Dagger: Combining Benefits of Synchronous and Asynchronous

Communication Styles

Attila Gursoy
Department of Computer Science
University of Illinois, Urbana IL

email: gursoy@cs.uiuc.edu

Abstract

Communication using blocking receives is the com-
monly used mechanism in parallel programming today.
Message driven ezecution is an alternate mechanism
which does not use receive style statements at all. The
message driven ezecution style promotes the overlap
of computation and communication. Programs writ-
ten in this style exhibit increased latency tolerance:
their performance does not degrade significantly with
latency. It also induces compositionality: multiple in-
dependently developed modules can be combined cor-
rectly without loss of efficiency. However, as the flow
of control is not explicit in such programs, they are
often difficult to develop and debug. We present a
coordination language called Dagger to alleviate this
problem. The language has been implemented in the
Charm parallel programming system, and runs pro-
grams portably on a variety of parallel machines.

1 Introduction

Communication latency is a fact that must be dealt
with in parallel programming. Dealing with this la-
tency is therefore a major objective in parallel pro-
cessing. Although one can attempt to reduce it via ar-
chitectural innovations, physical reality dictates that
remote access will always be significantly slower than
local access. Software techniques for tolerating latency
are therefore essential.

Message driven execution is a promising technique
in this regard.
(which is distinct from message-passing), user pro-
grams do not block on a receive-message call. Instead,

In message driven execution style

the system activates a process when there is a mes-
sage for it. Therefore, it gives the ability to overlap
computation and communication. This helps latency
tolerance in two ways: First, when one process is wait-
ing for data from a remote process, another ready pro-

*This research was supported in part by the National Science
Foundation grants CCR-90-07195 and CCR-91-06608.

*

Laxmikant V. Kalé
Department of Computer Science
University of Illinois, Urbana IL

email: kale@cs.uiuc.edu

cess may be scheduled for execution. Secondly, even
a single process may wait for multiple data items si-
multaneously, and continue execution whenever any of
the expected items arrive.

Message-driven execution also promotes modular-
ity. Consider a situation when two processes belong-
ing two different modules are waiting for messages di-
rected to them. When a message arrives, the runtime
system will activate the appropriate process; neither
module needs to know about the other module. In con-
trast, in the blocking-receive paradigm that is widely
used currently, this can be accomplished, if at all, at
the cost of modularity: The code in a module may
issue a wild-card receive, but if it receives a message
meant only for another module, it must somehow re-
sume the other module, and hand over the message
to it. This means that writer of a module issuing a
blocking receive must know about all other modules
that may be waiting for a message at that moment,
and must design mechanisms to recognize and hand
over messages belonging to other modules (for a more
detailed comparison of these two paradigms see [5]).

Although it imparts these benefits, message driven
execution often extracts a price in the form of apparent
program complexity. The split-phase or continuation-
passing style of programming that it requires is some-
times non-intuitive, and obfuscates the flow of con-
trol. As the system may execute messages in the or-
der it receives them (as opposed to a deterministic
order imposed by sequential receive statements), the
programmer must deal with all possible orderings of
messages. These are accompanied by complex rea-
soning about which message-orderings will not arise,
which are harmless, and which must be dealt with by
buffering, counters, and flags.

We propose a coordination language called Dag-
ger which extends Charm, a message driven language.
Dagger retains the benefits of message driven execu-
tion, while reducing the complexity of the resultant

programs. It allows specification of processes in terms
of dependences between messages and pieces of com-
putations. These dependences form a partial order
which clarifies the flow of control. The Dagger runtime
system buffers messages until they can be processed,
and automatically maintains all the flags and counters
needed to ensure that the partial order is adhered to.

2 The Charm language

Charm is a machine independent parallel program-
ming system [7]. Programs written using this sys-
tem will run unchanged on MIMD machines with or
without a shared memory. The programs are writ-
ten in C with a few syntactic extensions. The sys-
tem currently runs on Intel’s iPSC/860 and Paragon,
NCUBE/2, CM-5, Encore Multimax, Sequent Sym-
metry, ALLIANT FX/8, single-processor UNIX ma-
chines, and networks of workstations.

Programs consist of potentially medium grained
processes (called chares), and a special type of repli-
cated processes, called branch-office chares. Charm
supports dynamic creation of chares, by providing dy-
namic (as well as static) load balancing strategies.
There may be thousands of small-grained chares on
each processor, or just a few, depending on the appli-
cation. Chares interact by sending messages to each
other and via specific information sharing modes de-
scribed below.

The Charm runtime system is message driven. It
repeatedly selects one of the available messages from
a pool of messages in accordance with a user selected
queueing strategy, restores the context of the chare to
which it is directed, and initiates execution of the code
specified by the message.

A Charm program consists of chare definitions,
message definitions, and declarations of specifically
shared objects in addition to regular C language con-
structs (except global variables). A chare definition
consists of local variable declarations, entry-point def-
initions and private function definitions as illustrated
in Figure 1. Local variables of a chare are shared
among the chare’s entry-points and private functions.
Private functions are not visible to other chares, and
can be called only inside the owner chare. However, C
functions that are declared outside of chares are vis-
ible to any chare. Entry-point definitions start with
an entry name, a message name, followed by a block
of C statements and Charm system calls. Some of the
important Charm system calls are:

CreateChare(chareName,entryPoint,msg)
This call is used to create an instance of a chare
named as chareName. As all other Charm system

calls, CreateChare is a non-blocking call, that is,
it immediately returns. Eventually as the system
creates an instance of chare chareName, it starts
to execute the entryPoint with the message msg.

SendMsg(charelD,entryPoint,msg)
This call deposits the message msg to be sent
to the entryPoint of chare instance chareID.
chareID represents an instance of a chare. It is
obtained by a system call MyChareID(), and it
may be passed to other chares in messages.

chare chare-name {
local variable declarations
entry EP1 : (message MSGTYPE *msgptr)
{C code block}

entry EPn : (message MSGTYPE *msgptr)
{C code-block}
private function-1() {C code block}

private function-m() {C code block}

Figure 1: Chare Definition

A branch office chare (BOC) is a form of chare that
is replicated on all processors. An instance of a BOC
has a branch chare on every processor. A BOC defini-
tion is similar to a chare definition except it contains
public functions which can be called by other chares on
the same processor. BOC’s are useful for some com-
putations such as reduction operations (i.e., collecting
some information locally on each processor, and then
combining it across processors), as well as for express-
ing static load balancing, and SPMD style programs.

In addition to messages and BOC’s, Charm pro-
vides other ways in which processes share informa-
tion. The information sharing abstractions supported
include read only variables, monotonic variables,
writeonce variables, accumulators and distributed ta-
bles. Charm also provides a sophisticated module sys-
tem that facilitates reuse, and large-scale program-
ming for parallel software. Details about these fea-
tures can be found in [10].

2.1 An example in Charm

Consider an algorithm for matrix multiplication
that is dynamically load balanced. Such a formula-
tion may be useful on a machine where different pro-
cessors operate at different speeds, for example. We

chare mult_chare {
int count, *row, *column;
ChareIDType chareid;
entry init: (message MSG *msg) {
count = 2; MyChareID(&chareid);
Find(Atable, msg->row_index,
recv._row, &chareid,NOWAIT);
Find(Btable, msg->colm_index,
recv_column,&chareid ,NOWAIT) ;
}
entry recv.row: (message TBLMSG *msg) {
row = msg->data;
if (--count == 0) multiply(row,column);
}
entry recv_column: (message TBL_MSG *msg){
column = msg->data;
if (--count == 0) multiply(row,column);

e

Figure 2: Matrix multiplication chare

assume that the two matrices to be multiplied have
been stored in distributed tables. Matrix A is stored as
a collection of entries such that each entry is a block of
contiguous rows. Similarly, the matrix B is stored as a
collection of columns. One of the chares (mult_chare)
used in implementing such an algorithm is shown in
Figure 2. This chare is responsible for multiplying a
block of rows of A, and a block of columns of B. The
entry init is executed when an instance of the chare is
created. The message msg contains indices of the row
and column blocks that are to be multiplied. First, the
chare requests the row and columns from the tables
Atable and Btable (these tables store the matrices
A and B) by calling Find which is supported by the
distributed tables mechanism in Charm. In the Find
call, the row (or column) index, return entry-point and
the chare instance identifier are supplied. Note that
the Find call is non-blocking, and it immediately re-
turns. Eventually, the row (and column) data will be
sent in a message (of type TBL_MSG which is defined
in the Charm language) to the entry-point recv_row
(recv_column), and these messages may arrive in any
order.

The multiplication depends on availability of both
rows and columns. Therefore a shared variable, count,
is used to detect that both messages are available. Ini-
tially the count is set to 2 (since only two messages
are expected). Whenever a message is received, the

message is saved, the count is decremented by one.
If the value of count becomes zero, then the multiply
function is called. This example has been chosen to
be a simple one in order to demonstrate the necessity
of counters and buffers. In general, a parallel algo-
rithm may have more interactions leading to the use
of many counters, flags, and message buffers, which
complicates the program development significantly.

3 Basic Dagger language

In order to reduce the complexity of program de-
velopment, a coordination language called Dagger has
been developed on top of the Charm system. In
Charm, an entry-point is executed when there is a
message directed to it. If the computation in that
entry-point is dependent on the computation in an-
other entry-point within the same chare, then the
programmer must handle this unexpected message by
buffering it, and fetching it whenever the entry-point
becomes eligible for execution. Dagger hides these de-
tails from the programmer by providing expect and
when-block constructs which will be discussed in the
following section.

3.1 Dag Chare

The Dagger language is defined by augmenting
Charm with a special form of chare called a dag-chare.
A dag-chare specifies pieces of computations (when-
blocks) and dependences among computations and
messages. A when-block is guarded by some depen-
dences that must be satisfied before the when-block
can be scheduled for execution. These dependences in-
clude arrival of messages or completion of other when-
blocks. Before describing the Dagger language in de-
tail, let us consider the matrix multiplication example,
and show how it looks in Dagger. Figure 3 shows the
matrix multiplication written as a dag-chare. When-
ever the entries recv_row and recv_column receive
the messages, the multiply function is called with the
rows and columns that have been received. The Dag-
ger takes care of the bookkeeping functions such as
counters, flags and buffering the messages. Therefore,
the resulting code is more readable (and easy to pro-
gram), while still retaining the benefits of a message
driven model.

In Figure 4, a template for a dag-chare is shown.
In addition to entries, a dag-chare may declare some
other data local to that dag-chare in the local variable
declaration section. The local variables are shared
among when-blocks and private functions of the dag-
chare. Private functions are regular C functions which
may contain Charm or Dagger statements/calls, and
they can be called only within the static scope of the
dag-chare.

dag chare mult_chare {

entry init: (message MSG *msg);

entry recv.row: (message TBL_MSG *row);
entry recv_column: (message TBL_MSG *column);

when init : {
MyChareID(&chareid);
Find(Atable, msg->row_index,...);
Find(Btable, msg->colm_index,...);
expect (recv_row);
expect(recv_column);

}

when recv.row, recv_column :
{ multiply(row->data,column->data) }

}

Figure 3: Matrix multiplication dag-chare

dag chare example {
local variable declarations
condition variable declarations
entry declarations
when depn_list_1 {when body_1}
when depn listn : {when bodyn}
private function £f1() {C_code_1}

private function fm() {C_codem}

Figure 4: The Dagger chare template

As in a chare definition, there are no explicit re-
ceive calls in a dag-chare. The dag-chare declares
entry-points, and messages are received at these entry-
points. The entry-point declaration, which is in the
form:
entry entry name: (message msg type *msg)
defines an entry with the name entry_name, and as-
sociates a variable with a specified message type with
that entry. Messages can be sent to entry-points by
supplying the entry_name in the Charm system calls
such as SendMsg. The variable msg is a pointer to the
message received by the entry.

Receiving a message at an entry-point is not suffi-
cient to trigger a computation. (In contrast, in Charm,

arrival of a message always triggers a computation
which is associated with that entry-point.) The com-
putation must be in a state where it is ready to process
the message. A Dagger program tells the Dagger run-
time system when it is ready to process a message by
using the expect statement:
expect (entry name)
If a message arrives before an expect statement has
been issued for it, Dagger will buffer the message. The
message becomes available only after the expect state-
ment is executed. A special entry-point, init, is used
for initialization purposes and it is implicitly expected.
A dag-chare may have a special type of variables
called condition variable. A condition variable is de-
clared as follows:
CONDVAR cond_var_name
The condition variable is used to signal completion of
a when-block. In other words, it is used to express the
dependences among when-blocks which belong to the
same dag-chare. A when-block can send a message to
an entry which is defined in the same dag-chare, how-
ever to utilize a shared variable (condition variable)
is more efficient. A condition variable is initialized to
the not-ready state when it is declared. It is set to the
ready state by the ready statement:
ready(cond_var_name)
Once a condition variable is set, the Dagger may
schedule the when-blocks which are waiting for that
condition variable to be set.
A when-block is a computation which is guarded by
a list of entry names and condition names:
when €1,...,€,,C1,...,Cm {when-body}
where e; is an entry name, and ¢; is a condition vari-
able. In order to initiate the execution of the when-
block, the dependence list of the when-block must be
satisfied. The dependence list is satisfied if :

e a message has been received and expect state-
ment has been executed for each entry e; in the
dependence list,

e for each condition variable ¢; in the list, a ready
statement has been executed.

The when-body is a block of C code possibly including
Charm system calls, and expect and ready Dagger
statements. The messages received by the entries e;’s
are accessed inside the when-body through the mes-
sage pointers defined in the entry declarations.
3.2 Dag Chare example

As another example of a Dagger program, we will
consider a simple version of a numerical problem: Ja-
cobi relaxation to solve a penta-diagonal linear sys-
tem (which arises in the solution of partial differential

equations). We will present the problem without get-
ting into the details of the application, and present
the Dagger code for it. This problem involves a 2-
dimensional grid of points. The grid is partitioned into
rectangular blocks, and each processor is assigned to
one block. The basic computation in a processor is to
perform some local computation on its own block, ex-
change some information (boundary values) with four
neighbour processors (east,west,north,south), and to
carry out a reduction operation across all processors
(maximum operation). The computation continues in
this manner until the solution is reached. Figure 5

dag BranchOffice jacobi {
ChareNumType mycid; PeNumType neighbour[4];
CONDVAR SEND;
entry init : (message MSGINIT *msg);
entry NORTH: (message BOUNDARY *north);
entry SOUTH: (message BOUNDARY *south);
entry WEST : (message BOUNDARY *west);
entry EAST : (message BOUNDARY *east);
entry CONVERGENCE : (message CONV *conv);
when init : { initialize(); ready(SEND);}
when SEND : { BOUNDARY *m;
for each direction (NORTH,SOUTH,WEST,EAST){
m = copy_boundary(direction);
SendMsgBranch (entrymno[direction] ,m,
neighbour [direction]);
expect (entry no[direction]);} }
when NORTH,SOUTH,WEST,EAST : {
update (north,south,west,east) ;
reduction(my conv() ,CONVERGENCE,&mycid) ;
expect (CONVERGENCE) ; }
when CONVERGENCE: {
if (conv->done) print result()
else ready(SEND); }

Figure 5: Jacobi relaxation dag BOC

shows a dag BOC to carry out this computation. The
four entry-points (NORTH,SOUTH,EAST,WEST) receive
the boundary values from neighbouring processors.
The entry-point CONVERGENCE receives the result of the
global reduction operation. When an instance of the
Jacobi BOC is created, the init entry-point is executed
first. The code at this entry-point carries out some
initializations such as the determination of the iden-
tity of the neighbour processors. After initialization,
the condition variable SEND is set by the ready state-
ment. This enables the when-block which depends on
the variable SEND. In this when-block, boundary val-
ues are sent to neighbour processors (copy_boundary
creates a message, and boundary values are copied

into messages, and SendMsg Charm call initiates the
transfer). In addition to this, an expect statement
is executed for each direction because the processor
is ready to process boundary values from neighbours.
After receiving all the boundary values, the local data
is updated and the reduction operation is initiated.
The function reduction is a call to another dag-chare
which is not explained here. It suffices to note that
a local convergence data is collected by my_conv(),
and sent to the reduction chare, which is responsible
for determining the global convergence. The reduction
call is non-blocking, and eventually the reduction dag-
chare sends the result to the entry-point CONVERGENCE.
After initiating the reduction, an expect statement
is issued to state that the computation is ready to
process the reduction result. When the reduction re-
sult arrives, the code checks if global convergence has
been reached. If not, it reactivates the when-block
which sends the new boundary values, and the compu-
tation continues. The expect and ready statements
serve an important purpose - imposing an order on the
processing of messages. Without expect/ready con-
struct (i.e., implicitly every message is expected), one
of the processors might receive the boundary messages
from its neighbours before the reduction message, and
it may start next iteration. This violates the depen-
dences in the algorithm. The Dagger performs the nec-
essary synchronization by keeping counters and flags,
and buffering unexpected messages to guarantee the
correct order of execution.

4 Extended Dagger language

The Dagger Language as defined in section 3 was
kept simple for ease of exposition. Supporting full
generality of parallel programming acquires two ex-
tensions embodied in Dagger, which are motivated and
described below.

4.1 Reference Numbers

The expect statement imposes an order on the ex-
ecution of messages. This is sufficient for a simple
dag computation. However, there are computations
where the concurrent phases of a dag exist (in time).
An example of that is a dag augmented with a loop
where different iterations of the loop may be executed
concurrently. Another example is a client-server type
of computation. Client processes may send multiple
requests concurrently to a server dag. The server dag
performs the same computation for different requests
concurrently.

First, we will illustrate the problem with a sim-
ple example, and then describe the solution provided
by Dagger. Consider the Jacobi relaxation program
of Figure 5 without any global convergence tests.

Each processor receives boundaries from its neigh-
bours, computes new values and sends the new bound-
aries to the neighbours. This computation is repeated
a fixed number of times. In Figure 6, the Dagger code
is listed for that computation. Each processor is exe-

when NORTH,SOUTH,EAST,WEST: {
update();
if (++loop_count < limit)
for each direction {
m = copy_boundary(direction);
SendMsgBranch(entry_no[direction],m,
neighbour[direction]);

expect(entry_no[direction]);

}

Figure 6: Jacobi relaxation without reference numbers

cuting the same dag code. Depending on the machines
and its operating system, it is possible that messages
belonging to different iterations may arrive out of or-
der. A scenario where the computation goes wrong is
illustrated in Figure 7. Processors ¢and j are exchang-
ing messages and doing some local computation. The
message sent by processor ¢ in the second iteration is
delayed. When the processor i receives a message from
7 in the third iteration, it performs the local compu-
tation and sends the message belonging to the fourth
iteration. Processor j receives the message which be-
longs to the fourth iteration before the one belonging
to the third iteration.

processor i

~ _ processor j

iteration: 1 2

Figure 7: Out of order messages

In order to handle this problem, messages belong-
ing to different phases of the computation must be
distinguished. To accomplish this, we modify the lan-
guage to include reference numbers. Each message
may have a reference number. messages which belong
to the same phase of the computation are given the
same reference number by the user. Then, Dagger
matches the messages with the same reference num-

ber to activate a when-block (condition variables may
have reference numbers too). In other words, an in-
stance of a when-block is scheduled for execution only
if the dependence list is satisfied with the availabil-
ity of messages and condition variables with matching
reference numbers. The expect and ready statements
are modified to support reference numbers as follows:

expect(entry_name,reference_number)
ready(cond_var_name,reference_number)

The reference number of messages are accessed and
set by the function calls provided by the system:
GetRefNumber(msg), and SetRefNumber(msg). A
correct version of the Jacobi example in Figure 6
can be written by using the loop_count as a refer-
ence number. The code is modified by replacing the
SendMsg and expect statements with the following
ones:

SetRefNum(m,loop_count) ;

SendMsgBranch(entrynno[direction] ,m,

neighbour[direction]);
expect(entryno[direction],loop_count);

4.2 Entry-points with multiple messages

Another extension to the Dagger deals with entry-
points which receive multiple messages. This situa-
tion arises when the number of messages that a when-
block depends on is known only at run time, or differs
from processor to processor. As an example, consider
a reduction operation. In a reduction operation, some
data values from every processor are collected, and
the result of the reduction operation over the collected
data is distributed to all the processors (for example,
a global sum operation). An efficient and scalable way
of implementing the reduction is to utilize a spanning
tree of processors. Each processor in the tree collects
and reduces the data from its children and passes its
partial result to the parent. When the root receives
all partial results from its children, the final result is
broadcast. We can express this computation in the
basic Dagger language by a when statement which is
guarded by the entry-points declared for each child.
However, the number of children is not fixed for all
processors even with a fixed number of processors;
also, as the number of processors changes, the span-
ning tree changes. To solve this problem, the language
is extended by allowing entry-points to receive multi-
ple messages. The entry declaration:
entry entry name[n] (message MSG *m[]);
associates a variable n, with the entry entry name.
This variable is initialized to a user specified value
at the beginning (in init entry). The entry-point

entry_name now expects n messages stored in an array
of message pointers called m. The when-block:

when entry namel[ANY] : { ... }
is activated for each message received at this entry-
point, and when all the messages arrived, then

when entrymname : { ... }
is activated.

5 Implementation

Dagger has been implemented on top of the Charm
system. The implementationis composed of two parts:
translation of a dag-chare and run time management.

The Charm translator has been extended to trans-
form dag-chares into chares. Each entry declaration in
the dag-chare is converted to an entry-point. All the
when-blocks become private functions of the chare. In
addition to these, some control data structures are de-
fined as local data of the chare and are manipulated
by the Dagger run-time. These data structures in-
clude three queues: message queue, waiting queue, and
ready queue. Message queue keeps the messages until
they are consumed by the when-blocks. The waiting
queue contains the instances of activated when-blocks
that are waiting for some messages or expect/ready
statements. The ready queue is a list of when-block
instances which are eligible for execution. When a
message is received, the corresponding entry-point is
invoked by Charm. This entry-point (which is pro-
duced by the Dagger translator) contains the code
to buffer the message and to check if any instance
of a dependent when-block is eligible for execution.
A when-block instance in the waiting queue has a
counter. This counter is initialized to the number
of entries and conditions in the dependence list of
the when-block. The counter is decremented by the
availability of expected messages, and/or execution
of ready statements. Whenever the counter reaches
zero, the when-block instance is put into ready queue.
At the end of each entry-point code, the function
process ready list is called to execute the when-
block instances in the ready queue before returning
the control to the Charm runtime.

6 Preliminary performance results

In this section, the preliminary performance results
of Dagger will be presented. First, we will look at
the overhead introduced by Dagger with respect to
Charm level. This overhead is as a result of buffer-
ing messages, queueing, and matching operations. We
do not expect the higher level of abstraction and in-
creased expressiveness provided by Dagger to come
free. However, we expect the overhead to be small,
and the overall performance of Dagger to be better

than the performance of blocking-receive model.
Table 1 depicts the overhead introduced by the
Dagger. The Jacobi method, described in Section 3.2,
was implemented in Charm and Dagger. The table
shows the elapsed time and percentage overhead for
different problem sizes (note that as problem sizes in-
creases, total number of iterations increases). The
overhead is small and decreases as the problem size
increases. In addition, there are opportunities to re-
duce the overhead of Dagger in the runtime system.

Sequent Symmetry NCUBE

16x16 | 32x32 | 64x64 16x16 | 32x32 | 64x64

3.10 21.28 | 159.72 | 1.39 4.95 21.69

2.93 20.83 | 158.1 1.26 4.61 20.95

o |o|e

5.8 2.16 1.02 10.7 7.4 3.5

(a)Total grid size (b)Dagger (c)Charm (d)Overhead(%)

Table 1: Dagger Overhead (on 4 processors)

The main motivation behind Dagger is to retain
the ability to overlap computation and communica-
tion. In order to demonstrate this feature, a concur-
rent reduction program was written for NCUBE/2 in
C with blocking-receives and in Dagger. Each proces-
sor has an array which is partitioned into blocks of size
512 words. A reduction (max) operation is performed
for each partition. The reductions are independent
of each other. The blocking-receive version calls the
NCUBE/2 system library function nrmaxn to perform
the reduction. This call is a blocking call, and the
processor waits for the result of the reduction. In the
Dagger version, the program initiates a non-blocking
reduction operation which is implemented in Dagger
also, then it continues with the next available piece
of computation. Figure 8 shows the elapsed time of
these two programs. As the number of processors in-
creases, the blocking-receive version takes more time,
because the cost of reduction operation is in the order
of log p where p is the number of processors. The Dag-
ger version tolerates this by overlapping the computa-
tion and communication (the initial increase up to 16
processors is due to the maximum branching factor of
the spanning tree employed by Charm which increases
from 1 to 4 and stops at 4 beyond 16 processors).

7 Related work

The original Actor model as described in [1] is
purely message driven. The issue of synchronization
within an actor was addressed in [9] which proposed
the enable set construct. Using this, one may specify
which messages may be processed in the new state.
Any other messages that are received by an actor are
buffered until the current enable set includes them.

Concurrent Reductions

- bléckiné-recéive .

time (sec)
o B N W
QUL OINUTWUOT A
T

=

2 4 8 16 32 64 128
Number of Processors

Figure 8: Overlapping Communication

Thus, this construct is analogous to our expect state-
ment. However, there is no analogue of a when-block,
viz. a computation block, that can be executed only
when a specific group of messages have arrived. A
more recent paper [3] supports a much more complex
model which subsumes synchronization of multiple ac-
tors depending on message sets. It should be noted
that Dagger/Charm provides a programming model
that differs from Actors in many ways. The discus-
sion above focuses only on how they deal with message
driven execution.

Recent work on Active Messages [4] also deals with
message driven execution and split phase transactions.
The split-C language based on Active Messages em-
ploys polling for arrival of messages. However the
TAM compiler built on Active messages has some sim-
ilarities to Dagger. As messages always enable the
corresponding threads of an activation frame, there
appears to be no way of buffering unexpected mes-
sages. Counters and flags for synchronizing on arrival
of multiple messages are explicitly maintained. How-
ever, TAM is meant as the back end for a data flow
compiler as opposed to a language meant for the ap-
plication programmer. So these inconveniences may
not be of much consequence.

Macro data flow [6] approaches share with us the
objective of message driven execution and local syn-
chronization. However, much of the past work in this
area was aimed at special purpose hardware. Also,
these approaches are often meant to be used as a back-
end for compilers. Thus the inconvenience of main-
taining counters and buffers explicitly is not consid-
ered significant. These approaches thus are compara-
ble to Charm itself rather than Dagger. Our experi-
ence with using Dagger as back-end for a compiler for a
data parallel language [8] indicates that Dagger might
provide a more convenient intermediate language than
macro data flow.

8 Conclusion

We presented a coordination language called Dag-
ger which combines the efficiency of message driven
execution with the conceptual simplicity of blocking-
recelves. Programming in the Dblocking-receive
paradigm is easier since it imposes a strict synchro-
nization. However, it exaggerates the communication
latency. Dagger allows users to express dependen-
cies among messages and computations. The send-
expect mechanism together with when-blocks, which
are guarded by the availability of messages, allows ex-
pression of parallelism with ease, at the same time
retaining message driven execution.

Dagger has been developed on top of Charm which
supports message driven portable parallel program-
ming on MIMD machines. As future work, the run-
time of the Dagger will be tuned to decrease the over-
head. A visual editor for Dagger has also been devel-
oped. The visual interface will allow users to express
and edit computations graphically.

References

[1] G.Agha, Actors: A Model of Concurrent Compu-
tation in Distributed Systems. MIT Press. 1986.

[2] W.Dally, and et al. “The J-Machine: A Fine-
Grain Concurrent Computer”, In IFIP Congress,

1989.

[3] S.Frolund, G.Agha, “Activation of Concurrent
Objects by Message Sets”, Internal Report, Uni-
versity of Illinois at Urbana-Champaign.

[4] T.von Eicken, D.E.Culler, S.C.Goldstein, K.E.
Schauser, “Active Messages: a Mechanism for
Integrated Communication and Computation”,
Proc. of the 19" Int’l Symp. on Computer Ar-
chitecture, Australia, May 1992, pp256-266.

[5] A.Gursoy, Message Driven Ezecution and its Im-
pact on the Performance of CFD and other Ap-
plications, Ph.D Thesis in preparation, University
of Illinois at Urbana-Champaign, Jan 1993.

[6] A.S.Grimshaw, Mentat : An Object Oriented
Macro Data Flow System, UITUCDCS-R-88-1440,
Ph.D Thesis, University of Illinois at Urbana-
Champaign, June 1988.

[7] L.V.Kale, “The Chare Kernel parallel program-
ming language and system”, Proceedings of the
International Conference on Parallel Processing,

Vol II, Aug 1990, ppl7-25.

(8]

E.Kornkven, “Overlapping Computation and
Communication in an Implementation of A
Data Parallel Language”, Report 92-4, Parallel
Programming Laboratory, Department of Com-
puter Science, University of Illinois at Urbana-

Champaign, Oct 1992.

C.Tomlinson, V.Singh, “Inheritance and Syn-
chronization with Enabled-Sets”, ACM OOPSLA
1989 , ppl03-112.

The CHARM(4.0) programming language man-
ual, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL,
1993.

