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Abstract. Graph coloring is an interesting problem that is intuitive and
simple to formulate, yet difficult to solve efficiently. The applications of
graph coloring are numerous, ranging from scheduling to solving linear
systems. Because graph coloring is computationally intensive, a parallel
algorithm is desirable. In this paper, we present a set of parallel graph
coloring heuristics and describe their implementation in an environment
supporting machine-independent parallel programming. The heuristics
are intended to provide consistent, monotonically increasing speedups
as the number of processors is increased. We present some performance
results that demonstrate the effectiveness of our heuristics and the utility
of our approach.

1 Introduction

The graph coloring problem involves assigning colors to vertices in a graph such
that adjacent vertices have distinct colors. Various formulations of the graph
coloring problem have been posed. The particular formulation we focus on is the
following:

Let G = (V, E) be an undirected graph with vertex set V' and edge set F
such that £ = {(u,v)|u,veV}. Given a set of colors C = {1,2,...,k}, find a
mapping o : V — C such that o(u) # o(v) for each (u,v)eE.

This problem is known to be NP-complete [5]. Because it is intuitive and sim-
ple to formulate yet difficult to solve, this problem has drawn substantial interest
over the years (e.g. the extensive work on the 4-Color problem [16] for planar
graphs or maps). Graph coloring is an important problem with applications in
register allocation, scheduling [1], the efficient computation of sparse Jacobian
matrices [4], and the parallel solution of large sparse linear systems [9, 10, 15, 17,
18]. Finding a coloring or determining that no valid coloring exists often involves
a large search which is computationally intensive. In this paper, we present an
efficient parallel algorithm and its implementation for the graph coloring prob-
lem. Our algorithm handles the case in which no k-coloring is possible, as well
as the case in which a coloring exists, which is the harder case to parallelize.
Our parallel algorithm incorporates many heuristics, including those aimed at
reducing the size of the search space and zeroing in on a solution quickly. It uses



a prioritization scheme to keep the parallel search focused on finding the first so-
lution. The algorithm is implemented using Charm, which supports small-grain
parallel objects with prioritized, dynamic load balancing. Charm also provides
portability, which means the algorithm can run on any one of the many machines
on which Charm is supported.

In Section 2, we present the search formulation and heuristics employed for
solving the graph coloring problem. Section 3 provides details of the implementa-
tion in the Charm parallel programming environment. In Section 4, we evaluate
the success of the heuristics, discuss the impact of grainsize control, and provide
some performance results. Finally, we summarize the results of the research and
offer some conclusions in Section 5.

2 The Search Tree and Heuristics

In order to achieve significant speedups in the solution of the graph coloring
problem, it is important to employ a variety of heuristics. In this section, we
first present the structure of the basic search algorithm, and then describe the
heuristics implemented to improve the performance of the search and evaluation
process.

2.1 The Search Tree

The basic structure of our algorithm is that of an exhaustive state-space search.
Exhaustive search is essential in order to report that no k-coloring is possible for
a particular graph. In contrast, many other heuristic methods (e.g. [2]) aim at
quickly finding a k-coloring if one exists. If these heuristic methods fail, it is not
clear whether a k-coloring does not exist, or simply was not found. Some other
approaches (e.g. [3, 7]) do not start with a fixed number of colors, but instead try
to produce a coloring with few colors, without any guarantees of optimality. The
computation of a state-space search leads to a search tree in which each node
of the tree represents a partially colored graph. The subtrees under each node
represent states derived from the current state. The leaves of the tree represent
states that cannot generate a new state — either a successful coloring, or a failed
attempt.

Given a node' n of the search tree representing a partially colored graph G,
one can generate its children as follows:

1. Select a vertex v that is not yet colored.
2. For each possible color for v, create a child node with a copy of G, updated
to reflect the new color of v.

! To avoid confusion in our terminology, we use the word “node” exclusively to refer
to nodes of the search tree, and the word “vertex” to refer to vertices of the graph
being colored.



A straightforward parallel formulation of this computation is obtained by asso-
ciating a (lightweight) process with each node. Generating children nodes then
corresponds to firing child processes. In this simple formulation, all the children
processes are independent and the parallelism is natural. However, the problem
is far from simple (i.e. “embarrassingly parallel”) because the issue of dynamic
load balancing must be addressed. The problem is even more difficult to effec-
tively parallelize if one is looking for a single solution (in contrast to looking
for all solutions). This is due to the speculative nature of available parallelism:
work done on one subtree is wasted if the solution is found in another subtree.
In order to achieve good performance, it is necessary to utilize heuristic methods
to control and direct the search.

2.2 Heuristics

Many heuristics are commonly used in sequential implementations of graph col-
oring [1]. It is easy to get good parallel speedups with poor heuristics, and very
difficult to get good parallel speedups with good heuristics. This is because us-
ing a poor heuristic typically leads to a larger, more regular search space. Good
heuristics lead to pruning of subtrees and generate significant variances in the
sizes of subtrees of a given node, contributing to an irregular search space with
potentially severe load imbalances.

In order to compete with highly effective sequential strategies, many sequen-
tial heuristics are incorporated in our parallel algorithm. These heuristics include
the following: pre-coloring, vertex removal, impossibility testing, forced moves,
variable ordering, value ordering, and detection of independent subgraphs. In
this section, we give a brief overview of the heuristics employed.

Pre-coloring and Vertex Removal The first heuristic aims at reducing the
redundancy in the search space, and is known as pre-coloring. Notice that col-
orings are equivalent under renaming. That is, given a particular successful col-
oring with k colors for the graph, there are k! colorings which are essentially the
same. The state-space search as described above will find all of these colorings in
distinct parts of the search tree, which is clearly wasteful. We reduce this redun-
dancy by identifying a large clique (a complete subgraph) of k or fewer vertices
and color these vertices arbitrarily with different colors. Ideally, we should find
the largest clique for this purpose. However, that itself is an NP-Complete prob-
lem. Instead, we choose to search for a clique with 3 vertices (a triangle), which
can be done by a fast, polynomial algorithm. As a heuristic extension, we could
search for larger cliques using a backtracking search within a fixed time bound.
(This extension was not implemented.)

The second pre-search heuristic is to check the graph for removable vertices.
A vertex can be removed from the graph if it has fewer neighbors than the total
number of colors, since it will have a color available to it regardless of how its
neighbors are eventually colored. Removed vertices are colored at the end of the
computation in a LIFO manner, i.e. the first vertex removed will be the last to



be colored and replaced. This is necessary because the removal of vertices can
cause other vertices to be removed which were not removable previously. For
example, Figure 1 shows that the removal of vertex A can allow vertex B to
be removed (the numbers next to vertices designate their assigned colors). As
shown in the figure, when the remaining graph is successfully colored, node B
will be added to the graph and colored before node A. (Both B and then A are
guaranteed to have a color available for them when they are added back to the
graph).

In addition to its use at the beginning of the search, this heuristic can also be
used in the middle of the search, when some vertices have already been colored,
in a slightly modified form: a vertex with U uncolored neighbors and with a total
of C different colors used for its colored neighbors can be removed iff U4C is
less than or equal to the total number of colors.

Fig. 1. The vertex removal process.

Impossibility Testing and Forced Moves During the search, it is possible
that a vertex could be found that has no colors available to it, i.e. no color can be
chosen that does not conflict with a neighbor. We eliminate this possibility while
generating children states for a selected node, by keeping track of the number
of available colors for each vertex. If, by coloring a particular vertex, one of its
neighbors is reduced to zero available colors, we do not generate this state. This
heuristic is known as impossibility testing.

This idea can be extended further, in that if a vertex is reduced to one
available color, we know what color it will be assigned, and can determine the
effects of that color assignment. The forced move heuristic is used to complete
all state information that can be deduced from such a situation. When a selected
vertex is colored and the availability of a neighbor is reduced to one, the color is



assigned. Of course, this can also cause another vertex to drop to availability of
one or zero. The forced move heuristic 1s made recursive to handle this situation.

Variable and Value Ordering For each state, we must choose the variable
(vertex) that will be assigned a color. Our variable ordering heuristic chooses
the vertex with the fewest colors available to it. Selecting a vertex to color
that has many colors available may lead to uncolorability of a more constrained
vertex later in the search. This ordering is essentially the same as the Saturated
Degree Ordering of the [1], except that we use this ordering in the context of a
backtracking state-space search, instead of a greedy non-backtracking algorithm.

The value ordering heuristic determines which color should be chosen for a
particular vertex under consideration. Since the color assignment to a vertex
potentially affects the colors available to its neighbors, the goal is to choose a
color for the vertex that will result in the state with the highest probability of
containing a solution. For example, in Figure 2, assume that A, B, and C are
not colored and we wish to select a color for A. Some choices of color for A
(cl, ¢2 and ¢4) reduce the number of available colors for B and C' and therefore
constrain the solution space, whereas choosing color ¢3 for A does not constrain
the available colors for B and C' at all. It is clear that choosing ¢3 provides a
higher likelihood of yielding a solution than the other choices. Generalizing from
this, our value ordering heuristic explores first the coloring that leads to the
smallest reduction in the number of available colors to the neighbors.

c3
. c Color for A | Neighbors |Heuristic | Rank Bit-Vector
Affected | Vaue Priority

c5 c2 cl | BadC 3 2 10
\‘ O
‘ c2 | C 4 1 01

T . c3
Q c3 | Neither. 5 0 00
c5
‘ c4 | BandC 3 3 11

Fig. 2. Updating neighbor availabilities when a node is colored.

Detection of Independent Subgraphs The search space for coloring a graph
of n vertices is potentially exponential in n. However, if the original graph is a
disconnected one, dramatic reduction in the search space is possible. For exam-
ple, if we notice that the graph given consists of two disconnected components,
each with n/2 vertices, the search space is exponential only in n/2. In this case,
one can look for a solution to each subgraph separately. If a solution for each is



found, then they can be composed into a solution for the whole graph. If there
is no solution for one of the subgraphs, then there is no solution for the entire
graph. The reduction in search time for unsuccessful searches is quite dramatic.
For n = 100, the time goes from a'°® down to a®°, for some a.

Even when the original graph is connected, one can still derive benefits based
on the above observations. Consider a graph with an articulation point defined
by vertex v. That is, if v is deleted, then the graph would partition into two
independent subcomponents. In this graph, after the vertex v is colored, the
two subgraphs do indeed become independent: colorings in one have no effect
on colorings in the other. Again, it is enough to find a solution to each partition
of the graph and compose them, or to prove that one of the partitions does not
have a solution.

Although it takes some effort to detect whether a graph can be split into
multiple independent partitions (this takes O(V + E) time), it is worthwhile
to carry out this check often, because the benefit of the potential reduction in
search space is substantial.

To check for such partitioning, one considers the subgraph of the original
graph that includes only the uncolored vertices. The key observation here is
that once a node is colored, its effects are fully localized in potentially reducing
the availability of colors to its neighbors. Its connections to its neighbors can
then be ignored.

In terms of a search space, this heuristic generates an AND-OR tree instead of
the pure OR tree that would result without this heuristic. The parallel processing
of such trees becomes more complicated, and is discussed in Section 3.5.

3 Parallelization and Implementation

Having presented the structure of the algorithm and described the heuristics
employed, we now provide details of the algorithm’s parallel implementation.
In this section, we first describe the programming environment in which the
algorithm was implemented. We then describe the basic search process, how
prioritization can be used to contain speculative parallelism, and how adaptive
grainsize control can be used to overcome the problem of large grainsize variance.
Finally, we discuss how we deal with independent subgraphs that arise during
the computation.

3.1 Charm

Charm is an object based, message-driven, portable parallel programming system
that runs on a variety of shared memory and distributed memory machines [11].
Charm, which is C-based, supports the notion of a chare, which is the encapsula-
tion of an object with functions operating on that object. A chare is similar to a
process or object in other programming paradigms. A chare can include private
and public functions which can be invoked by objects on the same processor.



Chares can also include entry functions which are invoked asynchronously from
a local or remote object.

Chares can be dynamically created, scheduled and distributed across proces-
sors. To pick a message for processing from the pool of available messages on
a processor, Charm supports user-selectable, message scheduling strategies, in-
cluding FIFO/LIFO and prioritized scheduling strategies. The programmer can
specify any one of a number of dynamic load balancing strategies that permit the
dynamic relocation of a chare after it is created but before it begins execution.
Some of the load balancing strategies also take the priorities of messages into
account. These strategies [23] not only balance load, but also ensure that higher
priority tasks proceed before lower priority tasks across processors, and memory
usage is balanced across processors. (While regular load balancing strategies try
to ensure that no processor is idle when there is work available in the system,
prioritized load balancing aims at ensuring no processor works on a low priority
task while a high priority task is waiting somewhere in the system.) As we will
see, prioritized load balancing is crucial to support our parallel graph coloring
algorithm.

Additional features supported in Charm include branch office chares and
informationsharing abstractions. A branch office chare (BOC) is a “global” chare
that has a representative branch on each processor. Branch office chares can be
used to implement distributed data structures, distributed services, and static
load balancing. Information sharing abstractions are also provided, including
readonly variables, writeonce variables, accumulators, monotonic variables, and
distributed tables.

3.2 The Node Process

The parallel state space search is encoded using the dynamically created objects
(chares) of Charm. Each node of the search tree (as described in Section 2.1)
corresponds to a chare. Each chare is given a partially colored graph adorned
with some additional information useful for implementing the heuristics. Each
chare must fire a number of children chares corresponding to multiple alterna-
tives available at this point in the search tree. This section describes the data
structures used and the procedure followed by this chare.

When a node is created, it receives a message from its parent containing a
state, which represents a partial coloring of the graph. The state includes the
following fields:

— an array color[] containing color information for each vertex
— the number of vertices not yet colored

— the number of vertices that have been removed

— an array containing the removed vertices themselves, and

— the depth of the node in the search tree.

There are also fields pertaining to handling independent subgraphs, but we will
defer discussing these fields until Section 3.5.



color[i] indicates the color of the ith vertex. If the vertex is not yet col-
ored, this value is negative. To assist in the variable ordering heuristic, color][i]
holds —1x(number of available colors) for an uncolored vertex i. To specify
the vertices that should not be colored (e.g. because they have been temporar-
ily removed from the graph as explained in Section 2.2), color[i] holds a special
positive value greater than k.

Notice that the graph itself is not passed in this message. The graph is a large
structure. Also, a large number of tree nodes (chares) are typically assigned
to each processor. Therefore, passing the graph in a message to chares would
consume excessive amounts of time and memory. Instead, we utilize the readonly
abstraction of Charm, which allows sharing of information that is obtained only
after the program begins execution and which does not change subsequently.
Note that the graph data structure is immutable once initialized, and that all
updates are made in the state representation discussed above. By making the
graph a readonly variable, all chares can reference the graph without needing to
send or receive it in a message.

Initiating the Search The main object on processor 0 initiates the search.
First, the input file (containing the graph information and the number of colors
to try) and the configuration file (containing the heuristics to apply and a value
for the grainsize threshold) are read and used to initialize the readonly variables.
Then, preprocessing of the graph is performed, consisting of a pre-coloring stage
followed by a vertex removal stage. For each vertex, the vertex removal routine
checks the color information array. If the vertex is uncolored then that vertex’s
uncolored neighbors are counted (not including any neighbors that were previ-
ously removed). If the count is less than the number k& of possible colors, this
vertex is added to the removed list. Because this action reduces the count for
each of this vertex’s neighbors, each vertex is re-examined to see if it can now
be removed. This vertex-removal stage is repeated until no further removals are
possible.

After pre-processing, the first state is initialized to a partially colored graph
and a chare is fired to begin its evaluation. As each state is evaluated, many
new states may be created. This process continues until a solution is found,
or no states remain. The latter condition is detected by a quiescence detection
algorithm provided by Charm [22].

The Node Algorithm When a chare begins its execution with a given state,
it carries out the following steps:

1. Use the variable ordering heuristic to select a vertex to color. With the in-
formation maintained in the color array, this can be done efficiently. We
simply select the vertex ¢ with the smallest number of available colors:
|color[i]| < |color[j]| for all j, with color[j] < 0.

2. Identify the possible colors for vertex . This is done by identifying #’s neigh-
bors using the static graph information and then checking each neighbor’s
color status in the given state.



3. Create a new state for each possible color, and copy the given state into
each. Also, set color[i] to a different feasible color in each new state. Update
color[j] for all uncolored neighbors j of i to reflect any changes in the number
of colors available to them.

4. Carry out forced moves and impossibility testing on each child state sepa-
rately. The child states shown to be uncolorable are discarded. Also, if any
child state represents a fully colored graph, the solution is reported.

5. If the search is not completed, rank the undiscarded children states using
the value ordering heuristic. For each child state, its heuristic value H is
computed as
H = 3" |color[j]| for all j such that (i, j)eE and color[j] < 0
(i.e. H is the sum of colors available to each neighbor of ). The children are
ranked in decreasing order of H, as higher H represents higher likelihood of a
solution being found in the subtree associated with that child (see Figure 2).

6. Fire a chare for each child node, with a priority assigned using the scheme
described below.

3.3 Speculative Parallelism and Prioritization

The search process as defined so far leads to speculative parallelism. If we fire a
chare for each of two subtrees of a node (which are executed in parallel by two
processors), the work done by one processor is wasted when the solution is found
in the other subtree. This speculative nature of parallelism leads to two problems
for parallel performance. First, the speedups are inconsistent from run to run, as
the number of nodes evaluated varies depending on the order in which they are
processed. Second, the speedups do not increase monotonically with the number
of processors. Adding a processor may sometimes lead to a slowdown if the new
processor ends up searching a futile subtree and creating more useless work for
other processors. Our objective then is to obtain consistent and monotonically
increasing speedups.

This problem was addressed by our earlier work [12, 20, 13] in the context of
other search problems. The intuitive idea behind this scheme is that if a parallel
algorithm approximates the sequence in which nodes of the search tree were
evaluated by the sequential algorithm, the speculative loss will be minimized
and consistent and monotonically increasing speedups can be obtained. To this
end, the idea of bit-vector priorities was developed?. Each node in the tree is
assigned a priority which is a bit-vector of an arbitrary length. Priorities are
compared with a lexicographic (dictionary) ordering with smaller lexicographic
values indicating higher priorities. The priority of the root node is an empty bit
vector. Given the priority of a parent node, the priority of each child is obtained
by appending bits corresponding to its rank to the parent’s priority. If there
are m children, the number of bits appended is [logm]. The appended bits are
the binary representation of the child’s rank. Figure 3 illustrates this scheme.

2 This scheme can be considered an optimization of a scheme proposed earlier by Li and
Wah for constraining speculative parallelism in branch-and-bound computations [14]



This scheme has an important property called the prefix property: despite the
fact that the number of bits appended varies from node to node, it guarantees
that no two nodes will have identical bit vectors. More importantly, the priority
of every node in the left subtree will be lexicographically smaller than each
node in the right subtrees. Thus, it provides an efficient left-to-right ordering
of tree nodes. Further elaboration of this strategy can be found in [21]. If the
parallel system adheres to these priorities, the search space is examined in a
characteristic “broom-sweep” manner from left-to-right, leading to a memory-
efficient, consistent and monotonic search process.

0010 0011

00000 00001 00010

Fig. 3. Priority assignments to children in the search tree.

Charm allows bit-vector priorities to be assigned to messages to prioritize
their scheduling for execution. The prioritized load balancing strategy provided
in Charm [23] closely adheres to priorities even on large distributed memory ma-
chines. Consistency and monotonicity are ensured by using bit-vector priorities.
Furthermore, using the heuristic values to rank the children before assigning
their priorities ensures that the search is globally focused on the most promising
parts of the search tree.

3.4 Adaptive Grainsize Control

There is an overhead associated with creation of a chare. This includes mes-
sage passing overhead, scheduling overhead, and load balancing overhead. For
an effective parallelization, the computation associated with each chare must be
sufficiently large in relation to this overhead. As a rule-of-thumb, the computa-
tions should be about 10-20 times more than the overhead. (This overhead in
Charm is about a few hundreds of microseconds on most of today’s machines.)
The work associated with a single node of the search tree is quite small, so we
need to aggregate many nodes into a single chare.



An effective means of controlling the grainsize is provided through the notion
of a cutoff. For every node given to a chare, it estimates how much work is in-
volved in completing the search beneath that node (i.e. fully exploring the search
tree under it). If the estimate is below a certain threshold, the computation is
carried out by a sequential procedure instead of firing the children nodes as
chares. Estimating the amount of work is hard in general. A reasonable heuristic
is provided by the number of nodes that remain to be colored. The more nodes
that remain, the more work that is likely to be required. The grainsize threshold
can be set in terms of this number. This was the heuristic we employed first for
controlling the grainsize. Notice that at the higher levels of the tree it creates
finer grainsizes — one node per chare. This in itself is not a problem, as long as
the average grainsize is sufficiently large, which is easy to ensure as the number
of leaves is usually larger than the number of internal nodes.

This grainsize control method works adequately for relatively regular trees
and/or a small number of processors. Beyond that, it runs into the following
problem: there is a significant variation in the size of subtrees produced by a
given grainsize threshold. This means that some grains are substantially larger
in size compared to the average. On a large number of processors, such grains
would hold back the computation until these grains are evaluated on some of
the processors. As shown later in the performance section, grainsizes larger than
40 times the average grainsize were observed in this situation. Although smaller
grainsizes are not a problem as long as the average is adequate, larger grainsizes
do create problems by lengthening the critical path and impacting the load
balancing strategy negatively. This is further exacerbated because one cannot
predict which grains will be larger, and the larger grains might be left until the
end when there is no other work to keep other processors busy.

To handle these situations, we developed another heuristic that adaptively
adjusts the grainsize. In this heuristic, every chare starts evaluating its given
state as if it were going to complete the whole search tree beneath it. Instead of
using a recursive procedure for this, it uses an explicit stack. It also keeps track
of the amount of work (measured in terms of the number of node expansions)
it has performed at any point in time. The heuristic uses a threshold defined in
terms of a number of node expansions. When the number of node expansions
exceeds the threshold, the chare selects a predetermined number of states from
the bottom of this stack, copies them into messages and fires a new chare for
each state. At this point, it also resets the amount of work done to zero, so that
the count can begin anew. The chare repeats this process until all the nodes
on the stack are exhausted, repeatedly shedding off a few nodes as new chares
as it does more work. (A variant of this strategy that we experimented with
splits all the available states on the stack into multiple groups, and fires a chare
for each group of states. In this formulation, each chare is given a number of
states, instead of just one, with which to begin.) This heuristic ensures that the
grainsize of a chare does not grow in an unbounded manner, because work is
continually shed from a large subtree.

This idea of adaptive grainsize control was defined and tested on simple



divide-and-conquer programs in our earlier work. It is also related to notions

defined by [6, 24].

3.5 Dealing with independent subgraphs

For simplicity, we have omitted any details pertaining to the multiple indepen-
dent subgraph heuristics in the discussion so far. We will now describe these
heuristics.

When a child chare notices that the graph represented by the states can be
partitioned into independent subgraphs after a particular coloring (by running
a simple connected components algorithm), it becomes an AND chare. An AND
chare fires the independent subgraphs as separate chares. Each chare is given a
state in which the nodes not belonging to it are marked in the color[] array by a
special value. The state message also contains the identifier of the parent AND
chare. The chares in each subtree use this identifier to report a solution to the
AND chare if and when they find one. When the AND chare receives a message
indicating a solution to one of its subgraphs, it must store the solution and termi-
nate search for any more solutions for this subgraph. The latter is accomplished
by sending a message down the tree. For this purpose, all chares maintain a list
of their children chares, and send a termination message to them when their
parent requests termination. The termination messages may never fulfill their
purpose if every object processes them only after spawning its children. To avoid
this infinite “kill-chasing”, we require all chares under the subtrees of an AND
node to request permission from their parents before spawning their children. If
the parent has not received a termination message when the request for permis-
sion is received, it will grant the permission and send this message down to the
children. This ensures that the termination messages can catch up with the node
expansions. The AND node waits for a solution for each of the subgraphs it has
spawned as a chare, and when each such solution is returned, it composes them
into a solution for itself. The AND node may itself be under another AND node’s
subtree, indicating further partitioning of partitioned graphs. In that case, the
AND node will send its solution to its ancestor AND node3.

The AND node also needs to know when one of its subgraphs does not have
a solution. In that case, it needs to terminate the search on the other subgraphs.
To detect this condition, every node in the subtree of an AND node reports the

? An alternative scheme for terminating search on futile subtrees is possible. In this
scheme, each child node of an AND chare is assigned a unique index. Every processor
maintains the status of all such nodes in a table. When an AND chare wishes to
terminate a subtree, it broadcasts a message to all processors which then update
the status in a table. Instead of requesting permission from their parent chares,
individual chares simply check the status of their subtree in the table directly. AND
chares which are descendents of other AND chares must still be terminated using
messages. The tradeoff between the two schemes depends on the number of nodes
for which status must be maintained. If the number is large, the cost of broadcast
outweighs the cost of sending permission messages, and the scheme described earlier
is better.



failure to find a solution in its subtree to its parent. This way, the AND node
eventually finds out about such failures from its children. Prioritization of AND-
OR trees is a more complex topic [21]. For this algorithm, we allocated identical
priorities to the children of the AND chare.

4 Performance Evaluation

We now discuss the impact of the heuristics and the importance of adaptive
grainsize control, as determined by our performance evaluation. The algorithm
is programmed in Charm (which runs on many shared and private-memory ma-
chines). Here we report some of the performance data on the Encore Multimax
with 8 processors in a shared memory configuration, and the nCUBE/2 with up
to 256 processors. To generate the input graphs, we used a random graph gener-
ator which takes the number of vertices and the number of edges as parameters.
Each generated graph, for a given value of k&, may or may not have a solution.
Only some of the example graphs in the original study [19] are shown here. The
characteristics of these graphs are shown in Table 1.

File Nodes|Edges|Colors|Solution
Example 4| 300| 1626 5| Yes
Example 7| 450| 2451 5| Yes
Example 8| 600| 2338 3| No
Example 9| 301| 4274 5| No

Table 1. Input file summary.

Our first set of experiments focused on evaluating the utility of various heuris-
tics. We found that the value ordering heuristic gave dramatic improvements in
performance for colorable graphs. The variable ordering heuristic was partic-
ularly helpful for uncolorable graphs. Typically, without these heuristics the
search would not complete in a reasonable amount of time on most of our test
graphs. The forced moves and impossibility testing heuristic also led to dramatic
improvements. As expected, pre-coloring reduced execution time for uncolorable
graphs. For example, the time for an uncolorable graph with 150 vertices and
854 edges with 4 colors decreased from 1289 seconds to 101 seconds on a single
processor run. The vertex removal heuristic led to less dramatic, but definite
performance improvements.

One of the interesting aspects of our experimentation was the extraordinary
success of the heuristics we use for colorable graphs. In most cases, a coloring
would be found in a short time — too short to be worthy of parallel processing.
As the focus in this paper is on parallel computing, we have included cases
where the search for a solution was not as fast. (Of course, it is possible that
the randomized generation of graphs leads to easily colorable graphs, whereas



real-life applications such as those mentioned in Section 1, are more difficult.
Our search program will be more useful the harder the graphs are to color.)

Table 2 shows the performance on a colorable graph (Example 4) on the
Multimax. All the speedups are with respect to the best sequential performance
obtained with the highest grainsize leading to a single chare doing all the work.
On eight processors, the speedup is approximately 7.2.

Processors|Chares| Execution Time
Time (sec)|per Chare (ms)

1 1 1440 1440177

2 1463 602 823

4 2138 311 582

8 2834 199 562

Table 2. Parallel speed-ups on a successful search on Multimax, for the graph of
Example 4.

Table 3 shows results obtained on the nCUBE/2. As this machine is large, we
show results only from 16-128 processors here. Runs with fewer processors would
require much longer times. Results from multiple grainsize settings are shown.
For example, a grainsize setting of 540 means that the sequential algorithm was
used when the number of uncolored vertices fell below 540 (out of a total of
600 vertices). Performance with a grainsize setting of 570 (leading to a mean
grain size of 59 milliseconds). seems to be the best, and the speedups were also
reagsonable. For example, on 128 processors the program was about 6 times faster
than on 16 processors.

| GSsetting | 540 570]  580] 585]]
Processors Execution Time (ms)

16 100907 94093 99954 193217

32 52187| 46182 62686 145633

64 28182| 26500 47837 129824

128 15648 16147 30022 96426
Statistic Statistic Value (across processors)
mean GS (ms) 30 59 436 2980
std. dev (ms) 11 82 991 6599
min-max GS (ms) 9-93|14-2411(17-8342| 17-39689
Chares 50552| 24075 2997 434

Table 3. Example 8 results on nCUBE/2.

One interesting aspect brought out by the performance data was that the
grainsize varied dramatically around the mean. This can be seen in the bot-



tom part of Table 3. For example, with the grainsize setting of 570, the grainsize
varies between 14 milliseconds and 2.4 seconds. That such variation leads to per-
formance problems was verified using the next experiment. For this experiment
(Example 9), another uncolorable graph was used. Figure 4 depicts the perfor-
mance using the Projections performance analysis tool associated with Charm.
The plot shows the percent utilization across 64 processors as it varies over
time. One can see that the utilization starts to drop from nearly 100 percent to
substantially lower values at about 33 seconds into the computation. Further ex-
ploration via Projections confirms that this is due to a few processors executing
large grain computations that remain. Even the average grainsize on individual
processors varied between 100 and 173 milliseconds.
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Fig.4. Projections view of overall performance for Example 9 with average grainsize
of 138 msec.

Using the adaptive grainsize control method described in Section 3.4, the
same program was run again. This led to a substantial reduction in the variance
of grainsize and consequently improved the performance. The Projections uti-
lization in Figure 5 illustrates this gain. The utilization is seen to remain close
to 100 percent almost to the end of the entire computation, and the overall
computation time decreases by about 15 percent.

Figure 6 summarizes the parallel speedups obtained on the nCUBE/2, nor-
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Fig. 5. Projections view of overall performance for Example 9 (stack method) with
average grainsize of 107 msec.

malized to N = 16 processors. The speedups for Examples 8 and 9 (both of which
do not have a valid coloring) are close to linear. Note that the speedup between
32 and 64 processors for Example 7 (which does have a solution) is superlinear.
As the number of processors is increased, it is likely that one processor may pick
a node to expand that quickly leads to a solution. This node may be explored
before the nodes to its left are made available by the prioritized load balanc-
ing strategy. The prioritization scheme does not preclude such superlinearity. It
does however ensure that out-of-priority-order execution is bounded, meaning
that substantially sublinear speedups are unlikely.

The performance data illustrates that despite the somewhat complex heuris-
tics (in that they complicate the parallelization), our algorithm is able to obtain
good speedups on shared memory as well as private memory machines.

5 Summary and Discussion

We presented a parallel graph coloring algorithm and its portable parallel imple-
mentation. The algorithm is formulated as a state-space search based on heuris-
tics. This enables the algorithm to either produce a coloring or to eventually
report that no coloring is possible. Heuristics such as pre-coloring, recursive
node removal, and variable ordering (i.e. selection of the most constrained ver-
tex to color) were implemented to reduce the size of the state space. A value
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Fig.6. Summary of parallel speedups on nCUBE/2.

ordering heuristic that chooses the least constraining color to focus on first was
also implemented, and supported using bit-vector priorities. Another contribu-
tion of this research is the parallelization of a graph partitioning heuristic, which
has the potential for reducing the search space dramatically. The incorporation
of this heuristic turns the search tree into an AND/OR tree. A scheme for coor-
dinating the exploration of this AND/OR tree while still maintaining the focus
via priorities was presented. A further contribution of this paper is the applica-
tion of the adaptive grainsize control method, which was demonstrated to lead
to significant performance improvements.

We are not aware of any other parallel state-space search algorithm imple-
mented for graph coloring which uses prioritization to obtain speedups that are
consistent from run to run and monotonically increase with additional proces-
sors. (For example, [8] presents an asynchronous parallel algorithm that produces
a coloring of a given graph, aiming at using few colors, but without any guar-
antee that the number of colors used is the smallest possible.) It is possible to
further enhance the performance of our algorithm. In particular, the value or-
dering (or color selection) heuristic can be further refined to zero in on solutions
faster. Also, it is possible to pursue partitioning of graphs more aggressively by
modifying the value ordering heuristic to aim at coloring those vertices that will
help partition the graph — such as the articulation points. One could also iden-
tify a minimum cut through the graph, and decide to color the vertices on the



cut first (or give them higher priority, right after the forced moved), in order to
force a partitioning. If the cut were a clique, one could a result used in [2] to
avoid any backtracking search for coloring the vertices on the cut itself. With
such enhancements, we expect this algorithm to be one of the best methods
for graph coloring, so that it can be used in applications including scheduling,
register allocation, and linear systems solving.

The ( “Feasibility”) formulation pursued in this paper aims at finding a
k-coloring for a given graph, for a given, fixed, value of k. An alternate (“Opti-
mality” ) formulation found often in literature requires one to find a k-coloring for
a given graph, with the smallest possible value of k. The feasibility formulation
is useful in register allocation, where the number of registers is fixed. However,
when the optimality formulation is required, our algorithm can be modified to
obtain the smallest-k coloring, as follows: To begin with, set k to one more than
the degree of the highest degree vertex in the graph. In each iteration, run the
feasibility algorithm. If a k coloring is found, decrement k and start the next
iteration. The coloring found before the final unsuccessful iteration is the op-
tical coloring. To speed the search further, multiple consecutive iterations can
be overlapped in a prioritized manner using a scheme developed it for parallel
iteration-overlapped IDA* [13]. As mentioned earlier, the algorithm finds a k-
coloring rather quickly when one exists. So, the parallel prowess of the algorithm
can be demonstrated mainly on non k-colorable graphs. The optimality formula-
tion requires at least one non-colorable search, where the algorithm is therefore
quite useful. In addition, of course, graphs that are colorable, but are hard to
find a coloring for, are also good targets for our algorithm.

The graph coloring program written in Charm, along with the random graph
generation program and benchmarks, is available on the world-wide web from
http://charm.cs.uiuc.edu.
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