgoing messages. The processor, on the other hand, has
two message queues. One is the incoming message queue that holds the messages sent by the
coprocessor, and it is managed by the native operating system, typically by a FIFO strategy.
The second one is the scheduling queue, which is operated by the Charm runtime, and is not
necessarily a FIFO queue (it may be a LIFO or prioritized queue).

The processor can be visualized as two processes with a producer-consumer relationship.
The first process fetches messages from the receive-queue and puts it into the scheduling queue.
The second one is the user process which picks the next one from the scheduling queue and
processes it. The scheduling queue is necessary in order to apply different scheduling strategies

within the context of message-driven execution.
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Figure 5.5: Simulation system
5.5 Simulator

In the previous sections, we have established that the dependence information and traces of the
computation blocks (when-blocks) are sufficient for simulating message-driven simulation. In
this section, we will discuss the design of the simulator.

The simulator consists of three major components: the preprocessor, the parallel machine
simulator, and the trace interpreter. A simulation session, as shown in Figure 5.5, starts with
the preprocessing of the execution traces. The output of this stage then is interpreted by the

the trace interpreter on the simulated parallel machine model.

5.5.1 Preprocessor

The Charm/Dagger programming system allows us to use multiple module compilation, i.e.,
independently compiled Dagger programs can be linked at runtime. The Dagger translator
produces a separate dependence information for each module. Therefore, these individual de-
pendence information and the runtime trace information are reconciled, and a single dependence
graph and trace information are produced. In addition to this, the preprocessor converts all
timing information to relative times. The traces from Dagger programs contain absolute times.

For example, a when-block trace with absolute times might be as:

when-block instance A started at time ti
send message B at t2

when-block instance A ends at t3
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BEGIN <p,b,ior> <t>

beginning of a when-block trace which is identified by
the quadruple <p.b.i,r>, with elapsed time t

SEND <p,bir> <I> <prio> <t> <c>

Send a message to the entry <p,b,i,r> of length I
with priority <prio> after t time which blocks the

processor ¢ time

BROADCAST <p,b,i,r> <I> <t> <c> | Same as send

EXPECT/READY <b,ir> <c> An eX.pect/ready stfeLtement for <b.i,r>, elapsed time
for this call was ¢ time

SET_ENTRY <b>, <v> initialize the multiple entry variable b to v

SET_COND <b>, <v> initialize the condition variable b to v

END End of when-block

Table 5.2: Events in a when-block trace
The simulator, on the other hand, uses relative timing;:

when-block instance A elapsed time t3-tl
send message B at t2-til

when-block instance A ends

After the preprocessing, a when-block record in the trace information forms one entity. The
simulator reads a when-block record at a time and processes it. The format of the entries in a
when-block record is listed in Table 5.2. The events are identified by a quadruple <p,b,i,r>
where p is the processor number, b is the when-block the event is happening, i is the instance,

and r is the reference number.

5.5.2 Parallel machine simulator

The simulator uses an event-list based approach to simulate the machine model. An event
contains event-time, event-type, and other information depending on the event type. The events
are kept in a heap. There is one entry for each processor and coprocessor in the heap. Each
entry contains a sorted list of events that are to happen on that processor or coprocessor. The
time stamp of the heap entry is that of the earliest time event in its list. The simulator removes
the next event from the heap and processes it until the heap becomes empty. The coprocessor
events handle the message send and receives. They contain the necessary information about the

communication including message destination, length, priority etc. The processor events are
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either user events (a when-block) or system events. The system events handles the the incoming
message queue in the processor. The processor continuously fetches messages from the message
queue and puts into the scheduling queue. If the message queue is empty, the next message
from the scheduling is fetched and processed. If that message triggers a when-block instance,
then the when-block record is read from the trace file and the when-block trace is interpreted.
After the when-block is finished, the priority is given to the system events to transfer messages

from the message queue again.

5.5.3 Interpreting the traces

Interpreting traces requires modelling of the Dagger runtime system. The simulator has to
schedule when-blocks based on the arrival order of messages in the same way Dagger does. The
simulator models Dagger by maintaining three major queues: scheduling queue, wait-queue,
and ready-queue. All of the incoming messages are buffered in the scheduling-queue. The
management of this queue can be FIFO by default, or it may use other queuing strategies. The
simulator supports LIFO, prioritized FIFO, and prioritized LIFO strategies. The prioritized
message scheduling can be used in certain applications to decrease the execution time. The
wait-queue is a list of when-block instances waiting for some messages or completion of other
when-blocks. This queue is necessary because a when-block may depend on multiple messages
or when-blocks. When dependences of a when-block instance are satisfied, it is moved from the
wait-queue to the ready-queue.

When the processor fetches a message from the scheduling queue, it emulates the Dagger
runtime to process the message. It checks the dependency graph to determine if any when-
block instance depends on this message. If so, then it checks the wait-queue to see if the
when-block instance already has been created, otherwise it creats the when-block instance and
puts it into the wait-queue. If the arrival of the message causes one more when-block instances
to become eligible for execution, those instances are put in the ready-queue for execution. If
there are multiple when-block instances in the ready-queue, the first when-block instance from
the ready-queue is executed by default. However, this queue can be managed differently along
with the scheduling queue. The trace record of the executing when-block instance is fetched
and the events belonging to the when-block are executed in the same sequence. Note that the

trace contains events that denote sending of messages and synchronization. The local time of
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the processor is incremented by the appropriate delay of each action including blockings due
to network load. At the end of the when-block interpretation, dependences are inspected to
detect if any other when-block instance is waiting for the completion of the completion of the
current when-block.

The cost of management of the message and when-block queues are reflected in the simu-
lation time also. The cost of receiving a message and transferring it to the scheduling queue
is already represented by the o, in the machine model. The processing of the messages in
the scheduling queue, creating a waiting when-block instance and initiation of a when-block

execution, are represented by the parameters d,,, d,,, and d.
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Chapter 6

Performance studies

In the previous chapters, the potential benefits of message-driven execution were established.
Techniques to predict the performance of message-driven programs under different architectural
assumptions were developed. This chapter investigates the performance benefits. In particular,

the following issues are addressed here:

e When does message-driven execution improve performance?

e How much does message-driven execution help (i.e., quantify the benefits of message-

driven execution on a range of programs)?

o What are the factors that affect the performance of message-driven programs?

The studies in this chapter were conducted with a few synthetic benchmarks and a few real
benchmarks. The SPMD and message-driven formulation of the benchmarks were compared to
determine under which conditions message-driven execution is desirable.

The studies can be grouped as follows:

e real machines,

simulation studies to determine the effect of network latency and bandwidth,
o the effect of random variations in the latency,

e the effect of a coprocessor on the performance of the selected problems.
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While studying these benchmarks, it became clear that the usual criteria of minimizing
the completion time and reducing the critical path that are used in algorithm design are not
exactly suitable for message-driven programs. Relevant and appropriate criteria in this context
are developed in the context of an example in Section 6.5.

Message-driven programs are characterized by their ability to process one of many possible
messages at a given point in time. When more than one message is available at a time, which one
should be chosen? This decision is embodied in the scheduling strategy. A natural scheduling
strategy is the FIFO strategy. In the FIFO strategy, messages are processed in the order they
arrive. However, intelligent application-dependent scheduling strategies can often improve the
performance of message-driven programs further. The prioritized scheduling thus combines the
benefits of adaptive scheduling (with message-driven execution) and optimal scheduling. These
issues are explored further in Section 6.6.2. For certain high priority messages, interrupt-driven
preemptive scheduling may be used. The potential performance impact of such scheduling is
examined via simulation studies in Section 6.6.1. Conclusions derived from the performance
studies are summarized in Section 6.7

In the simulation studies, the parameters that are used to describe various parts of the

communication delays are as follows:

Network delay a,; + 10,
Processor overhead o, 4+ nj,

Coprocessor overhead o, + nf3.,

The processor and coprocessor delays are the same for receiving and sending operations.

6.1 Description of benchmarks

This section describes the benchmark algorithms that have been selected to conduct the perfor-
mance studies. The selected algorithms were implemented in message-driven and SPMD styles
using the Dagger language. The traces from the machine runs of these programs were used in

simulation studies. The algorithms can be grouped into four classes:

e The first group consists of synthetic benchmarks, which are prototype algorithms that

contained features that create opportunities for overlap.
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e The second group contains the concurrent reduction operations. Reduction operations are
very common in many computations. The global communication nature of the reduction
operation creates idle times in processors that cause performance degradation in parallel
applications. Many algorithms with reduction operations have been modified to reduce
this bottleneck. Among them, asynchronous reductions [83] and pipelined reductions [79]
can be counted, as well as reducing the number of reductions by combining a few of
them together [18]. Due to the widespread necessity and importance of such reduction
operations, the concurrent reduction benchmark was chosen to represent this class of

computations.

e The third group is the core part of a parallel implementation of a CFD algorithm -

Harlow-Welch [51], in which different numerical techniques have been covered.

e Finally, another numerical algorithm, Conjugate Gradient (CG) method has been studied.
The CG method also involves global, reduction-like operations. Some work has been done
to decrease this bottleneck [79, 18]. We will use a model of a variant of CG method[79]
(simulating its computational and communication pattern) in which the reductions are
pipelined and examine what performance improvements occur if the proposed algorithm

is implemented in message-driven style.

6.1.1 Synthetic benchmarks

Two benchmark programs were developed to demonstrate the advantages of message-driven ex-
ecution. Although these computations are synthetic, they reflect possible practical applications
(particularly large applications). The purpose of the synthetic computations is to examine and
quantify the performance advantages of message-driven programs in situations where opportu-
nities for overlap exist (in situations where dependences force a single thread throughout the
computation, SPMD will clearly perform equally as message-driven execution). The synthetic

computations, Wave and Mlib, are explained below.

6.1.1.1 Wave

The Wave program models a computation where every processor has some work to do by

itself. From time to time, one of them needs a global operation (involving other processors and
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when loop : { for(i=1;;i++) {
data = produce(); data = produce();
LIB::deposit(libid,data,i); deposit(data,i);
if (my_turn()) if (my_turn())
LIB::wave(libid,i,myid,consume) ; {
send_self msg(loop,++1i) wave(i);
expect(loop,i); consume (i) ;
} }
else
public consume(i) collaborate wave(i);
int i; }
{1}
(a) Message-driven (b) SPMD

Figure 6.1: Synthetic benchmark Wave (a) message-driven (b) SPMD.

communication). In the model, each processor does some work iteratively. At each iteration,
each processor produces some data. At a particular iteration, one of the processors consumes
the data that can be computed by a parallel computation M involving all the processors in that
iteration. Assuming that processors logically form a 2-D mesh and data dependences are such,
computation M is accomplished by a diagonal wave that starts at processor 0 and sweeps all the
processors. In order to propagate the wave, a processor receives two messages from it (north
and west side, for instance), processes them, and sends messages out in the wave direction
(south and east). This type of dependency pattern is common in many parallel computations
such as triangular systems [52]. The fragments of the message-driven and SPMD code for this
example are listed in Figure 6.1.

The message-driven code has a when-block that contains the code to produce and deposit
data in every iteration. If it is the processor’s turn to collect the data across processors, it
calls a module (LIB::wave) that performs the wave operation. The call specifies necessary
arguments such as module, instance, and return address as discussed in the message-driven
libraries section (Section 4.3). Then the processor continues with its local work produce() for
the next iteration, while the wave is going on concurrently. Note that other processors also
initiate waves at different iterations. When a wave is completed, the wave module informs the

initiator processor by calling the function consume(). The same computation in SPMD style
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is presented in part (b). The code produces the data and deposits it. However, the interface to
the wave computation is different from the message-driven case. The processor that needs the
result of a wave computation initiates it and waits for its completion in order to process the
result. All the other processors collaborate in the wave operation that is initiated by another
processor, and then this is done by calling the function collaborate(). When the wave reaches
the processor, the processor processes and propagates it, returns from the collaborate call, and

only then it can continue with its own computation.

6.1.1.2 Mlib

Mlib benchmark models computations which that invokes two or more independent algorithms.
Each algorithm itself has computation and communication phases. In the Mlib program, a
processor performs some local computation and calls a number of library computations, each
of which requires communication across processors. After all the library computations are
completed, the same procedure is repeated. The library computations are independent of each
other. For this benchmark, each library computation is assumed to have the same structure on
each processor. On every processor, Mlib module calls the component of the library computation
on the same processor. The library component (i.e., the library code that is executing on
a particular processor) sends a message to another component (such that every component
receives a message) and performs a local computation. It repeats the same sequence interacting
with a different component and returns the result to the caller.

The partial listing of the message-driven and SPMD programs are listed in Figure 6.2 for two
concurrent library computations. The message-driven program performs its local computation
— comp () —, calls the two libraries, and waits for the result in order to continue with the next
iteration. The SPMD program calls the library computations in a fixed sequence and the calls
are blocking type (as discussed in Chapter 4). Notice that each library computation by itself
involves no idle time except that caused by network latency (if computation phases of the

libraries are uniform).

6.1.2 Concurrent reductions

Many application programs involve multiple global operations (and their associated pre- and

post- computations) that are independent of each other. In traditional SPMD programs, a
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when loop : { for(i=1;;i++)

comp () ; {

LIB1::request1(1libidl,i,myid,11); comp() ;

LIB2::request2(1ibid2,i,myid,12); i++;

expect(l1,i); expect(l2,i); a = requesti(i);
} = request2(i);
when 11,12 : { c = f(a,b);

¢ = £(11->,12->b); }

i = GetMyRefNumber();

send_self msg(loop,++i)

expect(loop,i);
}

(a) Message-driven (b) SPMD

Figure 6.2: Synthetic benchmark Mlib (a) message-driven (b) SPMD.

global reduction adds a barrier: all processors must arrive at the barrier before any one is
allowed to proceed beyond the barrier. Here, the barrier created by the global operations are
completely artificial. It is simply an artifact of the blocking style of control transfer embedded
in the underlying SPMD programming model. The next benchmark that we discuss illustrates
the performance advantages of message-driven execution in this context.

This example is abstracted and modified from a real application — a core routine in par-
allelized version of a molecular mechanics code, CHARMM. Each processor has an array A of
size n. The computation requires each processor to compute the values of the elements of the
array and to compute the global sum of the array across all processors. Thus, the i** element
of A on every processor after the operation is the sum of the i** elements computed by all
the processors. In the traditional SPMD model, this computation can be expressed with a
single call to the system reduction library (such as gshigh on Intel/Paragon) preceded by the
computation of the array on every processor. Alternatively, one can divide A into k parts, and
in a loop, compute each partition and call the reduction library for each segment separately.

A sample SPMD code for this computation is listed in Figure 6.3-(a). Each call to the
reduction library is a blocking one, i.e., the code cannot initiate the local computation belonging
to the block before receiving the result of the current reduction. Therefore, in either case, each

reduction call makes the processor wait until the reduction is complete.

97



for(i=0; i<k; i++) {
computel(i);
gshigh(x[i] ,n/k,temp) ;
compute2(i);

(a) SPMD

when next_segment :
computel (i=GetMyRefNumber());

FmaxRedn:deposit(redn id,x,y,MyRefNumber () ,reduction done,my boc_id);
if (i++< k) {

SendSelfMsg(next _segment,i) ;

expect (next_segment,i) ;

}
public reduction done(i) int i; { compute2(i); }

(b) Message-driven

Figure 6.3: Concurrent reductions (a) SPMD (b) message-driven.
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However, the computations for each partition are completely independent. In particular,
the computations of the next k items (i.e., the next partitions) do not depend on the result of
the reduction so that they could be started even before the reduction results from the previous
partitions are available. With this (message-driven) strategy, one process that has just finished
computing a partition is willing either to process the result of the reduction of any previous
partition or compute the next partition. Thus the wait for reduction results for a partition is
effectively overlapped with the computation of other partitions. The message-driven code is
listed in Figure 6.3(b). This code utilizes the concurrent reduction library. The call deposit
initiates a reduction with the reference number i. When a reduction i is completed, the
reduction module calls the reduction_done function which performs the post-computation.

The library handles multiple reductions simultaneously with distinct reference numbers.

6.1.2.1 Estimated completion time

As the reduction involves a critical path of at least log p messages (either via a spanning tree
or via a virtual hypercube-topology based algorithms), the idle time on all processors is pro-
portional to logp and to the size of A. An approximate expression for the completion time for
the SPMD model can be written as:

k

tspmd = nt; + (nt, + ka + nf)logp

where t; is the computation time per data item, ¢, is the reduction computation time per data,
« is the communication startup time, p is the number of processors, and (3 is the communication
cost per data item being sent.

The time to completion for the message-driven case is given by:

15 g =nt 4 nt, + ko + (a4 (B +1,)7) logp

> 3

where 1, is the overhead per partition in a message-driven execution model. This overhead
includes context switching, scheduling, and dispatching of the messages in addition to the
overhead introduced at the user level algorithm. Overlapping is reflected by the fact that the
communication term is only proportional to the size of one partition (%) instead of the size of

the whole array (n). In effect, one is required to wait only for the result of the final reduction
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Completion Time

Number of Partitions

Figure 6.4: Pipelining and effects of overhead.

(for the last segment). One pays for this benefit with the overhead ¢, because of the larger
number of messages involved. The effect of the overhead is illustrated in the Figure 6.4. The
completion time is plotted as a function of the number of segments k for various values of the

overhead. The completion time for the message-driven algorithm decreases up to k = k' where

B+ 1) logp
lo

K=
and then starts to increase.

6.1.2.2 Actual machine results

In this section, we will present some real time performance comparison of these two schemes.
First, we will show the completion time as a function of k. In Figure 6.5, the result of the
reductions of size n = 16384 is plotted for 64 and 256 processors on ncube/2. The behavior
of the algorithms closely follows the expression derived previously. For this particular case,
the message-driven algorithm does better than the SPMD one-partition case (which is the best

SPMD case) up to 32 partitions on 64 processors, and a little bit better for the 256 processors.

The performance benefits of the message-driven algorithm is more significant if we compare

them for a fixed k. Figure 6.6 depicts the completion time versus number of processors for
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Figure 6.5: Concurrent reductions: effect of number of partitions on NCUBE/2.

k = 8. The problem size per processor 4096 words (n). As the number of processors increases,
the reduction operations take more time, and the message-driven execution tolerates this latency

effectively.

6.1.3 Harlow-Welch

Harlow-Welch is a fractional step method [64] to solve 3D unsteady incompressible Navier-
Stokes equations. As a preliminary part of this research, a parallel implementation of this
method was carried out, which is described in [48]. A brief description of the parallel algorithm
is given here. The computational domain involves uniform grid spacing in one direction and
nonuniform on the other two directions. The algorithm consists of multiple time-steps. The
basic computations done at each time step are given in Figure 6.7. At each step, intermediate
velocities are calculated, then FFT is applied on the uniform axis. After FFT, n independent
2D linear systems (penta-diagonal) are solved, and an inverse FFT operation is performed
along the uniform axis again. Finally, velocities are corrected. The computational domain is
partitioned into rectangular boxes which extend along the uniform axis as shown in Figure 6.8-
(a). Due to this decomposition, FI'T steps become local operations. The steps (a), (¢), and (e)
require communication. The communication requirements of (a) and (e) are negligible because
they require nearest neighbor message exchanges only once per time-step. However, the step (c)
requires much communication, because n linear systems have to be solved, which are distributed

as in Figure 6.8-(b).
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Figure 6.6: Tolerating latency: concurrent reductions on NCUBE/2.

(a) compute intermediate velocities
(b) perform FFT

(c) solve n 2D systems (planes)

(d) perform inverse FFT

(e) correct velocities

Figure 6.7: One time step of Harlow-Welch algorithm.

processor i

" plane1

a) 2D Partitioning b) xy-planes

Figure 6.8: Decomposition of the computational domain.

102

plane O



Fach of these systems are regular, sparse systems (penta-diagonal). Three methods will
be considered to solve these independent planes: Jacobi, Gauss-Seidel, and Stone’s method
(which is a strongly implicit method). Multiple independent systems and the selected solution
methods possess communication patterns common to many applications; these are nearest
neighbor communication (and synchronization) in rectangular meshes, reductions, and wavelike
computations (solution of triangular systems). Therefore, the result of these experiments is

likely to be applicable to other computations.

6.1.3.1 Jacobi relaxation

Jacobi’s method is a very common iterative scheme which is used in solving a system of linear
equations. The easy and efficient parallelization of the method makes it a prototype parallel
algorithm. Despite these advantages, the method’s convergence rate is slow; nevertheless, its
communication pattern (model) is common in many iterative solvers.

The Jacobi’s method calculates the values of the unknown vector at iteration n+ 1 by using
their values from iteration n. For equations from partial differential equations discritized by the
five-point stencil (the one which we have for instance), the calculation of a point u?j‘H involves

four neighbor points. For a simple Laplace equation on the uniform unit grid for example, the

n+1

value of a grid point u;;"" at iteration n + 1 is the average of its neighbors at iteration n:

n+1l _ n n n n
w = (g gy oui)/4

The parallel implementation [75] is straight forward. For five-point stencil and mesh-based
decomposition, each processor exchanges the boundary points with its neighbors and calculates
the next iteration in parallel. This requires four neighbor messages. After every iteration a
convergence is performed to determine if the solution has been reached. The convergence test
requires a global operation across processors, such as sum or max type of reduction operations.
The algorithm continues until the solution is reached.

In our problem, there exist multiple such systems (one for each plane). A simple implemen-
tation is to combine all the equations and apply Jacobi’s method. In this implementation, every
iteration basically has four phases: for all planes, a) send boundaries, b) receive boundaries,

¢) calculate, d) and do the convergence test. If message transmission time is longer than the
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when boundary : |
refnum = GetMyRefnum() ;
update(Partition(refnum) ,boundary messages) ;
LIB:start reduction(libid,temp,refnum,myid,recv_redn);

}

recv_redn(refnum) {
if (not_converged()) {
send boundary(next_iteration(refnum));
expect(boundary,next iteration(refnum));

}
}

Figure 6.9: Jacobi message-driven code.

time the cpu spends on sending the messages, then it must wait idly in order to continue with
the calculation. Similarly, during the reduction operation, it must wait for the result of the
reduction. In order to utilize these idle times, we can partition the equations and solve them

in a pipelined manner. Figure 6.9 illustrates the pipelined message-driven code.

6.1.3.2 Gauss-Seidel relaxation

Gauss-Seidel method is another iterative scheme to solve systems of linear equations similar
to Jacobi’s method. However, the calculation of a point u?jﬂ uses the previously computed
values in the same iteration. Therefore, with the natural order of unknown points, Gauss-Seidel
method is not efliciently parallelizable. For the five-point-stencil case, however, reordering of the
unknowns can result in an efficient parallelization of Gauss-Seidel method. One such reordering
is the red-black ordering [75].

A standard parallel implementation of the Gauss-Seidel with red-black ordering is very sim-
ilar to the Jacobi’s implementation. At each iteration, first red boundary points are exchanged,
and each processor updates its black points. Then the black boundaries are exchanged and each
processor updates its red points. At the end of the iteration, a convergence test is performed.

In the Harlow-Welch context, the algorithm can be pipelined as in the Jacobi case. Figure 6.10

illustrates the pipelined message-driven code. We will call this version Red-Blackl.
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when red : {
refnum = GetMyRefnum() ;
update _black(Partition(refnum) ,boundary messages);
send_black _boundary(refnum) ;
expect(black,refnum) ;
}
when black : {
refnum = GetMyRefnum() ;
update _red(Partition(refnum) ,boundary messages) ;
LIB::start reduction(libid,temp,refnum,myid,recv._redn);

}

recv_redn(refnum) {
if (not_converged()) {
send_red boundary(next_iteration(refnum));
expect(red,next_iteration(refnum)) ;

}
}

Figure 6.10: Red-Blackl message-driven code.

Note that in order to calculate the points belonging to a particular color, not all of the
four boundary messages are required. We can reorganize the grid points to introduce more
concurrency (this reorganization is pictorially shown in Figure 4.8-(a), Dagger Section 4.2).
Here, the grid is divided into four regions and whenever the two messages arrive that a region
depends on, then that region is updated. In the black point update phase, either of quarter
B11 or B22 can be calculated in any order. Then R12 or R21 can be calculated in any order
(depending on message arrival times). The code for this algorithm is very similar to the previous
one except that we have four when-blocks, one for each quarter. SPMD implementation of the
algorithm typically specifies the execution order of the four quarters statically. A natural order
would be B11, B22, R12, and R21 on every processor. However, this schedule has a problem.
A particular quarter, say B11, receives boundary values of R21 from the north neighbor and
boundary values of R12 from the west neighbor. Since every processor computes first R12, then
R21 one after the other, B11 always waits for two-quarter update time. This can be solved with

a better scheduling strategy (assuming computation and communication times are constant and
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uniform). In the new scheduling technique, the order of updating the quarters is alternated
for each row of processors. The even rows (the processor row number starts from zero and the
topology is a 2D mesh) follow the order B22, B11, R21, and R12, and the odd rows follows the
complementary order B11, B22, B12, and B21. With this schedule, the idle times created by
the natural (default) order are eliminated. This version will be referred as Red-Black2 (natural

order scheduling if not specified).

6.1.3.3 Stone’s method

Both of the previous methods have one common characteristic; they used previously computed
grid points to calculate another unknown point. In our case, this required only nearest neighbor
communication. In this section, a different type of method will be applied to the equations that
we want to solve. This method — Stone’s method — is a strongly implicit iterative method [88].
Due to its implicit nature, the parallel implementation of Stone’s method requires global com-
munication. In order to express the computational structure of the parallel implementation of
Stone’s method, the sequential method itself is explained briefly below.

We want to solve a system of linear equations Az = b, where A is sparse. In order to solve
this system, A is factored into lower and triangular matrices L and U respectively. However, if
L and U are not sparse, then solving LUz = b would be computationally expensive. In Stone’s
method, A is replaced by A+ N such that L and U matrices have the same sparse structure as
A (the corresponding lower or upper parts). Without entering into details of the method, the
resulting iterative procedure is given as follows:

By defining

" =b— Az"

the iterative procedure can be written in the following form:

LU = 7
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down wave up wave

Figure 6.11: Dependences of the Stone’s method.

At each iteration, we solve lower and upper triangular systems

Lw=r

U,Un-l-l - w

xn—l—l — xn + T]n—}—l
Pl = b Ag™H

until it converges to the solution.
Parallel implementation of Stone’s method

Note that, at each iteration, a lower triangular and an upper triangular systems are solved.
Given the 2D decomposition of the grid points in our problem, the dependences among the
subdomains during the solution of these equations are illustrated in Figure 6.11. (The details
of these equations are skipped. The important point is the computational and communication
structure of the parallel method as far as understanding the simulation studies in this chapter.)
The solution of the lower triangular system sweeps the processor diagonally (downward wave) as
shown in Figure 6.11 part (a). The wave starts at the upper-left processor. A processor receives
the boundary values from its predecessors, solves its local points, and sends its solutions to the
successor processors. When the wave reaches the lower-right processor, the solution of the
upper triangular system is started (up wave) as illustrated in Figure 6.11 part (b).

The utilization of processors in this algorithm is very low since only the processors on the

wave are active. The existence of multiple planes creates the opportunity, on the other hand, to
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pipeline the waves belonging to different planes. In the pipelined implementation, the upper-left
processor solves the points belonging to the first plane and sends the boundaries immediately
to its successors. Then it solves the points in the second plane while its successors work on the
first plane.

The pipelined implementation can be expressed in both SPMD style and message-driven
execution. Pipelining and message-driven execution are orthogonal to each other. The SPMD
model can equally benefit from pipelining also. Many algorithms were improved by pipelining
their computations in SPMD style [52]. However, in our case, there is one difference between
these two implementations. Remember that there exist multiple (and independent) waves
going backward and forward. An SPMD algorithm would typically have to specify a static
order to process these waves. The natural order would be: a processor first processes the
forward waves belonging to the planes 0,1,...,n then the backward waves belonging to the
planes in the same order. The message-driven style, on the other hand, adaptively chooses
the waves depending on the message arrivals and message scheduling strategy. This gives a
clear advantage to the message-driven execution over SPMD style for the following reason:
the SPMD implementation will not propagate the back waves unless all the forward waves are
processed in a particular processor. Also note that the SPMD version will not be able to exploit
pipelining if the tridiagonal solver code is implemented as a library, whereas the message-driven
version will not lose any performance due to the library usage. This makes the message-driven
implementation even more advantagageous than the SPMD one. In order to see the performance
differences among these three implementations (i.e., one partition, pipelined message-driven,
and pipelined SPMD), expressions for their estimated completion times are derived and given
below.

Let p be the number of processors, n be the problem size per processor, ¢, be the processing
cost per data item, £, be the communication cost per data item, ¢, be the overhead per plane,

and k be the number of planes. The completion time for the one-partition case is given by

tone—partition = (4\/]_) - Q)R(tp + tc)
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Figure 6.12: Stone’s method: effect of pipelining.
the completion time for the pipelined message-driven implementation is given by
. 2(nt, + kt,) if (nt, + kt,) > Z(4y/p — 2)(t, +tc)
pipelined—md —
2(4yp—2)(ty + t.) + (nt, + kt,) otherwise
and the completion time for the pipelined SPMD implementation is given by
3(nt, + kt,) if (nt, + kto) > Z(4y/p — 2)(t, +tc)

tpipelined—spmd =
24P —2)(ty + t.) + 2(nty, + kt,) otherwise

The estimated completion times for these three implementations are plotted in Figure 6.12.
The graph (a) plots the completion time versus number of planes (partitions) for a fixed problem
size, number of processors, and overhead. As it is seen in the graph, both of the pipelined
versions perform much better than the one-partition implementation. In addition, the message-
driven program outperforms the SPMD version. In graph (b), the completion time is plotted
against the problem size (i.e., the size of the domain per processor) for different values of k.
The larger the k, the flatter the completion time curve. However, overhead per partition also
pushes the curve up for larger values of k.

These programs were implemented and the actual performance results also measured. Fig-
ure 6.13 shows the results obtained on the ncube/2. Column (a) presents the results for the

algorithms that we described above on 4, 16, and 64 processors. As the number of processors
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increases, the time for a wave to complete its computation increases. Therefore the advantage
of pipelined implementation becomes stronger. As the derived expressions showed also, the
pipelined message-driven performs better than the corresponding SPMD program.

In the analysis and description of the computational structure of the Stone’s method, we
ignored the reduction operations. If we are required to perform a reduction operation for each
iteration, then the message-driven program would compute a separate reduction for each plane
(total k reductions). On the other hand, the SPMD program would perform one combined
reduction (for the best SPMD result). If it were to compute reductions separately, it would
loose the benefit of pipelining. Therefore, the overhead of k£ reductions increases the completion
time of the message-driven program. Nevertheless, the message-driven program outperforms
the corresponding SPMD in certain regions (the best performance regions at the bottom of
the curves) as shown in the graphs in Figure 6.13 - (b). The partial code for the pipelined

message-driven Stone’s method is shown in Figure 6.14.

6.1.4 Conjugate Gradient

Conjugate Gradient (CG) method is another commonly used technique to solve systems of
linear equations. Much work has been put into parallelization of CG methods on parallel
machines. In a parallel implementation of a CG method, there are two types of operations
that require communication: matrix-vector multiplication and inner products. Each iteration
of the CG requires one matrix-vector multiplication and two inner products. In the case of
sparse diagonal systems (such as the one we solve) and mesh-based data decomposition, the
matrix vector products require nearest neighbor communication as in the Jacobi’s method. The
inner products are performed along a spanning tree similar to convergence test in the Jacobi’s
method.

Inner products act like a barrier between iterations and cause idle time in processors. They
also cause many cache misses on the shared memory machines as they sweep the memory. Many
researches have given methods to diminish the performance loss due to inner products [25].
Some of these methods attempted to reduce the number of barrier points by combining the
inner products. Another way is to pipeline them as the iterations continue. Van Rosendale [79]
proposed a reorganized CG method in which the inner products at iteration n are needed

in the iteration n + k. The reorganized CG has some extra computations proportional to the
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when downv : {
refnum = GetMyRefNumber();
forward(Partition(refnum));
expect(up_d,refnum);
propagate_down(refnum) ;

}

when upd : {
refnum = GetMyRefNumber();
backward(Partition(refnum));
propagate_up(refnum) ;
update(Partition(refnum)) ;
reflect x(refnum);
expect (down x,refnum) ;

}

when down x : {
refnum = GetMyRefNumber();
residue(Partition(refnum));
LIB: :reduction();

}

recv_reduction(refnum)
if (not_converged & & first node) {
start_down(next_iteration(refnum));
expect(down_v,next_iteration(refnum));

}
}

Figure 6.14: Stone’s method message-driven code.
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Number of Processors || CG CG-k scalar overhead || CG-k vector overhead
k=1 | k=2 | k=3 k=1 | k=2 | k=3
16 2219 || 1847 | 1626 | 1575 2178 | 1954 | 1907
64 2561 || 2043 | 1739 | 1652 2378 | 2079 | 1987

Table 6.1: CG results on NCUBE/2.

iteration n-k iteration n

e e

inner products

Figure 6.15: Dependences in the modified CG method.

lookahead parameter k. The author concludes that the sequential complexity of the reorganized
CG method is close to the CG method (because the additional work done in the reorganized
CG is scalar computations). However, it is reported that these modified CG methods may
have stability or slow convergence problem [25]. Nevertheless, we will consider the k step
lookahead variant of CG method, model its computational and communication structure (i.e., a
synthetic program which simulates a k-lookahead CG method), and investigate if such proposed
algorithms benefit from message-driven execution. The dependences between inner-products
and iterations are illustrated in Figure 6.15. For this purpose two programs were written': one
performing the regular CG method and one performing the k-lookahead CG method. Table 6.1
shows the results of runs on the machine ncube/2. The problem size was 32x32 per processor
and the times are for 100 iterations in mseconds. The results include the regular CG, modified
CG with scalar overhead (negligible), and vector overhead (k additional inner product). As

seen in the results, pipelining the inner-products decreases the completion time.

!Note that these programs are an emulation of a CG computation
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6.2 Effects of network latency

In this section, the result of simulation studies that were conducted to investigate the effect
of network latency (or delay) on the performance of the selected problems will be presented.
These studies were conducted on the SPMD and message-driven implementation of the problems
to investigate how the two approaches handle variation in the communication latencies. The
programs were run on a parallel machine and execution traces were gathered to be used in the
simulation.

In order to observe the effect of communication latency, the network latency and bandwidth
parameters (s, ﬁ) are varied while the other parameters are kept fixed. The frozen pa-
rameters include a,, acp, B3p, Bcp and the network capacity. In the experiments presented in this
section, a message of length n therefore takes o, + n3,e; time units (which can be overlapped
with computation). The completion time of the message-driven and SPMD programs with k
partitions (tf; g and tlgpm ; respectively) were plotted against network latency. In all simulations,

the time unit used is 100 nsec, and the simulated completion times are in 10® simulation units.

6.2.1 Synthetic benchmarks
6.2.1.1 Wave

Figure 6.16 plots the completion time of the Wave benchmark (4,4 and ¢,,,4) versus network
latency (ayet). The execution traces are from a run on 16 processors with 16 iterations. During
the simulation, computations produce(), consume(), and wave() are assigned 10000 simula-
tion time units. The network latency, ay.¢, is varied between 0 and 10000 units, and [,.; is set
to 1 time units.

There are two points that this graph shows. First, even in the absence of network latency
(et = 0), the message-driven Wave performs better than the SPMD Wave. This is because
Wave has inherent idle times in it due to the nature of dependences and critical path (al-
though B,.; = 1 introduces some latency, it is negligible since the messages are very short in
this benchmark). The time needed to propagate a wave one step is 10000 units (time for the
wave() function), and 16 steps are required to complete the wave (number of diagonal blocks
of 4x4 mesh). During one wave completion, only a small number of processors are busy at

a time. Therefore, processors experience idle times due to the dependences in the algorithm.
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Figure 6.16: Effects of network latency: Synthetic Wave.

Note that the SPMD version has to make a blocking receive call on all processors to cooperate
in the Wave computation. However, the message-driven program switches to other available
computations adaptively. These include production of data for subsequent iterations and han-
dling of other waves. In the message-driven case, there may exist multiple concurrent waves.
Thus, the message-driven program interleaves the computations of multiple waves along with
the computations of subsequent iterations (produce()).

Secondly, as the network latency increases, ¢g,,,4 increases at a faster rate than ¢,,4 because
increasing the latency causes longer wave propagation. The time i,,4 also increases but as
predicted in the analytical performance model in Chapter 2, its slope is less than the slope of

lspmd since it pipelines the waves.

6.2.1.2 Mlib

Figure 6.17 shows the completion time of the Mlib benchmark. The experiments were conducted
on 16 processors with 10 iterations. The motivation behind this example is to observe the
message-driven performance in the case of multiple library computations. Therefore, three
sets of execution traces are gathered with one, two, and three concurrent library computations
(k, number of concurrent library calls, 1,2 and 3). Simulation experiments are performed
by assigning the library computation phases 10000 time units and changing a,.; between 0

and 10000. 0, is set to 1 (the messages are very short) simulation units. The effect of
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Figure 6.17: Effects of network latency: Synthetic Mlib.

the bandwidth parameter is negligible since messages are very short in this benchmark (for
synchronization purposes), and therefore it is not varied.

At zero latency, the completion time of the message-driven and SPMD programs are the
same for all cases, k = 1,2,3, because Processors do not experience any idle time due to
communication, because the latency is zero. Also, they do not have any idle time due to
processing (unlike the Wave program), because the the library computation times are the same
on every processor (10000 units), and there is no load inbalance.

For k = 1, the completion time of message-driven and SPMD versions are equal and they
increase with latency because there is no other computation that can be performed during the
idle time caused by latency. For k = 2 and 3, the SPMD program starts performing more poorly
as the latency increases as expected. The reason is that there exist 2 or 3 concurrent activities
on each processor and the message-driven program overlaps the communication delays occurring
in one activity by executing another available one. When k£ = 3, the difference becomes more
significant for the same reason.

In the Wave problem, the SPMD program took longer than the message-driven one, even
at zero latency, due to the delays created by computations on other processors. Similar delays
may occur in the case of irregular or varying computation requirements. In the Mlib case, if
the computation times of the libraries vary across processors randomly, then we expect the

message-driven program to adapt itself to the variation and outperform the SPMD program.
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Figure 6.18: Effects of network latency: Synthetic Mlib with varying computation load.

In order to validate this observation, the same experiment is repeated by varying the times of
library computations on each processor. The phases of the library computations assigned expo-
nentially distributed times with a mean 10000. The completion time of the programs is shown in
Figure 6.18. Now, at zero latency, the message-driven program outperforms that of the SPMD,
because it overlaps idle times caused by delays on the other processors by scheduling the com-
putations adaptively. Due to the variations, SPMD can not make correct scheduling decisions
statically. We will show later (by examples) that further improvement in the performance of

message-driven programs is possible by employing priority-based scheduling strategies.

6.2.2 Concurrent reductions

Figure 6.19 shows the simulation studies for the concurrent reductions benchmark of size n =
2048. The traces were gathered from runs on 16 (a) and 64 (b) processors with various values
of k (number of partitions).

For different values of 3¢, the simulated completion time versus a,e; is plotted. Each
graph depicts the performance of message-driven and SPMD programs with different numbers
of partitions (k = 1,8 and 64). The mean value of computation blocks (when-blocks) are 73000,
15000, and 4800 time units for £ =1,8 and 64 respectively.

For k=1, the message-driven and SPMD programs perform equally, since there is only one

k

reduction. For a given k& > 1, the completion time of the message-driven program, {7 ,, is
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performance depends on the latency, number of processors and problem size. For this prob-
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lem environment, ¢

4 performs better than the best SPMD program. In general, as latency
increases or the number of processors increases, the message-driven program’s relative perfor-
mance improves (because those two factors contribute to the computation time of a reduction).

For k£ = 64, however, the message creation and handling overhead exceeds the benefits of

message-driven execution (except on 64 processors when §,.; = 10).

6.2.3 Harlow-Welch

Experiments were conducted for the pressure equation part of the Harlow-Welch on 64 proces-
sors using the various iterative techniques described previously. The size of the computational
grid per processor was chosen to be 8x8x64 (the whole grid was 64x64x64). The subdomain is

further divided into k partitions (1, 2,4, and 8). The simulated completion time of the programs,

k

spmd> is plotted for various values of a,¢; and [,¢.

tf;d and

6.2.3.1 Jacobi relaxation

Figure 6.20 shows the graphs of the simulated completion time against aye; for §,.=0,1 and

k

spmd- The mean when-block time is

10. Each graph plots the completion time tfnd and ¢
78000,41000, 22000 and 12000 time units for £ = 1,2, 4, 8 respectively.

The tipmd and ¢! , are the same, as expected, and they increase equally with the net-
work latency. When we partition the domain (thus pipeline the operations), the time curve of
message-driven program becomes flatter than that of the SPMD program. However, for larger
values of k, the increase in the overhead due to the increase in the number of messages pushes
the curve upward. For a given value of k, the performance of message-driven program is always

better than the corresponding SPMD program. Also, the message-driven program does better

than the best SPMD program (k=1) when §,.; = 10 and k£ = 2 and 4 (or a,, is very large).

6.2.3.2 Red-Blackl

Figure 6.21 shows the performance of the Red-Blackl implementation. The mean when-block
execution is 33000, 18000, 11000 and 6600 time units for increasing k£ = 1,2,4 and 8. The

graph plots only the message-driven completion time because the message-driven and SPMD
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programs perform the same for & = 1, and the message-driven one is always substantially better
than SPMD for larger k. In these graphs, tf;d will be compared to tffmd.

Under the same conditions, for £ > 1, the curve for message-driven tfnd catches up ¢! .
curve when [, = 10 and ay,e: = 10000. There are fewer regions where the message-driven
program performs better than the best SPMD (k=1) program as compared to the Jacobi’s
implementation. The reason for this is that we are creating four more messages (at each
iteration, the boundary values are exchanged in two separate messages of half size) and so the
average computation time per message is decreased (when the four messages arrive, only half of
the grid points are updated). Therefore, the total overhead increases (creating more messages).

In addition, the ratio of overhead to useful computation increases.

6.2.3.3 Red-Black2

Figure 6.22 shows the performance of the Red-Black2 implementation for the same Harlow-
Welch problem. The mean when-block time is 25000, 13000,8200 and 5300 time units for
k =1,2,4 and 8 partitions.

Compared to the Red-Blackl implementation, the performance advantage of message-driven
execution is higher in the Red-Black2 implementation. For k=2, the completion time of message-
driven is below the curve ¢! ,. The reason why it is performing slightly better than the Red-
Black1 is as follows: Red-Blackl updates a particular set of points, for instance red points, after
receiving four of the neighbor messages. Red-Black2, however, can update half of the red points
when two messages arrive, and the other half when the other two messages arrive. Therefore,

Red-Black2 has better chances to utilize the idle time created by boundary exchanges.

6.2.3.4 Stone’s method

Figure 6.23 shows the completion time for the Stone’s method within the Harlow-Welch ex-
ample. The mean when-block computation time are 63000, 33000, 18000, 10000 and 6300 for
k=1,2,4,8 and 16 respectively.

As we discussed in the problem-description section, the advantage of the message-driven
version of the pipelined Stone’s method comes from the ability to handle backward and forward
waves adaptively. Also, in the simulation results, the performance of the message-driven pro-

gram is better than that of the SPMD program for 4 and more partitions. However, both cases
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are affected equally by the latency increase as seen by the flatness of curves in the graphs. This
is because the SPMD program also utilizes pipelining, although in a static order. (Actually,
the message-driven program’s curve has slightly lower slope, but compared to the whole com-
putation time the difference is negligible. This difference will become larger for larger values of
pipeline.)

Note that in all of these experiments there was a reduction for convergence checking for
each plane. The message-driven algorithm does more reductions (one per partition) whereas
the SPMD algorithm does one (the reductions for all planes are combined into a single array
reduction operation). If the SPMD version is required to do the reduction separately, the barrier
created by the reduction will destroy the ability to do pipelining and will lead to extremely bad
performance. Only by assuming that the result of the reduction is not needed until the next
iteration, the SPMD program can combine reductions.

Unlike the concurrent reductions (Section 6.1), the multiple reductions do not lead to perfor-
mance benefits for message-driven execution because the adaptive pipelining behavior already
creates adequate opportunities for overlapping computation and idle time. The k& reductions
simply contribute to increased overhead. The better performance of message-driven program

is obtained in spite of this handicap.

6.2.4 Conjugate Gradient

Figure 6.24 shows the simulation results for the CG and modified CG method for lookahead
parameter k=1 and 2. The grid size is 32x32 per processor. Note that this size is significantly
less than the grid size in the Harlow-Welch examples. The boundary messages are very short
compared these examples. As seen in Figure 6.24, the effect of latency is much more visible
since the grainsize is relatively small. As expected, the pipelined version handles the delays in

the reduction better than the regular version.

6.3 Effects of coprocessor

In this section, the effect of a coprocessor is studied. In many parallel architectures, a major
part of the communication delay occurs in the network interfacing . The communication re-

lated processing during this phase can be performed by the processor itself. Alternatively, a
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Communication Parameters | Value

Qpet 1000

ﬁnet 1

ap + agp 1000, 10000
ﬁp + ﬁcp 1

Table 6.2: Communication parameters for the coprocessor experiment.

separate coprocessor may take part of the load from the processor [57, 83, 85]. Having a sep-
arate communication processor obviously increases the availability of the processor for useful
computation. Therefore, overall performance of parallel computations is expected to be better.
In this section, the impact of the coprocessor on the SPMD and message-driven programs will
be studied.

The experiments are conducted as follows: the network delay is kept constant. The sum of
the delay which takes place in the processor and communication processor is also kept constant.
However, the part of the delay that belongs to the processor and communication processor has
been varied. Table 6.2 shows the values of the communication parameters used in the simulation
experiments.

The simulation studies are conducted for the concurrent reductions, Jacobi’s method, and
Stone’s methods. Figures Figure 6.25 through Figure 6.27 show the result of the simulations.
The experiments are repeated for two different cases. In the first one (a), the sum of communi-
cation delays that belong to the processor and the coprocessor is set to 1000 units, and in the
second one it is set to 10000 units. The completion time of the programs are plotted versus to
the ratio of the delay spent in the coprocessor to the sum of processor and communication pro-
cessor delay (i.e., 0 < #—m < 1). For total cost 1000 (a), the effect of the coprocessor
is very marginal because the absolute value of the communication delay is small compared to
computation time. The message-driven version benefits for k=64 as the coprocessor takes load
of the processor.

For total delay 10000 case (b), the impact of the of the coprocessor is significant. As a larger
part of the communication cost is handled by the coprocessor, the completion time decreases for
both SPMD and message-driven programs. This is because the processor carries out less work.

The decrease in the completion time for the SPMD case may appear counter-intuitive at first
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(i.e., one may reason that message transfer time is fixed, therefore the SPMD computation will
experience the delay eventually). Indeed, an SPMD program with RPC-like communications
(i.e., every send is followed by an awaited response from another processor) will not benefit
from the coprocessor. However, SPMD programs with consecutive sends or receives, as well as
pipelined SPMD algorithms, will benefit from this because the coprocessor takes some of the
processing and the processor may continue with the next computation. The message-driven
programs benefit more, as shown in the results, since there exist more opportunities to utilize
the time freed up by the coprocessor.

Figure 6.26 shows the result for the multiplane Jacobi example. Here, the effect of the
coprocessor is more dominant (compared to the concurrent reductions) because the Jacobi
program sends four more messages per partition than the concurrent reductions.

Figure 6.27 shows the results for the multiplane Stone’s method. The completion time of
Stone’s method depends on the forward and backward waves in which the computation delays
play a more important role. The effect of coprocessors is visible with 8 and 16 partitions for both
message-driven and SPMD versions (slightly better for the message-driven case). Another point
in the Stone’s example is the k=16 case. With no coprocessor (i.e., the left end of the curve),
the £ = 16 case performs more poorly than the £ = 2 and 4 cases. This is because increasing the
pipeline length of a fixed computations (i.e., dividing into smaller tasks) increases the number
of messages. If processor time is used to deal with these messages, the total overhead exceeds
the benefit of pipelining (same as for the problem in pipelined implementation of Jacobi and
other benchmarks).

For large numbers of partitions (i.e., pipelined computations), the effect of the coprocessor
is significant as shown in these results. Pushing the communication cost to the coprocessor
helps improve performance of both SPMD and message-driven computations. However, after
some point, SPMD computations start to suffer from communication latencies, whereas those
which are message-driven will not suffer as long as some other task exists.

The coprocessor may sometimes become a bottleneck (at least in transient phases of the
program). The delays in the coprocessor bottleneck are analogous to remote information service

delay, which message-driven execution can handle effectively.
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Parameter | Value
Qnets Bret 1000, 10
ap, By 100, 1
Oepy Bep 100, 0.5

Table 6.3: Communication parameter settings in the variable latency test.
6.4 Random variations in latencies

In this section, the effect of variable delays in the communication latencies will be investigated.
Such delays may be caused by the load in the network; they may also be caused by other
unrelated factors on machines such as networks of workstations where the network resources
are being utilized by unrelated processes.

The simulation experiments are conducted as follows: the communication parameters are
set to fixed values as shown in Table 6.3. During the simulation, the message transmission times
are varied by adding an additional delay. The additional delay is an exponentially distributed
random value. The completion time of the benchmarks are plotted as a function of average
network latency (o) in Figures 6.28-b) through 6.32-b). The same experiments are repeated
with constant increase (instead of random variation) for comparative purposes and the plots

are shown in the same figures in part (a). Each graph plots the simulated completion time of

k

spmd> for a given k. The one partition SPMD

SPMD and message-driven programs, tfﬂd and ¢

1

spmd> 18 also plotted for comparison in applicable graphs.

time, ¢

Message-driven programs tolerate the variations in the network delays better. For a given
k, if we compare the behavior of the message-driven and SPMD programs under constant and
variable delays, we see that variation in latencies has more impact on the SPMD programs.
This result is not surprising. As expected, message-driven computations utilize the additional
idle times if possible.

The previous experiments were done with multiple partitions because the computations
with one partition do not present any opportunities for message-driven execution. However,
the message-driven Red-Black2 algorithm has concurrent computations even for one partition

case (for a particular color grid points, it can execute one of the two quadrants that belong

to that color). In Section 6.1.3.2, two static scheduling strategies for the Red-Black2, static
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Figure 6.28: Variable network latencies — Synthetic Wave.

and optimum, have been described (under uniform latencies and computations). Figure 6.33
compares the behavior of message-driven and SPMD Red-Black2 for one partition under con-
stant and random delays. As is shown in the graph, under constant increase in latencies, the
message-driven and optimum SPMD program perform equally or better than the non-optimum
SPMD program.

When variations are introduced in latencies, the message-driven program performs slightly
better than the optimum SPMD program. However, the difference is small compared to the
completion time. The reason might be that opportunities to be exploited by the message-driven

execution are limited.

6.5 Load balance versus critical path

As has been observed so far, the message-driven execution overlaps idle times of concurrent
computations successfully. This property leads to different algorithm design techniques for
message-driven execution. In an SPMD computation, the idle time which a processor expe-
riences depends heavily on the critical path of computations (which execute on some remote
processor or processors). Because the SPMD model can not effectively utilize the idle time
across multiple computations, the algorithms must be designed in such a way that the critical

path of computations is minimized.
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However, minimizing critical paths may not be always good for message-driven programs.
Consider a situation where a program can call two independent modules M1 and M2. When
running in isolation, the running time for M1 is ¢; and that of M2 is 3. In an SPMD program,
the two modules are called one after the other, and therefore the completion time for the caller
is t1 + 12 (as {1 and {3 are critical paths in M1 and M2 respectively). It is clear that one must
minimize the critical path to obtain good performance.

In a message-driven program, however, the completion time of the combined algorithm is
11 + 13 — toveriap, as discussed in earlier chapters. The overlapped time depends on a variety
of factors and may range from zero to min(¢;,%3). Therefore, it is feasible to change the
algorithms in M1 and M2 in such a way that the critical paths ¢; and {; are increased, while the
opportunities for overlap are also sufficiently increased, thus increasing t,yeriap and reducing
the overall completion time.

If M1 were to keep a particular processor busy for all its time ¢; and M2 also would keep
the same processor busy for its whole duration, then clearly the overlapped time would be zero.
Conversely, if the two modules utilize the processors in a complementary way so that the busy

processors in M1 are relatively idle in M2 and vice versa, then the opportunities for overlap
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are higher. Thus, load balance would seem to be another property of the algorithm that is as
important as the critical path, and one can consider increasing the critical path for decrease in
load inbalance.

This issue is brought to the surface by a study involving the concurrent reductions experi-
ment discussed in previous sections. To further understand this issue, a series of experiments

were conducted which are described in the next sections.

6.5.1 Load balanced spanning trees and message-driven execution

We create opportunities for a tradeoff between critical path and load balance by chosing variants
of the reduction algorithms. A reduction operation is generally implemented by using a spanning
tree to combine the data that reside on each processor. The spanning tree that was used in the
studies was a hypercube-specific spanning tree. It guarantees that a node and its immediate
descendants are its direct neighbours. The maximum branch factor on each node was 4. The
work done on each processor is proportional to the number of its children. The processors are
thus divided into five load groups: processors that have 0,1,....4 children. Another possible tree
is a similar tree with maximum branching factor 2. In this case, processors are grouped into
three load groups. If we compare those two spanning trees, the first one has shorter critical
path, but has more unbalanced load.

Experiments with these two trees were performed on ncube/2 on 64 processors. The concur-
rent reductions and multiplane Jacobi’s method were executed with different branching factors.
Table 6.4 shows the completion time of the concurrent reductions and the multi-plane Jacobi’s
program. In the concurrent reductions program, 64 concurrent reductions of 32 words in length
each were performed. In the Jacobi program, the data on each processor was partitioned into
8 segments (k=8). As shown in the table, the completion time of the message-driven programs
decreases as the branching factor decreases. On the other hand, the completion time of the
SPMD programs increase as the branching factor is reduced.

Although the critical path of the spanning tree with branching factor 2 is longer, the delays
on the critical path are overlapped with other computations. The more balanced load, therefore,
shortened the execution time. Figure 6.34 shows the individual processor utilization (simulated)
for the concurrent reduction program. The spanning tree with branching factor 2 has better

load balance. The grouping of processors into classes with approximately equal utilization (as
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Branching Factor | Concurrent reductions Multi-plane Jacobi

message driven | spmd | message driven | spmd
4 305 566 1159 1463
3 266 591 - -
2 230 656 1151 1576

Table 6.4: Effects of branching factor.
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Figure 6.34: Load balance of spanning trees.

seen on the figure) corresponds to their number of children in the tree. However, there exists
some load imbalance due to the leaf nodes. In the case of multiple reduction operations, this

imbalance can be further improved by using complementary spanning trees.

6.5.2 Complementary spanning trees for multiple reductions

In order to further reduce the load imbalance in concurrent reductions, one can use two sepa-
rate spanning trees. The leafl processors in a reduction operation can be an internal node for
another reduction operation which takes place concurrently. The multiplane Jacobi program
was modified to examine the effect of further load balance on the completion time. Two re-

duction library modules were programmed. The second one complemented the first one (i.e.,
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Branching Factor Hypercube ordering Natural ordering Complementary Trees

message driven | spmd | message driven | spmd | message driven

4 1157 1463 | 1224 1512 | 1138

2 1151 1576 | 1154 1575 | 1097

Table 6.5: Effect of complementary spanning trees.

leaf nodes in the first one were an internal node in the second one). Table 6.5 shows the result
of complementary trees for the Jacobi program. For simplicity, the complementary trees were
implemented using a natural sequencing instead of hypercube specific ordering (with wormhole
routing, the immediate connection is not that important in any case). The data for the hyper-
cube ordering are duplicated from the previous table for comparison. The completion time of

the multi-plane Jacobi goes further down with the complementary trees as shown in the table.

6.6 Effects of message scheduling

This section studies the effect of the message-scheduling strategies on the performance of
message-driven programs for selected cases. In message-driven execution, the runtime sys-
tem selects one of the messages waiting in the processor’s message queues to process next.
This selection, message scheduling strategy, has a direct performance effect depending on the
dependences among messages and computations.

The natural (default) scheduling strategy is to select the messages in the order they arrive
(FIFO scheduling). However, there exist some computations where the FIFO scheduling yields
poor performance. Another strategy is priorily message scheduling. In this strategy, the runtime
system selects the message with the highest priority from the message queue (messages that
have already arrived). If a message with a higher priority is allowed to interrupt the processor
which is processing a lower priority message, then the scheduling strategy is called preemptive

strategy.

6.6.1 Preemptive scheduling

Before discussing the impact of preemptive scheduling, we will present an experiment that led to

need for the preemptive scheduling. The experiment uses the message-driven multi-plane Jacobi
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program. This experiment compares SPMD and message-driven simulations, both based on a
trace of the message-driven execution of the Jacobi program (in previous experiments, SPMD
simulations were conducted on traces from SPMD executions).

The Figure 6.35 shows the result of this experiment. Simulations were conducted for various
number of partitions & = 2,4 and 8, and (8, = 0 and 10. The graphs plot the simulated
completion time of the SPMD simulations ( fized-order) and message-driven simulations (F1FO-
md) for a given k. The simulated completion time of the one-partition case, k = 1, is plotted
for comparison reasons.

For k = 2, the completion time for the fixed-order and the FIFO-md are almost equal. For
k = 4 the fixed-order simulation results in much better performance than the message-driven
simulation. For k = 8, on the other hand, the curve for the FIFO-md is lower and flatter than
the curve of the fixed-order. The results for £ = 2, and k£ = 8 are as expected. However, for
k = 4, it seems that the scheduling decisions made during the message-driven simulation are
not good.

A reasonable explanation for this behavior is that the reduction messages are delayed by the
computations (computations performed after receiving the nearest neighbor messages to update
the local points). In the case of & = 8, the performance of the FIFO-md is better because
the grainsize of these computations becomes small enough so that the reduction messages are
processed properly. In order to test this explanation, the simulator was modified to allow certain
messages to interrupt the processor. When a message interrupts the processor, the processor
suspends the current computation and processes the interrupting message. After the message
is processed, it resumes the suspended computation.

The same experiment is repeated with the reduction messages having the interrupt capa-
bility. The simulation results are shown in Figure 6.36. For £ = 2 and 4, the completion time
of the with-interrupts is much better than that of both FIFO-md and fixed-order simulations.
In addition, it tolerates the idle time better (the curve is flatter). For k = 8, with-interrupts
and FIFO-md perform equally (because there are no large computations to hold reduction

messages).

142



' ' ' ' ' T onepafifion +—

one partition —— FIFOmd -+
85| FIFOmd -+ 85 fixed order =
fixed order =
o 87 il o
E E
= [

. 7 -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Latency Latency
k=4
85 8
i )
E
|_
. 7 -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Latency Latency
k=28
-
85 e B 8
-~ & oo @R
T s eeeneeees oo ot
o 8T i )
E E
[ [
75 | 8
7r 8 7r
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Latency Latency
() B=0 (b) 8 =10
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6.6.2 Priority-based scheduling

In this section, priority-based message scheduling will be examined. First, the previous example
(interrupts) will be reexamined, and the same problem will be treated with the priority-based
scheduling. Interrupts, in general, make programming more difficult (necessity to use locks) and
introduce more runtime overhead (context switching). In this respect, priority-based scheduling
is more preferable. Secondly, the priority scheduling will be studied in another example. This
example involves the Harlow-Welch program. In the previous Harlow-Welch simulation studies,
the number of iterations across planes was assumed to be the same. However, the number of
iterations are often nonuniform across planes as reported in [48]. In this case, the performance
of the message-driven execution (with FIFO scheduling) can be improved using prioritized

messages.

6.6.2.1 Interrupts example revisited

The simulation studies of Section 6.6.1 are repeated by using priority-based scheduling. The
reduction messages are given higher priorities than the boundary messages (nearest neighbor
boundary exchanges). Now the reduction messages will be processed first in the case that both
reduction and boundary messages are in the processor message queue, but they will be delayed
if the processor is executing some user computation (even if that computation belongs to a
lower priority message).

The results are shown Figure 6.37. The simulated completion time of the FIFO-md, priority
message scheduling priority-md, and with-interrupts execution of the traces are plotted. For
k = 2, the priority-md performs equal to the with-interrupts until the communication latency
reaches a certain value. After that point, it deteriorates and performs similar to the FIFO-md.
For k = 4 and 8, priority-md and FIFO-md perform equally. These results show that priority

scheduling can be used to approximate interrupts for most cases.

6.6.2.2 Variable number of iterations and prioritized scheduling

Before discussing the application of priority message scheduling on the Harlow-Welch program,
the problem with nonuniform iterations across the multiple-planes will be demonstrated with

a simple example below.
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Figure 6.37: Reductions with higher priority.
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Assume that there are 4 planes. The number of iterations required in each plane is 4, 1,
1 and 1 (for the planes 1, 2, 3 and 4 respectively). Further assume that the computation per
iteration is ¢ time and it is uniform. Finally, let ¢ is long enough for messages belonging to the
next iteration to arrive.

Figure 6.38-(a) shows the FIFO scheduling for this example (assuming that all the planes
are ready for the first iteration). The chart in the figure depicts the order of planes processed
on a processor. In FIFO scheduling, the processor processes first iterations of planes 1, 2, 3
and 4. After that, only the first plane remains with 3 more iterations. The processor continues
to execute iterations of plane 1. However, after every iteration, it has to wait idly for messages
belonging to the next iteration. It cannot utilize this idle time, because there is no other
computation that can be done during the idle time.

Figure 6.38-(b) shows another schedule for the same problem. This time, the messages for
the first plane are given higher priority than the other messages. The processor processes the
first iteration of plane 1 and plane 2. During the computation of plane 2, the messages arrive
for (plane 1, iteration 2). After the processor has completed plane 2, it selects the first plane
instead of the third plane and executes the second iteration of plane 1. As shown in the time
chart, this schedule has no idle time, because there is always another computation to utilize
the idle time.

The same situation exists in the Harlow-Welch example (the number of iterations are nonuni-
form because they converge at different rates). A series of experiments was done on the multi-
plane Jacobi and multi-plane Stone’s method with nonuniform iteration loads. This load infor-
mation is from a real implementation [48] for the Jacobi case, and is expected to apply to the
Stone’s case. Experiments were made with both FIFO scheduling and priority message schedul-
ing. In the priority scheduling implementation, the priorities of the messages are calculated as
follows: the messages of a plane i gets higher priority than the messages of plane j, if ¢ has
more remaining iterations than j, based on predicted number of total iterations for each plane.

Figure 6.39-(a) shows the number of iterations per plane for the multi-plane (8 planes)
Jacobi example. Figure 6.39-(b) shows the number of active planes versus time for both FIFO
and priority-md case. The message-driven program was run on ncube/2 on 64 processors. As
seen in Figure 6.39-(b), the concurrency in the FIFO-md scheduling starts to decrease before

that of priority-md. The completion time of the FIFO-md is larger (although only slightly)

147



Schedule 1 Schedule 2

t1 L t2
gwagt :

i wat 12 3 4

1 2 3 4 (planes)

Figure 6.38: Two different schedules.

than the priority-md due to the lack of concurrency towards the end. The traces from these
runs are also simulated. Figure 6.40 shows the effect of latency on both scheduling techniques.
As shown in the graphs, the priority-based execution performs better. As the network latency
increases, the priority-based version utilizes better the idle time caused by the latencies (the
slope of the curve is lower).

The same experiment was repeated for the multi-plane Stone’s method. Figure 6.41 shows
the number of iterations per plane (total 16 planes). Figure 6.41-(b) shows the number of active
planes versus time for both FIFO and priority scheduling case. Again, the concurrency in the
priority-based message scheduling is higher and the completion time is shorter. The traces
from these runs were also simulated. Figure 6.42 shows the effect of latency on both scheduling
techniques. As shown in the graphs, again the priority-based execution performs better. As
the network latency increases, the priority-based version utilizes the idle time caused by the

latencies better (the slope of the curve is lower).
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Figure 6.43: Greedy scheduling example (a) FIFO (b) forced static scheduling.

6.6.2.3 Adaptive scheduling is not always good

We have seen so far that adaptive scheduling achieves better performance than SPMD’s static
scheduling. However, there are some cases where the adaptive scheduling may perform poorer
than the static one. Consider the example in Figure 6.43-a). Processor 1 has two computations
a and b. These computations can be scheduled any order depending on a’s or b’s message (m,
and my repectively) arrives first. Processor 2 has a computation ¢ which can start only after
b has been completed. Assume that first m, and shortly after m; arrives. At the time m, has
arrived, processor 1 enables the computation a. The completion time for this case would be
o + ty + t. because a finishes, then b starts, after that ¢ starts (¢; is the completion time of 7).
On the other hand, processor 1 can wait for my even though m, arrives first. When my, arrives,
it executes b and sends the message to processor 2. Now a and ¢ can be executed concurrently.
The completion time for this case is ¢, + max(t4, ).

The message-driven programmer must be aware of such cases just as the SPMD programmer,
who is aware of this critical path, and will force scheduling b before a. The message-driven
programmer can also forego adaptive scheduling in such cases. Dagger does not preclude the
expression of such scheduling decisions. For example, the computations ¢ and b can linearized

by issuing the expect statement for m, after completing b (Figure 6.43-b) ).
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6.7 Conclusion

We set out to determine and quantify the performance benefits of message-driven execution.
Briefly, the conclusions can be summarized as follows. Overall, the message-driven execution
imparts substantial performance benefits in a wide variety of cases. Message-driven execution
derives these benefits from its ability to adaptively schedule messages. Its performance benefits
do not come from the presence of communication latencies alone; they also arise because of the

idle times in individual subcomputations due to the critical paths and load inbalances.

1. In fact, for applications where the sole benefit for message-driven execution is due to over-
lapping communication latencies, the advantage is limited to a bounded region because
of the presence of overhead on one side and relative insignificance of the communication
latencies on the other side. The extent of this region depends on the particular application
and also depends on the technological parameters, such as the ratio of processor speed
to communication latencies. As this ratio will probably become worse in the future, even

this region is likely to increase its extent as faster processors are used.

2. Whenever there is irregularity and variance, either in the network latency or in compu-
tation times, etc., the message-driven execution adapts better and gives superior perfor-

mance.

3. This benefit is substantial when one has one or more independent subcomputations with

their own idle time.

4. The message-driven strategy also exploits the potential of a coprocessor better than an

SPMD style, as it can effectively utilize the processor time freed up by the coprocessor.

5. Prioritized scheduling can be used to exercise control over the adaptive scheduling offered
by message-driven execution, thus retaining the advantages of adapting message arrivals
while ensuring progress on important parts of computation. Using interrupts for certain
kind of messages such as reduction messages benefits the performance of message-driven
programs for certain applications (Section 6.6.1). The coprocessors can be utilized to

expedite the execution of such messages.
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In the discussion below, some of the conclusions stated above will be substantiated and
refined.

Multiple independent subcomputations

The most significant advantage of message-driven execution occurs when there are multiple
independent subcomputations within a parallel program. Suppose two parallel algorithms, A1l
and A2, are written in two modules, M1 and M2, such that the main program makes two
independent calls to M1 and M2 simultaneously. There are three cases in which advantages of
message-driven execution can be analyzed.

Case 1 is when the two modules are such that each individually has no idle time at zero
communication latency (for example, the Mlib program with uniform subcomputations). If two
such algorithms are composed using a message-driven model, then the performance advantage
comes only if there is a significant communication latency. So the combined algorithm can
tolerate the communication latency somewhat better than each individual algorithm. However,
this is often tempered by the overhead introduced by the message-driven execution. In this
case, there is a narrow range in which the message-driven execution can benefit.

Case 2 is when the two algorithms individually have variations in their subcomputations
(i.e., the time for subcomputations on different processors that belong to the same algorithm
may vary). Such situations may create unpredictable idle times on processors due to depen-
dences in the algorithms (for example, the Mlib program with non-uniform subcomputations).
In this case, message-driven execution helps, because it can adaptively switch between the
algorithms depending.

Case 3 is when algorithm A1l as well as algorithm A2 (or at least one of them) has signifi-
cant idle time (due to dependences) when run by itself even in presence of no communication
latency (for example, the Wave program). In such cases, message-driven execution has a major
advantage. It allows one to adaptively utilize the idle times within one algorithm for advancing
the other algorithm and vice versa.

Essential performance benefits of message-driven execution

It is important to note the difference between the essential advantages of message-driven
execution and stylistic or induced advantages of it. For example, in the Stone’s method, the
message-driven algorithm can be expressed by using extended SPMD by probing for the back-

ward messages. This will give an identical effect of the message-driven algorithm. However, one
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can not do this for concurrent reductions or for multiple library computations of the synthetic
benchmark. In SPMD style, once another module is called, the caller is blocked until the callee
returns. The only way to do this, in SPMD style, is to flatten the code (i.e., combine code for
multiple modules). Thus message-driven execution has an essential advantage that can not be
duplicated in SPMD program when overlap across multiple modulesa is involved.
Benefits of coprocessor

Many of the current machines such as the Intel/Paragon provide a communcation coproces-
sor. As the experiments in Section 6.3 show, the SPMD style cannot exploit the coprocessors

as effectively as the message-driven execution.
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Chapter 7

Conclusion

The objective of this thesis was to study message-driven execution as a mechanism for improving
the efliciency of parallel programs. In Chapter 2, by analyzing various contexts, the potential
benefits of message-driven execution was established, and it was observed that message-driven
execution can potentially lead to improved performance either in presence of idle times of
communication latencies or when multiple algorithms are composed where each algorithm has
its own idle time due its critical path and load inbalances.

To express message-driven programs, a good language is needed. It was argued that why
emulating message-driven style in SPMD programs is not a good idea. The Charm language
was presented as an example of a message-driven language that can solve this problem. How-
ever, using Charm was not adequate for this study for two reasons: a) in pure message-driven
execution style, it is difficult to express dependences and it is difficult to handle nondetermin-
istic message arrivals, b) trace-driven simulation (which was a major aspect of the study) is
not feasible (see Chapter 3). Therefore, a new notation, Dagger, was developed to express
dependences between subcomputations and messages within a single object. The Dagger lan-
guage has two basic constructs, namely ezpect and when-blocks, to express and enforce these
dependences. In Charm, when a message is received, it triggers a task (the code associated
with the entry-point). However, at that particular time, the task might not be ready to process
the message due to dependences in the computation. The ezpect construct solves this problem.
A subcomputation is triggered when a message for it arrives, and the message is allowed to

trigger it.
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Message-driven libraries are easier to compose into larger programs, and they do not require
one to sacrifice performance in order to break a program into multiple modules. One can overlap
the idle times across multiple independent module invocations.

The features of Dagger are also useful for trace-driven simulation programs. Simulation
of message-driven programs is difficult because the order of instructions executed depends on
many factors, and it changes as the machine characteristics change. If every instruction is to be
actually simulated (execution-driven simulation) then the simulation becomes too expensive.
Trace-driven simulation is a more efficient approach. However, trace-driven simulation is not
possible from execution traces only, because the traces do not have sufficient information about
the program to conduct simulation when the architectural conditions are different from the
conditions under which the traces were gathered. Dagger solves this problem and allows us to
conduct trace-driven simulations efficiently for a class of computations (see Chapter 5).

A simulation study was conducted involving a few synthetic benchmarks and a few taken
from real applications. The performance benefits of message-driven execution are enhanced
when there are variations in communication latencies or individual computations. The per-
formance advantages of message-driven execution are not limited to communication latencies
alone. If there are idle times in the individual algorithms, then message-driven programs are
able to overlap and utilize processors better in such cases. It was also shown that a communi-
cation coprocessor can be exploited much better by a message-driven program than an SPMD
program.

There are situations where message-driven programs may perform worse than SPMD pro-
grams. They typically involved greedy, adaptive scheduling of message-driven execution in-
terfering with the critical path. Many such situations can be dealt with by use of priorities
(prioritized scheduling strategies with a message-driven system). An extreme form of prioriti-
zationin the form of interrupts can be used in case of short computations on the critical path,
such as reductions. Finally, it is certainly feasible to express a static SPMD like dependence in
a message-driven language.

Criteria for designing message-driven algorithms were identified and were shown that they
tend to be somewhat different from those for SPMD algorithms. In particular, in SPMD pro-

grams, the critical path is the sole important criterion, whereas for a message-driven algorithm
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load imbalance also acquires substantial importance. This is because load imbalance affects the

degree of overlap one can attain with another independent algorithm.

7.1

Future work

Future work that this research suggests is listed below:

Reduction of overhead As observed in the performance studies, the overhead per message in

a message-driven system can be important in that it can offset the performance benefits
of message-driven programs for cases where the average grain size of the computation

(useful work per message) and the overhead are similar.

Both Dagger and Charm contribute to this overhead. At the Dagger level, the overhead
comes from two sources: a) the overhead of searching for a message or a when-block
instance in its queues for a given reference number and b) the overhead of the additional
code produced by Dagger. At the Charm level, the basic sources of overhead per message
are a) the allocation and deallocation of messages b) extra copy needed to transfer the data
from the message to the user data structure (in SPMD style, especially if one is dealing
with arrays, etc., the message can be received directly into user data structure if the
receive call is issued before the message arrives). All these sources can be effectively dealt
with. The current Dagger translator performs no optimization of the code it produces.
The searches involved in the queues can be speeded up by employing hashing. The Charm
message overhead can be overcome by exploiting the machine architecture and operating
system to eliminate extra copying. Optimization of both Dagger and Charm can further

enhance the benefits of message-driven execution.

Better language notation Dagger notation expresses the flow of control better than Charm

and handles synchronization among messages and when-blocks by maintaining counts,
flags etc (transparent to user). However, it is still a flat collection of when-blocks. The
flow of computation is still not as clear as in SPMD programs. For a common special
case where dependences form a structured partial order, one can think of a more intuitive
notation. Indeed, such a notation, structured Dagger, is being developed to address these

points.
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We expect that the inherent performance benefits and compositionality advantages of message-
driven execution will lead to its becoming a predominant style for writing parallel programs.
The research in this thesis strongly suggests that programmers contemplating writing large

parallel applications should seriously consider message-driven execution and message-driven

languages.
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