The Charm Parallel Programming Language and System:

Part II - The Runtime System”

B. Ramkumar* A. B. Sinha** V. A. Saletore** L. V. Kalé**

*Dept. of Electrical and Computer Eng. **Dept. of Computer Science ***Dept. of Computer Science

University of lowa University of Illinois Oregon State University

Towa City, lowa 52242 Urbana, Illinois 61801 Corvallis, Oregon 97331

ramkumar@eng.uiowa.edu {sinha kale}@cs.uiuc.edu saletore@mist.ogst.edu
Abstract

Charm is a parallel programming system that permits users to write portable parallel pro-
grams on MIMD multiprocessors without losing efficiency. It supports an explicitly parallel
language which helps control the complexity of parallel program design by imposing a sepa-
ration of concerns between the user program and the system. It also provides target machine
independent abstractions for information sharing which are implemented differently on different
types of processors. In part I of this paper [16], we described the language support provided by
Charm and the rationale behind its design.

Charm has been implemented on a variety of parallel machines including shared memory
machines like the Encore Multimax and the Sequent Symmetry, message passing architectures
like the Intel iPSC/2, Intel i860 and the NCUBE 2, and a network of Unix workstations. The
Chare kernel is the run-time system that supports the portable execution of Charm on several
MIMD architectures. We discuss the implementation and performance of the Chare kernel on

three architectures: shared memory, message passing, and a network of workstations.

Index terms: Message-driven execution, MIMD machines, Parallel programming, Portable parallel

software, Task granularity.

*This research was supported in part by the National Science Foundation grants CCR-90-07195 and CCR-91-06608.

Dr. Ramkumar’s work is supported in part by the National Science Foundation grant NSF-CCR-9308108.

1 Introduction

The increasing availability of parallel machines has raised expectations of faster execution times,
better response times and improved productivity. This has largely remained unfulfilled, beyond a
narrow class of applications, for two important reasons. The first reason is the complexity of the
parallel software development process. Parallel algorithm design involves consideration of issues
not present in sequential algorithm design, notably deadlock avoidance, synchronization, mutual
exclusion, load balancing, scheduling, idling due to latency, etc. These make parallel programming
considerably more complicated than sequential programming. The second reason is the wide range
of performance characteristics and programming interfaces exhibited by the different parallel com-
puters available today. In Part I of this paper, we introduced Charm as a language that helps the

user control the complexity of parallel programming by satisfying five requirements:

o High level: Charm provides high-level parallel programming support, including portability

across MIMD architectures, and automatic mapping and scheduling.

o (eneral purpose: In addition to being high-level, Charm is designed to be a minimal abstrac-
tion over different machine architectures, so that it will be useful both for end users writing

parallel applications and for implementors designing parallel languages.

o FEfficiency: Features, such as latency tolerance through message driven execution, allow

Charm to provide an efflicient method for programming parallel machines.

o Fzxpressiveness: Charm allows dynamic creation of tasks and provides specific modes of in-

formation sharing. These increase the expressiveness of Charm.

o Modularity: Charm provides an efficient and convenient way of modularly writing parallel

programs, which is often not possible using other contemporary languages.

The features of this language have been chosen so as to lend themselves to efficient implementa-
tions on the different architectures. Thus, a uniform language interface is presented to a parallel
programmer — the parallel program need only be written once and it will run unchanged and effi-

ciently on all the target architectures on which Charm has been implemented. In this paper, we

describe the implementation and performance of Charm’s run-time system — the Chare kernel.
The Chare kernel is a runtime system that supports portable, object based, and message driven

parallel programming across MIMD architectures !.

We discuss issues involved in realizing the features of Charm described in part I [16] of this paper
on three classes of target architectures: shared memory machines, message passing machines and
networks of workstations. Charm currently runs on shared memory machines like the Sequent
Symmetry, the Encore Multimax and the Alliant FX/8, message passing machines like the Intel
iPSC/2 and i860, Intel Paragon, IBM SP-1, NCUBE-II, and Thinking Machines CM-5. It has
also been implemented on networks of UNIX workstations, including a network of Sun Sparc, IBM
RS6000 and HP Series 700 workstations. It is currently under implementation on message passing

machines such as the Cray T3D, and NUMA machines such as KSR-1 and Convex Exemplar.

The rest of this paper is structured as follows. In Section 2, we present a brief overview of Charm.
In Section 3, we present an overview of the design objectives and the structure of the system.
In Section 4, we present the implementation of the system core. This includes how the system
is initialized and how we support message driven execution model on each of three architectures:
shared memory, nonshared memory, and networks of workstations. Section 5 addresses the machine
interfaces and specific issues relating to a network of workstations implementation and how they
affect performance. In Section 7, we describe how various other language features and linkable
strategies, such as dynamic load balancing and queuing, are supported using the core. In Section 8,
we outline an approach for designing efficient Charm programs, and illustrate it using some of
the large parallel applications that have been developed to date. In Section 9, we describe the
performance of the system and high-light some of the important characteristics of Charm programs.

We then conclude the paper in Section 10 with a discussion of our experience.

! An object-oriented version of Charm, based on C++ has also been developed [14]. Like Charm, it too uses the

Chare kernel for its run-time support.

chare ChareName {
/* Persistent Data (i.e. Local Variables) */

entry EP1 : (message MSGTYPE1 #*msg)
{ /* C code block */ }

[private|public] Functioni(...)
{ /* C code block */ }

Figure 1: The syntax of a chare.

2 A brief overview of the language

The basic unit of computation in Charm is a chare (which is a form of a concurrent object). Figure 1
shows the syntax of a chare. A chare’s definition consists of an encapsulated data area and entry
functions that can access the data area. A chare instance can be created dynamically using the
CreateChare system call. Fach chare instance has a unique address. Entry functions in a particular
chare instance can be asynchronously invoked by addressing a message to the desired entry function
of the chare using the SendMsg system call. A chare is a concurrent object [2] and is somewhat

like an actor [1] although there are some significant differences[16].

The objects in Charm are message-driven. In practical terms, this means that there is no receive
call in the language, nor is there any blocking call that depends on processing on a remote proces-
sor. When the C-code block in an object is activated, it runs to completion without blocking or
interruption. A chare may be resident on only one processor at a time. In addition, for any given

chare, at most one of its entry points may be in execution at any point in time.

Charm provides a second type of process called a branch office chare (BOC). A copy (branch) of
the chare executes on each processor; each branch has a separate data area owned by it. In addition
to receiving messages at entry-points on individual branches like chares, BOCs also provide public
Sfunctions. On any processor P, these functions can be called by any chare resident on P. A BOC
has some similarities to the concurrent aggregate construct [7] independently proposed by Chien
and Dally which was designed for fine-grained parallel machines like the J-machine [9] (discussed in

part I of this paper). Branch office chares provide a convenient abstraction for the implementation

of various distributed strategies, such as load balancing and support for distributed data structures.

Charm does not permit general-purpose shared variables. Parallel programs often share data in
only a few distinct and specific modes; the ‘completely general’ shared variable is rarely needed.
Further, the completely general shared variable is difficult to implement efficiently on nonshared
memory machines. Instead, Charm provides five different kinds of specifically shared variables:

read only, write once, accumulator, monotonic, and distributed tables.

A detailed description of the language features of Charm can be found in part I [16] of this paper.

We provide the above brief description only to set the necessary context for the ensuing discussion.

3 Design objectives

In designing the runtime support system for Charm we had three objectives:

o Quick portability and extensibility: The Charm language is portable, i.e., user programs writ-
ten in Charm run unchanged on all machines on which Charm is supported. One of the
main considerations in the design for the runtime system was that it be easily portable, too.
Essentially, this means that the machine-specific interface be minimal so that porting Charm

to a new system is easily done by defining the interface for the new machine.

o Small core: Another objective of our design was to keep the ‘core’ of the runtime system small,
and implement language and system features in terms of the core. We identified that the core
of the runtime consisted of chares and branch office chares. The various load balancing
and queuing strategies and language features, such as quiescence detection and information

sharing abstractions are implemented using the features in the core.

o FEfficiency: The most important objective of our design was to have an efficient implementa-
tion. In a few cases, the other two design objectives were compromised in order to have the

most efficient implementation for a particular machine configuration.

Figure 2 shows the overall design structure of the Chare Kernel. At the central system core are

those portions of the kernel that initialize the system, and implement chares and branch office

Load
balancing
strategy

Information

sharing
abstractions

Language
features

Figure 2: Overall design structure of the Chare Kernel

chares. Various language features and linkable strategies are implemented using the system core.
The machine interface is a small generic layer that implements functionality required by the core

in terms of the specific machine primitives.

4 The System Kernel

The execution of a Charm program can be broadly classified into two phases: initialization and the
message-driven loop. The kernel associates types with messages to improve processing efliciency.
The user creates a new-chare message when making a CreateChare() request, a for-chare message
when sending a message to an existing chare using SendM sg(), a new-boc message when making a
Create BOC() request, and a for-boc message when sending a message to an existing branch office
using SendM sgBranch(). In addition, the kernel supports additional message types for system
generated messages. In this section, we describe what happens during initialization and how the

system implements message driven execution.

4.1 Initialization

Every Charm program is required to have a main chare. This chare is required to have an entry point
called CharmlInit. The execution of the user program begins at the Charmlinil entry point. Before
the system executes the CharmlInil entry point, it performs system initialization. This consists of
initializing the memory manager, allocating internal data structures for queue management, and

creating system branch office chares for load balancing and other system functions.

Inside the Charmlinit entry point, the user typically specifies the creation of different information
sharing abstractions, the creation of branch office chares, and the creation of one or more chares,
thereby initiating the execution of the Charm program. The requests for the creation of branch
office chares and information sharing abstractions are guaranteed to be serviced before the the
application program begins execution. However, the requests to create chares result in the creation
of seed messages, which are buffered by the kernel until the initialization of branch office chares and
information sharing abstractions is completed. Thus, a chare that executes after CharmlInit can
assume that every specifically shared variable and branch office chare that was created in Charmlinit
has already been installed on every processor in the system. In the initialization phase, the task of
the system is to ensure that the dependences and creation-sequences among objects as dictated by

the code in Charmlnit is enforced on all the processors.

The creation of a BOC is requested by using the Create BOC() primitive. This results in the
creation of a new-boc message that is broadcast to all processors. Since several of these messages
are typically created (many of the system features, including the information sharing abstractions
and load balancing are implemented as BOCs), these messages are enqueued in a FIFO queue on

each processor during the user-initialization phase.

On shared memory machines, one Unix process (or thread, depending on the available OS sup-
port) is then created per processor after the user-initialization phase is complete. FEach process
begins node-specific initialization which includes picking up these messages and creating the BOCs

requested. This completes the system-initialization phase on shared memory machines.

On message passing machines, initialization has to allow for the possibility of messages arriving

out of order. Since some new-chare messages, as well as messages from other branches of BOCs,

may arrive before all the initialization messages (i.e., the messages resulting from the execution
of Charmlinit) are received and processed, they need to be buffered until the processing of all
the initialization messages is completed. The system supports a special init-count message that
notifies each node of the total number of initialization messages that it is ezpected to receive. As
initialization messages arrive, they are received and processed; all other messages are buffered. The
system maintains two counts — the number of expected initialization messages and the number of
received (hence processed) initialization messages. The former is set when the init-count message is
received. The system initialization phase is complete when the inil-count message has been received

and the number of expected and received initialization messages are equal.

4.2 Supporting message driven execution

Once initialization is complete, the system enters the the pick-and-process loop (see Figure 3).
The pick-and-process loop implements message-driven execution. Conceptually, at this point, the
runtime support system can be viewed as a work pool “manager”. It manages a pool of messages
representing seeds for new chares (referred to as new-chare messages) or messages to existing chares
(referred to as for-chare messages). Each message is destined for a named entry point in the program
code. Processing a message involves executing the code associated with the entry point sequentially
without interruption. Once a message is processed, control returns to the kernel. Thus, the kernel
is in a pick-and-process loop, constantly picking messages from the work pool and processing them
one by one. The kernel exits from this loop only when global termination is detected. The order in
which messages are picked up for processing is determined by the queue manager and the queuing
strategy chosen by the user. This may be a simple LIFO or FIFO order, or may be based on

priorities that the user is permitted to assign to messages.

On shared memory machines, the work pool is implemented using a collection of shared queues. Mes-
sages that have a known destination (e.g. for-chare or for-boc messages) are placed in a processor-
specific queue. There is one such queue for each processor in use. New-chare messages that do
not have the destination determined by the user are placed in a single common queue. Although
a single shared queue can potentially increase contention, the small number of processors typically

available on shared memory systems bounds this problem. Moreover, this minor disadvantage is

PiCk-And-PI‘OCESS() /* for shared memory machines */
Initialize-System-Bocs();
Initialization();
while (not System-Domne)
TimerChecks(); /* Boc function call */
PeriodicChecks(); /* Boc function call */
PickNextMessage(&message); /* Boc function call to queue manager*/
if (message == NULL)
CheckForQuiescence; /* Boc function call */
else ProcessMessage(message);

PiCk-And-PI‘OCESS() /* for nonshared memory machines */
Initialize-System-Bocs();
Initialization();
while (not System-Domne)
message = NULL;
while (message == NULL)
TimerChecks(); /* Boc function call */
PeriodicChecks() /* Boc function call */
PumpMessages(); /* receive and enqueue all available messages */
PickNextMessage(&message); /* Boc function call */
ConditionallyUnpack(&message);
ProcessMessage(message) ;

ConditionallyUnpack(message) /* for nonshared memory */
if (message->packid != NULL_PACK_ID)
(UnpackTable [message->packid]) (&message) ;

Figure 3: The “pick-and-process” loop of the Chare kernel.

offset by the significant improvements achieved in load-distribution using a single queue.

To minimize contention on shared memory systems further, on any processor P, the pick-and-process
loop attempts to pick messages from the common shared queue only when there is no message in
P’s processor-specific queue. This has been empirically found to provide negligible contention for

a wide variety of programs [26].

This strategy also helps with memory utilization and load balancing. Processing new chare messages
before for-chare messages would lead to an accumulation of for-chare messages proportional to the
creation tree of chares, which would lead to exponential memory utilization in many application
classes, such as divide and conquer. Also new chare messages represent pieces of work that can be

mapped arbitrarily onto any processor, whereas other messages must be processed on the processor

on which the chare they are directed to exists. The dynamic load balancing strategy, to be effective,
would need to have a good supply of freely mappable work, and hence, selecting the new chare

messages only after no other messages are available is desirable.

Note that the queue manager implements the strategy concerning the number of queues in which to
divide the set of available messages and the sequence in which to process them. A different queue
manager implementing a different strategy than above can easily be selected (or implemented) by

the user if it is desirable for the application.

On nonshared memory machines, the work pool implementation is different. Unlike shared memory
machines, it is necessary to explicitly send and receive messages exchanged between processors.
Incoming messages need to be periodically received by every node and then inserted into the local
work pool. Clearly, no sharing of queues is possible. Each processor has its own local queue. This
necessitates periodic load balancing to distribute messages across different local queues. We discuss

how load balancing is accomplished in Section 7.2.

Each iteration of the pick-and-process loop does the following on each node P of a distributed
memory machine: All messages sent by other processors that have already arrived at P are received
by the kernel. User-messages are inserted into the local queue. System messages that relate to load-
balancing, updates of information sharing abstractions (See Section 7.1), and quiescence detection
(See Section 7.4) are processed immediately upon receipt at the destination processor. Once this is
done, the next available message is then picked up from the local queue for processing. If the work
pool is empty, the node tries to ‘pump’ messages repeatedly from the network until a message in

the work pool is available for processing.

4.3 How is a message processed?

A message picked from the work pool can be one of the following: a new-chare message, a for-
chare message, or a for-Boc message. All these messages have entry-points associated with them.
In addition, the for-chare and for-boc messages also carry the ID of the chare or BOC they are
destined for. The new-chare messages, when processed, result in the creation of a new chare

instance.

ProcessMessage(message)
switch (message->type)
case new-chare:
DataArea = Allocate-Chare-Data-Area(message->datasize);
(EntryPointTable[message->InitEP]) (message, Datalrea);
case for-chare:
DataArea = Get-Chare-Data-Area(message);
(EntryPointTable[message->ForEP]) (message, Datalrea);
case for-boc:
DataArea = BocDataTable[message->BoclNum];
(BocEPTable[message->ForEP]) (message, Datadrea);
case terminate:
CkPrintStatistics();
System-Done = TRUE;

Figure 4: The ProcessMessage function of the Chare kernel.

In addition, one special message type is generated by the system during system termination: a
terminate message which initiates the global termination protocol. This message is generated as
a result of an explicit user terminate request (called CkEzit()in Charm). Other system message

types exist for various system strategies, such as load balancing.

A translator translates the language described in part I of this paper [16] into C. Every entry point
and the code associated with it is translated into a C-function, and a unique id is assigned to the
entry point. Further, the translator generates code to create two tables of function pointers to hold
the pointers to the entry point functions for chare entry points and BOC entry points, respectively.
These tables are indexed by the entry point ID. The ids and tables are generated at runtime to

allow for the separate compilation of multiple modules.

Upon encountering a new-chare message, the kernel first creates the data area associated with the
newly created chare or BOC. In the case of for-chare and for-boc messages, the destination chare
or BOC associated with the message is used to extract the data-area allocated for the destination

object.

Processing a message M now entails (a) extracting the function pointer F from the appropriate
function table, using the entry point associated with M, and (b) invoking the dereferenced function
(see Figure 4) using two arguments: a pointer to the destination object’s persistent data, and the

message to be delivered to it. Once processed, the message M is deemed to have been consumed

10

by the entry point.

Once a chare C'is created on a processor P, it remains anchored to P for its lifetime in the current
implementation described in this paper 2. C is then uniquely identified by the pair <P, C’s dala-
area-plr>. These fields constitute the globally unique ID assigned to C'. So, once C' is created, all

messages for C' are delivered to, and processed on, P.

On shared memory architectures, anchoring of chares automatically provides mutual exclusion on
chare and branch office data areas. (On nonshared memory machines, since sharing of data is not
possible, this is not a concern.) Note that the language requires that no two entry points of the
same chare or a branch office instance should be allowed to execute concurrently. On nonshared
memory machines, the anchoring has an added benefit in that it is possible for the kernel to direct

for-chare and for-boc messages efficiently to the appropriate processors.

5 Machine interface

The machine interface necessary for implementing Charm is small and uses the common low-level
primitives of the specific architecture. For example, on a shared memory machine, the machine
interface that needs to be defined consists of timers and locks. On a nonshared memory machine,
the interface that needs to be defined consists of timers, functions to probe and receive messages
from the network, and functions to send and broadcast messages. OQur experience has been that
this interface is small and the functionality required is supported by most parallel vendors. The

only special case was the interface for the network of workstations.

A network of workstations can be regarded as a collection of processors [8] that do not share
an address space. From this viewpoint, the nonshared memory implementation works unchanged
on networks of workstations, and indeed the workstation version includes the same modules for
the core kernel and strategies. However, the machine layer is more complex than that for parallel
machines, such as Intel Paragon, because it needs to implement efficient message passing. We chose
to implement a reliable communication layer using UDP socket connections. It was also necessary

to implement fragmentation and reassembly of messages to accomodate large messages. A sliding

2Chare migration is supported, but is outside the scope of this paper. For details see [11].

11

window protocol was implemented to reduce the number of acknowledgement packets transmitted
by the destination. This protocol uses a timeout mechanism to retransmit lost UDP datagrams to

reduce network traffic further.

As we will show in Section 8, the performance of Charm on a network of workstations was quite
good, especially considering that the measurements were made in the presence of other activity on

the workstations and the network.

Two important factors inherent in the workstation environment were found to impede performance.?

The first is that background network traffic, often caused by other workstations sharing the Eth-
ernet, can occasionally limit the available network bandwidth and result in message transmission
delays. Since the sliding window protocol implemented uses a timeout mechanism for retransmis-
sion, long delays in acknowledgement can sometimes result in retransmission of packets, further

compounding the problem *.

The second problem was the effect of the operating systems running independently on each of the
workstations. It is not possible to guarantee that all the Unix processes running the different copies
of the Chare kernel (one per processor) are all scheduled on their respective processors at the same
time. Occasionally, this too results in unnecessary timeouts in the sliding window protocol, which
in turn unnecessarily retransmits timed-out packets. The skew in process scheduling caused by the
independence of workstation operating systems also makes it very difficult to reliably determine the
execution time of a Charm program. We are currently improving the implementation to minimize
the effect of these problems. Note that Charm, with message driven execution, is better equipped to
deal with these problems than message passing libraries, such as PVM [30, 12], because processors

are not blocked waiting for just one message.

?Some of these problems can be eliminated by creating a contrived environment with an isolated network and no
other processes running on each workstation, but that, in our opinion, defeats one of the primary objectives of using
a network of workstations as a parallel machine — that of time-sharing it with other users.

*An interrupt based solution to this problem is currently being implemented.

12

. queue - - -
core load balancing strategy | Priority | priority | priority | user
region | strategy region region size size message
(@
) queue o o
core load balancing strategy | Priority | user priority
region | strategy region region offset message

(b)

Figure 5: Layout of a message. The sizes of different regions are not proportionately shown.

6 What is in a message?

A message in Charm contains, in addition to the user data, some system information for the core
which contains the type of message (new-chare, for-chare, for-boc, etc.) and data needed for its
processing (address of chare, entry point, etc.). In addition, Charm provides various load balancing
and queuing strategies which are plug compatible: to use a new load balancing or queuing strategy,
all one needs to do is to re-link the program with the new strategy. These strategies require
additional information which must be part of the user message. However, different strategies may
(and do) require different amount of information. For example, the random load balancing strategy
requires no information, while the ACWN strategy requires information about the load, which is
“piggy-backed” on regular messages for efliciency. The CkAllocMsg call invoked by the user to
allocate the message must allocate space for the core information and the load balancing and
queuing strategies. This is accomplished by letting each strategy specify the amount of data it
needs which is allocated by the system. Regions in the message are then allocated for different
purposes, and each region is handled by the corresponding strategy. Thus, the core, each load
balancing strategy, and each queuing strategy, define core-size, ldb-size, and queue-size, which is

then used to allocate the message.

A minor complication arises because Charm allows priorities to be specified for a message: a message
can have no priority, an integer priority, or a variable length bit-vector priority [27]. The message
must also include this priority field. Since the priority can have different lengths for different

messages in the same program, a size field is also necessary to determine the size of the priority.

13

Our first step, shown in Figure 5(a), was to group all the system related information into one
chunk and allocate it right before the user message. One consequence of not having any system
information after the message was that the user was allowed to allocate larger messages than what
they finally sent out — this is useful if one cannot estimate the necessary message size at the time

of allocation.

Since one needs to traverse from one region of the message to another (user message to core area,
core area to ldb, core area to queue, message to priority, etc.), two words, each containing the size
of the priority field, flank it on either side so that traversal from either direction is possible. Note
that this layout implies that for traversal from the user to the core region, one needs to determine
the length of the priority field, because it can be of variable size. Since the various regions of the
message were traversed often, this became a major efficiency problem. Further, since a significant
number of Charm programs did not use priority, the common case was affected by the presence of

priority.

As aresult, the priority field was moved to after the user message, retaining the other regions before
it, as shown in Figure 5(b). An offset was maintained to keep track of the priority field. Now, all
traversals not involving priority can be done in one operation: the variable lengths of the fields that
vary from run to run (due to different strategies being linked) are pre-computed at initialization.
With this design, it becomes necessary for the user to know the size of the message that is sent out

at the time of allocation.

7 Implementation of other language features and strategies

Once the core kernel has been implemented, the remaining language features and strategies can be
implemented using branch office chares. This is in line with our design objective of keeping a small
core. For historical, as well as efficiency reasons, the implementation was done in a post-translated
version of the branch office chare. The information sharing abstractions were implemented, mostly

for reasons of efficiency, using shared memory abstractions on shared memory machines.

14

7.1 Information Sharing Abstractions

In addition to messages, chares can share data with the five information sharing variables (described
in Part I[16]), namely, read-only variables, write-once variables, accumulator variables, monotonic
variables and distributed tables. In this section, we discuss the implementation of these information
sharing abstractions on shared and nonshared memory machines. On a nonshared memory machine,
all the abstractions are implemented as branch office chares. However, on shared memory machines,
a more efficient implementation is possible using shared variables: in this case we choose the

efficiency criterion over the small core criteriomn.

On shared memory machines, each of the the first four variables is implemented as a shared entity
with an associated lock. Operations are performed in a mutually exclusive manner using locks. A
distributed table is implemented using a hash-table array. The key of an entry is used to hash into
the array, and each array element is a chain of entries whose keys map to the same index. A lock
is associated with each index in the array to provide mutually exclusive access to chains. The size
of the array used to implement the distributed tables is a function of the number of processors

requested and is allocated during system initialization.

On a nonshared memory machine, each of the five abstractions is implemented as a BOC: Each
branch maintains a local copy of the variable in the case of read-only, write-once, monotonic,
and accumulator variables. In the case of distributed tables, the entries are divided amongst the
branches of the BOC. Read-only variables, and statically created accumulators and monotonic

variables, are initialized during the initialization phase of the system.

Write Once variables, which are really a dynamic version of read only variables, are initialized by
the Create WriteOnce call. A copy of the variable is first sent to the branch on processor 0 of the
corresponding BOC. This branch assigns the variable a unique index, which serves as the identifier
for the write-once variable, and then broadcasts the value and identifier of the variable to each of
the branch nodes. Each node, after creating a local copy of the write once variable, sends a message
to the branch on processor 0 (along a spanning tree in order to reduce bottlenecks) saying that it
has created the variable. When it has received an acknowledgement message from all the nodes,

the branch on processor 0 sends the identifier of the write once variable to the specified address.

15

A write once variable can be read by the DerefWriteOnce call. This call returns the pointer to the
local copy of the variable. The pointers to all the WriteOnce variables are stored in a table indexed

by the identifier of the write-once variable.

The Accumulate call results in the application of the add function on the local value on the branch
chare. The CollectValue call is used to (destructively) read the value of an accumulator variable.
This call results in a broadcast to all branches. FEach branch chare then combines its value with
the values of the accumulator on its children in the spanning tree before sending the accumulated
value up to its parent. At interior nodes of the spanning tree, the values are combined using the
user defined combine function associated with the accumulator definition (See Part I). The branch

on processor 0 communicates the final value to the chare specified in the CollectValue call.

An update on a monotonic variable is performed by the NewValue call. The New Value call can be
implemented in two different ways: combining via a spanning tree or flooding. In the spanning tree
implementation, the call results in the branch chare updating its local value (with the corresponding
update), and sending a copy of the new value up to its parent branch chare in the spanning tree on
the processors. Every branch combines values it receives from its children with its own by waiting
for some fixed interval of time before sending its local value up to its parent branch chare. The
root of the tree broadcasts the value to all branch chares. In the flooding implementation, the call
results in the branch chare updating its local value and sending a copy to its immediate neighbors (a
dense graph on the processors is chosen). A processor, which receives a new value from a neighbor,
first checks if the value provided is better than what it currently owns. If the value is better, it
propagates a copy of the value to its own neighbors. In both of the above implementations, the
value of every update may not be simultaneously available to every branch, but shall be eventually
available. Users may choose the monotonic implementation best suited to their application. A
monotonic variable can be accessed using the Mono Value system call; this call returns the value of

the local copy of the variable on that node.

Updates on entries in a distributed table can be carried out by calling the system calls Insert and
Delete. Again, as in the case of shared memory systems, a hashed chaining scheme is used. The key
of an entry is hashed to obtain the processor number of the branch which stores the portion of the

table to which this entry belongs and the index in the table on that branch. An update message

16

BranchOffice LoadBalance
{

entry BranchInit: (message InitMsg *msg)
{ /* initialize load balancing strategy */ }

public addPiggybackInfo(message)
{ /* add status information for neighbor */ }

public ExtractPiggybackInfo(message)
{ /* receive status information from neighbor */ }

public NewChareFromLocal(message)
{ /* what should be done with a new chare message generated locally? */ }

public NewChareFromNetwork(message)

{ /* what should be done with a new chare message from the network? =*/ }
} /* branch office */

Figure 6: The generic interface for a load balancing strategy

is sent to the required branch, which carries out the update operation and back-communication of
update, if specified in the call options. The Find call is used to read entries in distributed tables.
The key provided is used (as described above) to determine the branch and index. A message is

sent to the corresponding branch chare to find the entry and reply back to the supplied address.

7.2 Dynamic Load Balancing

Load balancing is significantly easier on shared memory machines than on message passing ma-
chines. As mentioned in Section 4.2, on a small shared memory machine, a shared queue is used for
new-chare messages that do not have a fixed destination. The use for a shared queue for such mes-
sages improves the load distribution. This obliviates the need for an explicit load balancing module
for shared memory machines. Saletore [26] has developed many different strategies to balance load

on large shared memory machines.

On a nonshared memory machine, a suite of algorithms have been implemented, including random
load balancing, adaptive contracting-within-neighborhood (ACWN) [15], and a token-based local
manager strategy for load balancing of prioritized tasks [29]. Any one of these strategies may be

linked together with a Charm program to produce the final executable code. Additional strategies

17

may also be added by users as long as they conform to the prescribed interface shown in Figure 6.
The interface is general enough to permit the easy addition of more strategies to the suite. Load
balancing strategies are implemented as branch office chares in the Chare Kernel. The basic in-
terface gives control to the strategy whenever a new-chare message is received: it may have been
created locally or may arrive from the network. Individual strategies may define other functions,

including those to periodically send and receive status information from neighbors.

Figure 7 illustrates how the adaptive contracting-within-neighborhood (ACWN) [15] strategy can be
implemented using the interface. At the branch initialization entry point BranchlInit, the number
of neighbors in a processor’s neighborhood and the list of neighbors are recorded and stored. Note
that this is performed on every processor. This information depends on the interconnection network

amongst the processors and is fine-tuned for each architecture.

In the ACWN scheme, when a new-chare message is generated, the BOC function NewChareFrom-
Local()is called. The function determines the least loaded neighbor in the processor’s neighborhood
and sends the message to that neighbor. A processor may piggyback its own load status on the
message in the process. If the local processor is itself the least loaded, the message is enqueued in its
local queue. Processors also exchange explicit load status messages periodically to keep their status
information updated on their neighbors. An entry point, NeighborStatus, is provided for this pur-
pose. For every message that is sent out, the kernel also calls the public function AddPiggybacklnfo,

which adds information about load on the processor onto the message.

For a different load balancing scheme, e.g. the gradient model [18], the load balancing process may
be awakened periodically by the kernel to balance loads whenever the pressure gradient falls or

rises above a certain threshold.

Additional entry points may be added as desired for implementing different schemes. However they

must include the functions shown in Figure 6.

7.3 Queuing Strategies

At any point in time, there may exist many messages ready for execution on a processor from

which it may select. The sequence in which available messages are picked up for execution often

18

BranchOffice ACWN
{

int NumNeighbors, NeighborsList[MaxNeighbors];

entry BranchInit: (message InitMsg *msg) {
NumNeighbors = GetNumNeighbors(MyNodelD) ;
GetListOfNeighbors(MyNodeID, NeighborsList);
InitializePeriodicCall(PeriodicStatus, PERIOD);

}

private PeriodicStatus() {
for each neighbor in NeighborsList {
message = Allocate(StatusMsg-size);
PiggybackLoadStatus(message) ;
SendMsgBranch(NeighborStatus,message); /* send neighbor my status */

I

public addPiggybackInfo(message)
{ PiggybackLoadStatus(message); }

public ExtractPiggybackInfo(message) {
CopyLoadStatus(message) ;
if (MyLoad() > minload) minhops = MAXHOPS;
else if (NeighborLoad() > minload) minhops = 0;
else minhops = MINHOPS;

}

public NewChareFromLocal(message)
{ SetHops(message, 0); LdbStrategy(message); }

public NewChareFromNetwork(message)
{ IncrementHops(message); LdbStrategy(message); }

private LdbStrategy(message) {
if (GetHops(message) > maxhops) EnQueue(message);
else if (MyLoad() < minload) EnQueue(message);
else if (GetHops(message) < minhops) {
neighbor = LeastLoadedNeighbor();
PiggybackLoadStatus(message) ;
SendMsgBranch(message, neighbor);

}

else EnQueue(message);

}

} /* ACWN load balancing branch office */

Figure 7: The adaptive contracting-within-neighborhood (ACWN) load balancing strategy imple-

mented as a BOC.

has a significant impact on various performance metrics. For example, the memory utilization

is impacted significantly by this choice. In divide-and-conquer and search problems, which are

19

both tree structured computations, a FIFO strategy for selecting the next message will lead to
an exponential growth in the memory required, whereas a LIFO strategy would require memory
proportional to the depth of the search tree. In other applications, one may wish to associate
priorities with messages, and following the priorities may mean a quicker completion time. In
order to effect any search strategy, it is therefore necessary to be able to specify the order in which
messages are to be processed. The Chare kernel provides a suite of different queuing strategies for
this purpose. The queuing strategy specifies the order in which messages in the work pool managed
by the kernel are to be processed. The application programmer simply links in the most suitable
strategy to create the executable code. This feature also makes it possible for the programmer to

experiment with different strategies to determine the most suitable one.

The queuing strategies provided include depth-first (stack), breadth first (queue), and a combination
of the two. The combination based strategy attempts to provide a breadth-first strategy in low
load situations (like near the root of a search tree). This permits the load balancing (ACWN) to
distribute sibling nodes across the available processors. Once high utilization has been achieved,
the load balancing algorithm (ACWN) keeps work local to the creating processor as far as possible.
This suggests that the depth-first strategy is more efficient in this situation. This strategy has been

found to be quite effective in tandem with the ACWN load balancing strategy.

Priority-based strategies are supported in Charm. Here, the user associates an integer or a bit-
vector with each message, which specifies the priority of the message. The messages are processed
in priority order on each processor. Note that the use of priorities does not eliminate the effects of

non-determinism, although they are significantly minimized.

On shared memory machines, as described in Section 4.2, three distinct shared queues of messages
are maintained by the queue manager. When a new message is to be picked for processing, the
queues are examined in the order: for-chare message queue, for-boc queue followed by the new-chare
queue. This order was empirically found to be the most efficient with respect to memory utilization
and queue contention. The order in which messages in any queue are picked up is determined by

the choice of the queuing strategy selected.

On message passing machines, the queue manager maintains distinct queues on each processor.

There is no notion of a shared queue. The new-chare queue is periodically load-balanced across

20

processors by the load balancing BOC.

7.4 Quiescence Detection

Charm allows the user to detect periods in the computation when there are no activation messages
in the system, either being processed or waiting in queues. The algorithm to detect quiescence was

designed with two major objectives:

e To detect quiescence as soon as possible after it occurs.

e To have minimum overhead, as measured by the interference or elongation of execution time

of the user program.

The algorithm automatically adapts to system loads — it generates few control messages (messages
used by the quiescence detection algorithm) when the system is busy, and more control messages
when the system is lightly loaded. Control messages generated in the latter case do not adversely

affect system performance, because they only occupy computational resources of idling processors.

Quiescence detection is implemented using a BOC. The algorithm used has two phases. All com-
munication between the branches occur along a spanning tree covering the processors. In the
description below, all references to the parent, the children, the root, or the sub-tree of a processor
are with respect to the corresponding entities in the spanning tree on all the processors. We denote
the first and second phases of the algorithm as Phase 1 and Phase 2, respectively. The algorithm

uses three kinds of control messages:

1. initialization: these are broadcast to all branches, and result in the initialization of Phase 1

or Phase 2 on all the branches.

2. idle: these messages are sent up to the parent during Phase 1. An idle message signifies that
each processor in the sub-tree below has been idle at least once since the start of this phase.

It does not necessarily mean that all the processors were idle simultaneously.

3. activity: these messages are sent up to the parent during Phase 2 and contain a report of

activity (creation and processing) in the sub-tree rooted at the sending processing element.

21

We use the construct — wait until (condn) — in the description of our algorithm. The process
executing the wait until ® is suspended till such time as the condn becomes true. Each branch

maintains the following counts:

o n.: this is the sum of the number of activation messages created on this processor.

e 7, this is the sum of the number of activation messages processed on this processor.

Each branch also has two other counts N, and N, — they are used to estimate the number of
messages created and processed, respectively, in the sub-tree rooted at itself. These are initialized

to zero at the beginning of Phase 1 and Phase 2, and are sent up with idle and activity messages.

The algorithm appears in Figure 8. Phase 1 is called on each processor immediately before the
user computation begins. Only one phase of the quiescence detection algorithm will be active at

any time.

In Phase 1, each leaf branch waits until its processor is idle and then sends an idle message to
its parent with the counts N, and N, initialized to n. and n,, respectively. All other branches
wait until they receive one idle message from each child, adding the values of N, and N, in these
idle messages to their local values. Having received idle messages from all its children, the branch
waits until its processor is idle, and then it sends an idle message to its parent. The idle message
contains the values of the counts N, and N,, which have been incremented with the values of n.
and n,, respectively, on that branch. When the root has received idle messages from all its children
branches, it decides whether the system can be idle by comparing the values of N. and N,. If they
are equal then there’s a high probability that all activalion messages have been processed in the
system. If the two counts are not equal then the root initiates Phase 1 again, otherwise the root

initiates Phase 2 on all the branches.

In Phase 2, the branches send up their activily report messages containing the new values of N,
and N,. Activity messages from branches are combined in the same way as in the first phase of
the algorithm. When the root branch has received one activity message from each of its children,

it compares the old and the new values of N. and N,. If these values are the same, it implies that

®We use this construct only for convenience of description; it is not used in the implementation.

22

Phase 1()

N.=0; N, =0;
wait until (RecdMsgsFromChildren()); /* wait until messages have */

/* been received from all children */
add to local N, and N, the values recd. from children;
wait until (Idle()); /* wait until this processor has no activation messages */
N, = N.+ n.; Np = Np + np;
if (RootSpanTree()) /* check if this processor is the root of the spanning tree */

it (N, # Ny)
Broadcast message to begin Phase 1
else
NOld:Nc /* Nc == N, */
Broadcast message to begin Phase 2
else
Send message with N. and N, to Parent in Spanning Tree
}
Phase 2()
{
N.=0; N, =0;

wait until (RecdMsgsFromChildren()); /* wait until messages have */
/* been received from all children */
add to local N, and N, the values recd. from children;
wait until (Idle());
Ne = Ne+ne; Ny = Np + np;
if (RootSpanTree()) /* check if this processor is the root of the spanning tree */
if (NOld == N,)
Report Quiescence
else
Broadcast message to begin Phase 1
else
Send message with N. and N, to Parent in Spanning Tree
}
CreateMessage() { n. + + }
ProcessMessage() { np + + }

Figure 8: The quiescence detection algorithm

there has been no new activity in the system, and the root reports quiescence; otherwise the root

initiates Phase 1 again.

7.5 Conditional Packing

One of the problems encountered when writing programs on nonshared memory machines is that

messages that are transmitted from one processor to another need to be packed in a contiguous

23

format for transmission, since pointers are generally not valid across processors. This can be costly
when the data structures are complex, for example, large graphs or trees. It is clearly necessary
to “pack” messages into this format only when messages cross address space boundaries. Thus, for
shared memory no packing is necessary, and on nonshared memory machines, packing is necessary
only when the source and destination processors are different. The remainder of this section is

therefore applicable only to nonshared memory machines.

A typical Charm program creates several thousand chares and lets the kernel decide their processor
assignment dynamically. Thus, the decision of whether or not to pack a message before transmission
can only be made at run time. If both source and destination chares are resident on the same

processor, this overhead is avoided.

The kernel does not maintain any semantic information on the structure of messages. The Charm
translator translates messages into C structs. Even if the kernel were to maintain information
on the structure of every message, it is very easy for programmers to override this information
using type-casting in C. Checking for such non-conformance is a hard problem. It cannot therefore

determine if, and how, a message is to be packed.

This problem is addressed by requiring the user to provide “pack” and “unpack” routines for each
message type that requires packing as part of the Charm program. These routines are unique in
that they are defined by the user but invoked as and when necessary by the kernel. If a decision
is made to send a message out to another processor, the appropriate “pack” routine is called at
the source processor. Correspondingly, the “unpack” routine is called by the destination processor
before the message is processed. We show in Section 7.2 that this permits the kernel to significantly

reduce the average packing overhead for messages over the execution of the program.

7.6 Dynamic creation of branch office chares and other entities

A branch office chare is said to be created dynamically if it is created outside the Charmlinit entry
point. Since Charm does not allow any synchronous calls, establishing an entity, such as a branch
office chare with a single unique name on remote processors, involves a split-phase transaction: the

first phase is the request for creation, and the second phase is confirmation of creation id which is

24

sent to a user-specified entry point. Dynamic creation of BOCs is implemented using a statically

created branch office chare.

The node requesting creation of a BOC sends a message to the branch on processor 0 asking for
a unique id. In this message it also sends the address of the user code that needs to be invoked
once the BOC has been created. Once the branch on processor 0 returns a unique id for the BOC,
the requesting branch broadcasts the user’s creation message asking all processors to create their
branch. Each processor participates in an ‘asynchronous’ reduction operation once it has created
its branch: when all processors are done, processor 0 sends a message with the id of the BOC to
the specified address. The need for this protocol arises because the core region of the message
has no space for any more information (in this case the address to which the BOC’s id must be
returned). Adding such information to the core region would increase its size, which would be
wasted in the general case, which was an overhead we deemed unacceptable. Similar protocols are
used to implement the dynamic creation of other entities, such as write-once variables, which are

implemented using dynamic branch office chares.

8 Parallel Programming Using Charm

As should be evident from the earlier discussion, the Chare kernel supports a coarse-grained data-
flow style of execution where a message is the equivalent of a token in a data-flow machine. The
amount of available parallelism is determined by the number of messages that can be processed
in parallel. Furthermore, it is possible to exercise granularily control by varying the amount of
processing performed per message. This is done by varying the average amount of computation
in an entry point. This ability to vary the grain size is essential in controlling the parallelization

overhead in the Chare kernel.

In the following discussion, we describe how parallel programs are developed using the Chare kernel
from the application programmer’s point of view. We wish to emphasize, however, that the following
discussion describes a general approach for performance improvement and cannot necessarily be

applied to every application that one wishes to parallelize.

25

Parallel modules Existing sequential modules

~&

[Charm runtime system]

[Paragon] [CM-S] SP-1

Figure 9: On each architecture, the Charm program can be linked with the most suitable memory

management strategy, load balancing strategy, and queuing strategy available. The program is also

built on top of an existing sequential implementation wherever possible.

8.1 Designing Charm Programs

In designing Charm programs, we list a few rules of thumb that we have compiled based on our
experience in Charm programming. In Figure 9, we describe our philosophy diagrammatically on
how Charm parallel programs should be developed. We believe that, in virtually every discipline,
significant advances have been made in developing sequential algorithms. These algorithms have
been developed after several years of effort in these application areas. In several cases, these
algorithms are not amenable to parallelization, in that parallel versions of these algorithms may

result in in significant loss of quality and poor speedups.

This is clearly evident in a wide range of VLSI CAD applications including test pattern generation
[20, 21], cell placement [4, 24], global routing [6, 25] and a molecular dynamics application EGO. We
believe it is therefore necessary to build the parallel algorithm around the best available sequential

algorithm. By this, we mean it is necessary to reuse large modules of code that implement the best

26

available sequential algorithm in the parallel algorithm design.

The parallel algorithm can then be developed as follows. We assume that the problem instance is
large enough to warrant the use of parallel processing. The design of a parallel algorithm typically
involves developing a scheme to decompose the problem into smaller and smaller subproblems.
Note that this decomposition can be made independent of the number of available processors. This
decomposition is stopped when the size of the subproblems falls below some user-defined threshold.
It is desirable to create enough messages representing subproblems so as to be significantly larger
than the number of processors available. This permits effective load balancing. As we show in
Section 9, the overheads incurred in creating large numbers of messages are usually very low. Once
the threshold has been reached, the best available sequential algorithms can then be invoked to

solve the subproblems efficiently.

This approach has been used very successfully in the design and implementation of a variety of
parallel applications. For most of the applications, the parallel algorithm was developed around

existing sequential code.®

8.2 Grainsize Selection

A consequence of the Charm cost model is that the user must make a choice of grainsize while
writing Charm programs. For example, while writing a divide-and-conquer style program, one
may decide to carry out sub-computation below a certain level sequentially; in a matrix-oriented
computation, one may decide to block the sub-matrices below a certain size in a single chare. This
decision must be based on the proportion of the overhead in relation to the useful computation
time. Let g (grainsize) be the average computation time per message. The overhead is roughly
proportional to the number of messages, and so is inversely proportional to the grainsize for a given

computation. The summation of time-to-finish on all processors can be expressed as:

T= Tcomputation + Toverhead + ﬂdle: where the overhead Toverhead = K % Tcomputation/g-

%The exception to this was the parallel Prolog compiler [23]. The lack of availability of the source code of a fast
sequential Prolog compiler caused us to use a slower garden-variety compiler. This “error” quickly educated us on

the importance of an efficient “sequential component” in the development of efficient parallel code.

27

The proportionality constant, K, reflects the overhead of sending and receiving a message, and
in properly overlapped message-driven programs includes only the software overhead per message.
Thus, if one increases the grainsize g continuously, beyond a certain point the contribution of the
overhead term is sufficiently small that increasing g any further does not lead to appreciable decrease
in T. Moreover, the smaller the grainsize in comparison to Teomputation, the smaller is the idle time,
as the load balancing strategy has more opportunities for balancing work (which is particularly
useful for irregular computations mentioned in the assumption A3). Therefore, Charm programs
should be written so as to yield as small average grainsize as possible, but large enough to subsume
the overhead. An important consequence of this is that the grainsize decisions are independent of
the number of processors in the system, as the overhead per message is largely independent of the

number of processors in the system.

Note that, consistent with our minimality requirement, Charm leaves to the programmers the
responsibility of decomposing the computations such that they lead to reasonable grainsizes. A
language that automatically makes decisions regarding grainsizes may be desirable (and can be

implemented on top of Charm), but it is not the function of Charm to make such decisions.

For a given application, it is important to note that, as we increase the grain size, we experience a
reduction in the available parallelism. Moreover, if very few granules are created, each will perform
large amounts of computation, leading to the likelihood of load imbalance. Reducing the grain size,
on the other hand, can increase the parallelism, but at the expense of increased overhead. However,
a range of grain sizes exists for which the application performance does not vary significantly. For a
given machine, the lower bound of this range represents the ideal grain size for the application since
it permits the maximum amount of parallelism to be exploited without incurring any observable

overheads.

Based on several large applications developed so far using Charm, our experience suggests that in
most cases an average grain size greater than 10-50 milliseconds is sufficient to restrict the overheads
to within 5-10% of the one-processor “infinite grainsize” execution time. This corresponds to the
uniprocessor performance of the application, and is determined by the efficiency of the sequential

algorithms selected (see Figure 9).

28

However, it should be clear that the ideal grain size will vary depending on a number of factors: (a)
the computation speed of the underlying architecture, (b) the communication latency for message
transmission, (c) the overheads in the target machine operating system (Charm is written as an
application program on each of the target machines), (d) the average length of messages generated
in the application, and (e) the amount of parallelism available in the application. In Charm, (e)
can be viewed as the number of messages generated over the course of the application, since each

message represents a segment of sequential computation.

Determining the ideal grain size automatically for any given application is a very hard problem.
Moreover, for a given application, as mentioned above, the ideal grain size will differ from architec-
ture to architecture. This may appear to contradict the portability across architectures that Charm
claims to deliver. However, we show below that (a) it is not necessary to determine the ideal grain
size in order to obtain efficient execution and (b) it is indeed possible to select a grain size that

will work on all the available target architectures and thus meet Charm’s portability criterion.

To study the effect of grain size on Charm programs, we performed the following experiment using
a benchmark program: the graph-coloring program. We plotted the total execution time of the
benchmark as we varied the grain size on each of the three architectures: the Encore Multimax, the
NCUBE/2 and the network of workstations. The data was obtained on a network of Sun Sparc 2
workstations. We wish to emphasize that the data was measured when the network and the other
workstations were in use — this represents a more realistic estimate of expected behavior. We also

varied the number of processors to see its effect on the performance.

The graph coloring algorithm (Figure 10) uses parallel search to determine whether a given graph
with 600 nodes and 2338 edges is 3-colorable. We varied the grain size in this example by varying
the depth of the parallel search tree, thereby varying the amount of work that has to be performed
sequentially at the leaf nodes of the search tree. The program exhibited suflicient parallelism and
gave good speedups on all three machine configurations. The data is presented using a logarithmic

scale for the grain size on the x-axis.

In Figures 10(a) the curve is quite flat as the grain size is varied from 10 ms to 100,000 ms
per message for the primes example. As might be expected, this machine exhibits the lowest

communication overhead, and has few processors. It can tolerate the widest range of grain sizes

29

I .0e+d

]
[1]
L1
E
= 2.0e+E -
g = 1PE
[+ ZFE
£ o 4PE
T 1.0e+6 - “- BFE
=
[1]
[T]
M
[F7)
0.0e+0 T T T T T 1
wm! 102 wd ot 1w® o1 07
Grain Size (msec/message)
(a) Encore Multimax
1.2e+6 -
™ leted g
1]
1
E 8.0e+5 o 1FE
-] -+ 4PE
E 50645 - = 16 PE
- - &4 PE
8 40045 * 128PE
= o 256 PE
[1]
g 2.0e+5 A
[F7)
0.0e+0 o T T T T 1
10 100 1000 10000 100000 1000000
Grain Size (msec/message)
(b) NCUBE/2 Hypercube
IPnet — Graph Coloring
400000 -
]
[1]
L1
1
E
7 F00000
E = 1FE
: -+ ZFE
] o 4FE
£ 200000 4
=
[1]
[T]
M
[F7)
100000 . . T . T :
w? o' w2 w® 1wt 105 ok

Grainsize (msec)

(¢) Network of Sun workstations

Figure 10: Performance of the graph-coloring benchmark on the Encore Multimax, the NCUBE/2
and a network of Sun Sparc 2 workstations. The effect on the execution time as the grain size and

the number of processors are varied is plotted for each machine.

30

without affecting performance.

The NCUBE/2 data exhibits a flat curve for the range 10ms - 1000 ms for the grain size in the
graph coloring example. The effect of load imbalance is evident as we go over a grain size 1000 ms

on the NCUBE/2 for the smaller number of processors (Figure 10(b)).

On the Encore Multimax (Figure 10(a)), at the left end of the curve, a little performance degra-
dation for the graph coloring problem is evident on one processor. The degradation is due to too
small a grain size. However, even this effect disappears as the number of processors is increased.
The smallest grain size shown in Figure 10 was the lowest possible in our formulation of the graph-

coloring problem.

Figure 10 shows the characteristic curves observed when plotting grain size (average computation
time per msg) vs. the total computation time of the parallel application.” It is clear from the graphs
for the Multimax and the NCUBE/2 that if the grain size is not too small or too large, a large
plateau is visible in the curve - this represents the range where the execution time is unaffected by

changes in the grain size.

In Figure 10(c), the behavior of the graph coloring benchmark on the workstations is shown. For
the graph coloring example, a very low grain size (< 10 ms) affects performance as the number
of processors is increased. This is because the high cost of communication cannot be amortized
by overlapping computation in this range. However, as we go over 10 ms, the 4-PE case offers
good speedups until load imbalance begins to affect performance. The system effects discussed in
Section 5 preclude consistent behavior along the plateau as seen on the other two machines (except
for the 1-processor case). However, the general behavior between grain sizes of 10 ms and 10,000

ms is similar to the plateau observed on the other two machines.

The right end of the curve represents the largest possible grain size. This is obtained when the
entire program is executed sequentially. This is borne out in Figure 10(a,b), where as the number
of processors is varied, all the curves meet for the largest possible grain size at the 1-processor

execution time. Note that the same is not true for the network version: we attribute this to

"Similar curves were obtained for parallel Prolog [23], parallel circuit extraction [3], test pattern gemeration [22],

and several other applications — they have been reported elsewhere.

31

costs incurred on the network version to poll the network for messages from other processors (even
though there are no such messages). The shape of the curves on all three machines suggests that
it is sufficient to pick any grain size that lies on the plateau of this curve and yet obtain very
good performance. An interesting consequence of this characteristic of the curve is that the grain
size can, at the same time, be made independent of the underlying target machine. Typically, the
architectures with the worst computation/communication ratio tend to have the shortest plateau
width. Thus, grain sizes that work for such architectures have been found to work quite well on

other target machines as well.

9 Performance

Several large applications have been developed so far using Charm. They include several VLSI/CAD
applications developed by P. Banerjee, B. Ramkumar, and others. A parallel Prolog compiler [23],
a parallel circuit extractor [3], a parallel test pattern generator for sequential circuits [22], parallel
logic synthesis based on transduction [10], parallel cell placement based on simulated annealing [17],
and a parallel molecular dynamics program called EGO have been implemented using Charm.
Most of these applications are reported in detail elsewhere — we do not repeat the algorithms here.
We have observed that, on one processor, a Charm program typically loses less than 5% of its
speed compared to a sequential C implementation of the same algorithm, and the speedups with
increasing number of processors are excellent. More importantly, Charm outperforms programs
written using vendor primitives because of capabilities of adaptive scheduling provided by message
driven execution [13] and the availability of prioritization queuing and load balancing strategies [23,

3,22, 10, 17).

A parallel Prolog compiler which exploits both AND and OR parallelism has been written using
Charm [23], and is one of the first such systems to run efficiently on both shared and non-shared
memory system. It was also one of the first implementations to demonstrate speedups on Prolog

program on upto 256 processors (on an NCUBE/2) [23].

The parallel circuit extractor [3] was developed around the same sequential C code used by PACE2

[5] to permit a fair comparison of the two. On shared memory machines, the extractor outperforms

32

PACE2 [5], in spite of the fact that PACE2 is based on an algorithm designed specifically for shared

memory machines.

The parallel test generator ProperTEST [21] was also one of the first parallel implementations of
test pattern generation for sequential circuits to demonstrate the use of priorities to speedup up

the parallel search consistently and improve fault coverage at the same time.

The parallel cell placement algorithm ProperPLACE [17] demonstrated the feasibility of using one
of the best available sequential implementations of cell placement based on simulated annealing -
Timberwolf [28] as the sequential component of the Charm application. A new parallel algorithm

was built around Timberwolf and rendered portable through Charm.®

EGO is a parallel molecular dynamics application, which was originally a synchronous program
written in Occam for the Transputers. It has been converted into a message-driven program written

in Charm, and runs successfully on all parallel machines on which Charm is supported.

Several other applications have also been developed and are being currently developed using Charm.

For reasons of space, they are not discussed here.

10 Discussion and Summary

We have shown that with an appropriate set of primitives, and an implementation of these primi-
tives tuned to each specific machine, efficient portability can be attained. Charm recognizes locality
of reference as the key principle that unifies MIMD machines, with or without shared memory.
Chares, with their local variables, and message driven execution enhance locality. Implementation
of messages is tuned to, and an appropriate form of load balancing is used for, each target ar-
chitecture. The common modes of sharing are encapsulated in Charm data abstractions, so they
are implemented efliciently on each target machine. Conditional packing ensures that programs
written using this system can compete with even those written specifically for shared memory ma-
chines, as long as the grain size required is not too fine. Scalable techniques used in its design and

implementation ensure that the system runs efficiently on machines with thousands of processors,

8The latest version of ProperPLACE and other CAD applications now use a new object-oriented message-driven

environment called ProperCAD II [19], that has been fine-tuned for parallel CAD applications.

33

as confirmed by tests on a 1024 node NCUBE-II.

Acknowledgements

Our thanks to Weeg Supercomputing Center at the University of lowa for access to the Encore
Multimax, and the Sandia National Laboratories for access to their NCUBE/2 hypercube. Thanks
are also due to Raymond Richards, who assisted in collecting some of the data reported in this
paper, and to Ben Richards for writing the graph-coloring program in Charm. We also thank
Wennie Shu for developing the first version of Chare Kernel, Kevin Nomura for developing the first
shared version of Chare Kernel, Attila Gursoy for writing the memory management and queuing

strategies, and Wayne Fenton for implementing write-once variables and timer checks.

References

[1] Agha, G.A. Actors: A Model of Concurrent Computation in Distributed Systems. MIT press,

1986.

[2] Agha, G.A. Concurrent object-oriented programming. Communications of the ACM, vol. 33,

September 1990.

[3] Ramkumar B. and Banerjee P. ProperCAD: A Portable Object-Oriented Parallel Environment

for VLSI CAD. IFEF Transactions on Compuler-Aided Design, 13, no 7, July 1994.

[4] Sargent J.S. Banerjee P., Jones M.H. Parallel Simulated Annealing Algorithms for Standard
Cell Placement on Hypercube Multiprocessors. IEEFE Trans. Parallel and Distributed Systems,

1(1):91-106, January 1990.

[5] Belkhale, K.P, Banerjee, P. PACE2: An Improved Parallel VLSI Extractor with Parameter
Extraction. In Proceedings of the International Conference on Computer Aided Design, pages

526-530, November 1989.

34

[6]

[11]

[12]

[13]

[14]

R. J. Brouwer and P. Banerjee. PARAGRAPH: A Parallel Algorithm for Simultaneous Place-
ment and Routing Using Hierarchy. Proc. European Design Automation Conf. (KDAC-92),

Mar. 1992.

Chien, A., Dally, W.J. Concurrent Aggregates (CA). In ACM SIGPLAN Principles and

Practice of Parallel Programming, Seattle, Washington, March 1990.

Christopher Walquist. Implementation of charm machine interface on networks of workstations.

Master’s thesis, Dept. of Computer Science, University of Illinois, Urbana, December 1990.

Dally, W.J. Fine-Grain Message-Passing Concurrent Computers. In The Third Conference on

Hypercube Concurrent Computers and Applications, Pasadena, California, January 1988.

De, K., Ramkumar, B., Banerjee P. ProperSYN: A Portable Parallel Algorithm for Logic

Synthesis. IFEF Transactions on Compuler-Aided Design, 13 no. 5, May 1994.

Doulas, N., Ramkumar B. Efficient Task Migration for Message-Driven Parallel Execution on
Nonshared Memory Architectures. In Proceedings of the International Conference on Parallel

Processing, August 1994. (to appear).

G. A. Geist and V. S. Sunderam. The PVM system: Supercomputing level concurrent com-
putations on a heterogeneous network of workstations. Sizth Distributed Memory Computing

Conference Proceedings, pages 258-261, 1991.

Attila Gursoy. Simplified Expression of Message-Driven Programs and Quanltification of their
Impact on Performance. PhD thesis, Departmant of Computer Science, University of Illinois

at Urbana-Champaign, March 1994.

L. V. Kale and S. Krishnan. Charm++ : A portable concurrent object oriented system based
on C++. In Proceedings of OOPSLA-93., March 1993. (Also: Technical Report UIUCDCS-

R-93-1796, March 1993, University of [llinois, Urbana, IL.

Kalé, L.V. Comparing the Performance of Two Dynamic Load Distribution Methods. In

International Conference on Parallel Processing, August 1988.

35

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Kale L.V. and Ramkumar B. and Sinha A.B. and Gursoy A. The CHARM Parallel Program-
ming Language and System: Part I — Description of Language Features. IFEE Transactions

on Parallel and Distributed Systems, 1994. (submitted).

Kim S-H, Ramkumar B., Chandy J., Parkes S., Banerjee P. ProperPLACE: A Portable Parallel
Algorithm for Standard Cell Placement. In Proceedings of the International Parallel Processing

Symposium, Cancun, Mexico, March 1994.

Lin, F.C.H, Keller, R. Gradient Model: A Demand Driven Load Balancing Scheme. In

International Conference on Distributed Systems, pages 329-336, 1986.

Steven Parkes, John A. Chandy, and Prithviraj Banerjee. ProperCAD II: A run-time library
for portable, parallel, object-oriented programming with applications to VLSI CAD. Technical
Report CRHC-93-22/UILU-ENG-93-2250, Center for Reliable and High-performance Comput-

ing, University of Illinois, December 1993.

Patil S., Banerjee, B. A Parallel Branch and Bound Algorithm for Test Generation. IFEF

Transactions on Computer-Aided Design, 9, no. 3:313-322, March 1990.

Ramkumar, B., Banerjee P. Portable Parallel Test Generation for Sequential Circuits. In Pro-
ceedings of the International Conference on Computer-Aided Design, pages 220223, November

1992.

Ramkumar, B., Banerjee P. ProperTEST: A Portable Parallel Test Generator for Sequential

Circuits. IFFFE Transactions on Computer-Aided Design, 1992. (submitted).

Ramkumar B., Kale L.V. Machine Independent AND and OR Parallel Execution of Logic
Programs — Part II: Compiled Execution. I[FEE Transactions on Parallel and Distributed

Systems, 5, no. 2, February 1994.

Ravikumar, C.P., Sastry S. Parallel Placement on Hypercube Architectures. In International

Conference on Parallel Processing, pages I11: 97-100, August 1989.

Rose, J.S5. Parallel Global Routing for Standard Cells. IFEFE Transactions on Compuler-Aided

Design, 9, no. 10:1085-1095, October 1990.

36

[26] Saletore, V.A. Machine Independent Parallel Execution of Speculative Computations. PhD the-
sis, Dept. of Electrical and Computer Engineering, University of lllinois at Urbana-Champaign,

1991.

[27] Saletore, V.A., Kalé, L.V. Parallel State-Space Search for a First Solution with Consistent

Linear Speedups. International Journal of Parallel Programming, 1990.

[28] Sechen, C., Sangiovanni-Vincentelli A.L. The TimberWolf Placement and Routing Package.

IEFEFE Journal of Solid-State Circuits, vol. 20, no. 2:510-522, 1988.

[29] Sinha A.B., Kale L.V. A Load Balancing Strategy for Prioritized Execution of Tasks. In

Proceedings of International Parallel Processing i Symposium, April 1993.

[30] V.S.Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice

& Frxperience, 2, 4:315-339, December 1990.

37

