A framework for intelligent performance feedback

Amitabh B. Sinha Laxmikant V. Kalé
Department of Computer Science,
University of Illinois, Urbana.
Urbana, IL 61801.
email: sinha kale@cs.uiuc.edu

Abstract

The significant gap between peak and realized performance of parallel machines motivates the
need for performance analysis. Contemporary tools provide only generic measurement, rather
than program-specific information and analysis. An object-oriented and message-driven lan-
guage, such as Charm, presents opportunities for both program-specific feedback and automatic
performance analysis We present a framework in which specific and intelligent feedback can be
given to the user about their parallel program. The framework will use information about the
parallel program generated at compile-time and at run-time to analyze its performance using
general expertise and specific algorithms in performance analysis.

Keywords: performance feedback, object-based, message-driven, intelligent anal-
ysis, post-mortem

1 Introduction

The need for parallel machines for solving large, computationally challenging problems has been
clearly demonstrated. Today there already exist parallel machines with peak performances in the
range of tens to even hundreds of gigaFLOPS. However writing parallel programs for these machines
is not simple: it is not easy to reason about the correctness and efficiency of parallel programs. The
primary source of difficulty is the multiplicity of threads of control in a parallel program. In order to
ensure correctness, one needs to interleave and map these multiple threads correctly; and in order to
ensure efficiency, one needs to interleave them in a manner which reduces the idle time. Therefore,
techniques that help analyze the correctness and efficiency of parallel programs are necessary. In
this paper, we introduce a framework for providing specific and intelligent performance feedback
for parallel programs.

There exist a large and diverse collection of performance analysis tools for parallel programs.
The primary emphasis of these tools has been to present information about different attributes of the
execution of the parallel program. However, most often, this information is generic, e.g., utilization
of processors, size of queues, number of messages, etc. Tools rarely provide more specific information
about the program, such as information about different user-defined message types, execution
of specific code blocks in the user program, etc. Further, most existing performance analysis
tools do not analyze the information presented for possible performance problems and potential
opportunities for improving performance. Analyzing performance information is a non-trivial task:
applications programmers find it difficult to effectively analyze the information presented by these
tools. The problem is further compounded on massively parallel machines because the amount of
information presented is huge.

A good performance analysis tool should be able to (1) display program specific informa-
tion, and (2) intelligently analyze the information to detect problems. In empirical studies, we
have observed that the core of techniques applied in analyzing the efficiency of parallel programs
utilizes information about characteristic attributes of the program, such as degree of parallelism,
granularity of sub-tasks, load balance, etc. We believe that informative and intelligent display
and analysis techniques can be designed for languages, whose primitives provide information about
the characteristic attributes of the parallel program. In this paper, we outline the development
of a framework that provides specific and intelligent feedback about the performance of a parallel
program. The framework consists of three components: the acquisition component, the display
component, and the analysis component.

The acquisition system is responsible for acquiring information about the identified char-
acteristic attributes. In most current day parallel programming languages, information about
characteristic attributes may be available; however, it may be difficult, if not impossible, to ex-
tract the information even with sophisticated compilers. It is essential to have a language with an
adequately rich set of primitives, which provide the performance analysis system with a refined un-
derstanding of the events that occur during the execution of a program and their potential impact
on performance. We have chosen Charm [1], a portable, object-based, and message-driven ! parallel
programming language, as the base language. The object-oriented and message-driven execution
model of Charm provides a great deal of specific information about parallel programs written in
Charm. In addition, Charm provides specific modes of information sharing which provide further

!The code block to be executed by a message is associated with it when it’s sent. On arrival at the destination
process the associated code-block is automatically executed by the system.

specific information about Charm programs.

The display and analysis components are part of the performance feedback tool called Pro-
jections. A preliminary version of Projections is described in [2, 3]. It had only a limited display
capability: that of showing information about system attributes, such as utilization and num-
ber of parallel objects created. The display component added in the new version of Projections
provides specific information about application program attributes. The analysis component uses
information acquired about Charm program characteristics to automatically analyze some typical
performance feedback problems. The analysis component is under development, and some of the
features mentioned are still being implemented.

The paper is organized as follows. In Section 2, we have identified several characteristics
of parallel programs. In Section 3, we motivate the need for richer programming primitives, such
as those in the Charm parallel programming language. In Section 4, we outline mechanisms to
acquire information about program characteristics in the context of Charm programs. In Section 5,
we present Projections, a tool that displays information about various program characteristics, and
also provides an analysis of the performance of the program. An example is presented in Section 6
which illustrates the use of the performance tool. Finally, in Section 7, we discuss other related
performance analysis mechanisms and directions for future work.

2 Identification of program characteristics

Through empirical studies, we have been able to determine a small number of program character-
istics which are often used in analyzing the performance of a parallel program. In performance
analysis, the goal is to maximize the utilization of each processor. This can be achieved by maxi-
mizing the fraction of time a processor executes user code (user time), and minimizing the fractions
of time a processor idles (idle time) or executes system related code (overhead).

In most cases, it’s useful to maximize the amount of user computation. However, in some
cases, part of the user computation is wasteful — the performance loss due to such waste is known
as speculative loss. The degree of wasteful work in a program must be minimized. Idle time
can be affected by the scheme with which tasks are placed on the processors (placement), depen-
dence between tasks and the synchronization requirements of processes, the order of execution of
messages (scheduling strategy), the number of tasks that can be scheduled independently at any
given moment (the degree of parallelism), and the computational requirements of tasks (grainsize).
The contribution of system overheads is affected by the grainsize of tasks and the time to access
shared variables. Thus the characteristics of a parallel program that can affect its performance are:
scheduling strategy, synchronization, placement, grainsize of tasks, shared variable access time,
degree of parallelism, and speculative loss. We shall now discuss each of the characteristics we have
identified above in greater detail:

1. Dependence between tasks and synchronization: The nature of dependences between
tasks and the nature of synchronization amongst them, is perhaps the most important char-
acteristic of a parallel program. The most common causes of bottlenecks in parallel programs
is processors/tasks waiting for other tasks to complete. For example, in a divide and conquer
program, each interior node of the divide and conquer tree must wait for results from its
children. The user/system must minimize such waiting periods, because a waiting task can
cause a processor to idle.

2. Scheduling strategy: The scheme with which tasks are scheduled for execution in a parallel
system can also affect a program’s performance. For example, in a program where tasks on
the critical path are not scheduled early might delay the completion of the critical path.

3. Placement and load balance: This describes how tasks are placed on the various parallel
processing elements, e.g., in the SPMD model of execution one task is placed on each pro-
cessor. Closely related to the placement of tasks in a parallel program is the degree of load
balance. One metric for measuring load balance is the balance in the number of tasks. How-
ever, that is not sufficient, since even though the number of tasks on different processors may
be balanced, their loads may not be balanced. Therefore, a second metric is essential: it is
the balance of computational load in the program. The first metric is still necessary because
tasks have other attributes such as creation, processing, and memory overheads which also
need to be balanced.

4. Shared variable access: In different programs, processes must share information amongst
each other in some form or the other. The nature of information sharing and the methods of
access of the shared information often affects the performance of the parallel program. It is
therefore important to know about the nature of shared variable access in parallel programs.
For example, in a program where there is some information which is initialized once and
thereafter accessed only in the read mode, the cost of data access could be minimized by
replicating the information.

5. Degree of parallelism: The degree of parallelism measures the number of ready parallel
tasks that exist at any given time. It is an important factor in analyzing the performance of
programs, because when programs are executed on larger machines there may not be enough
parallel tasks to keep the machine busy. Further, if the number of ready parallel tasks on a
parallel processor are large, it also indicates a high degree of overlap, which can lead to faster
completion times.

6. Granularity of tasks: The granularity of a task in a program is the average computational
time needed by a task. The granularity of tasks in an application is an important factor in the
performance of an application. If the tasks are too fine grained, then the system overheads
(communication latency time, shared memory access time, context switch time, etc.) can
adversely dominate the execution of the program. Conversely, if the tasks are too large-
grained, then there would be too few tasks to effectively parallelize. It is therefore necessary
to carefully choose an appropriate granularity for tasks in a parallel program.

7. Degree of speculative work: In a number of parallel programs, the total amount of
computational work is dependent on the order in which parallel tasks are executed. In such
programs, one can generally define the minimum amount of computational work that must
be done; any additional work is termed as speculative. It is necessary to keep the amount of
speculative work to a minimum, otherwise speedup anomalies can be observed. The amount
of speculative work can be reduced using different scheduling strategies for the tasks, which
may depend on priorities attached to them.

3 The need for a richer parallel language

Currently, most parallel applications are based on the SPMD model, and are written using C/Fortran
parallel libraries. However applications based on the SPMD model do not provide much specific

information about the program. In particular, it is difficult for the system to acquire information
about sub-tasks in a program or about the nature of information sharing.

In the SPMD model, a copy of the program executes on each processor — there is only
one task on each processor, and it is is the entire program. Further, the SPMD model does not
permit the dynamic creation of new tasks on a processor. This all-encompassing concept of a task
does not permit the analysis tool to easily extract specific information about sub-computations
in the program. We could consider the actions associated with a message to constitute a task.
However even though the actions associated with receiving a message generally follow the receive
statement in the program, the exact actions associated with a message are not very clear without
some dependence analysis.

Further, most widely used SPMD programming languages do not provide any specific modes
of information sharing — the user needs to explicitly implement the types of information sharing
needed by the program. However it is difficult (again, it may require sophisticated dependence
analysis techniques) for the system to identify the particular information sharing mechanism im-
plemented by the user. For example, a user might have implemented a variable that is shared
only in the read-mode by the sub-tasks in the parallel program. However the compiler may not
be able to detect even such a trivial information sharing mode. In order to acquire more specific
information about a parallel program, it therefore, becomes necessary to use a different, and more
specific programming paradigm.

We have chosen an object-based portable parallel programming language called Charm. The
execution model of Charm is message-driven, i.e., the arrival of a message at a particular processor
results in the invocation of the code-block associated with it. There is no explicit receive statement
in Charm. In this programming model, the system can easily decompose the program into sub-
tasks: the code-block associated with a message constitutes a sub-task.

The basic unit of computation in Charm is a chare (similar to an object). A chare’s definition
consists of an encapsulated data area and entry functions that can access the data area. A chare
tnstance can be created dynamically using the CreateChare system call. As a result of this system
call, a new-chare message is created. Each chare instance has a unique address. Entry functions in
a particular chare instance can be executed by addressing a message to the desired entry function
of the chare. Messages can be addressed to existing chares using the SendMsg system call. This
call generates for-chare messages.

Charm provides a second type of process called a branch office chare, which is essentially a
chare replicated on each processor. A branch office chare has the same syntax as that of a chare
Branch office chares provide a convenient abstraction for the implementation of various distributed
strategies, e.g., load balancing, quiescence detection etc.

The object-based and message-driven paradigm of Charm already provides us with some
information about Charm programs. In this section, we shall illustrate how one can obtain infor-
mation about various characteristics of Charm programs through static and dynamic acquisition
techniques. Information about some characteristics are not available through either of these mech-
anisms. For some of these, we have been able to acquire information through new language con-
structs. We also discuss how information about the other remaining characteristics can be obtained
by adding new features, such as known libraries or annotations.

An interesting outcome of the decision to select Charm as the base language has been that
its object-oriented nature and message-driven model of execution make many distinctly different

performance optimization decisions possible. In most SPMD programs, the outcome of an analysis
is often confined to generic advice, such as move the sends up, and move the receives down. In
such a model, it is difficult, if not impossible, to answer questions such as “Which messages, up to
where, and down to where?” A message-driven and object-oriented paradigm makes it possible to
answer such questions and provide even more avenues for analysis.

4 Acquiring information about the characteristics of Charm pro-
grams

In this section, we present mechanisms to acquire information about those characteristics of Charm
programs which are useful in analyzing their efficiency. Information about the characteristics of
a parallel program can be acquired either statically (through language constructs) or dynamically
(through the run-time system). For Charm programs information about placement, shared vari-
ables, and synchronization can be acquired statically, while information about other characteristics,
such as grainsize of tasks, scheduling, etc., can be acquired dynamically.

Placement:

Charm programs can have two types of processes — chares and branch office chares. A
branch office chare has a representative chare (branch) on each processor. Thus the placement of
each branch of a branch office chare is known statically. A chare can be created in two modes
— with or without specified placement. The nature of placement of a chare can be determined
from the CreateChare call used; when no placement is specified, the exact processor on which the
chare will be created is determined by the dynamic load balancing strategy. A chare that is created
without any specified placement is automatically placed under the control of the dynamic load
balancing strategy which specifies its placement.

Shared variables and their access:

In previous work [4], we have discussed the motivation and details for providing a limited
number of specific information sharing mechanisms in Charm. The reason Charm does not provide
any general-purpose shared variable is that in experiments with parallel programs, we have observed
that they often share data in only a few distinct and specific modes; the ‘completely general’ shared
variable is rarely used. Currently, Charm provides five different kinds of shared variables: read only,
write once, accumulator, monotonic and distributed tables. These specific modes were implemented
as efficiently as possible on a particular architecture.

A read-only variable is initialized at the CharmInit entry point and can only be accessed via
the call ReadValue from any other chare. This call simply returns the (fixed) value of the variable.
A read only variable may be a scalar (e.g. integer), array or a structure.

A write-once variable is created and initialized any time (and from any chare) during the par-
allel computation. Once created, its value can only be read. The creation is done via a non-blocking
call WriteOnce(dataptr, datasize, entryPoint, ChareID) which immediately returns without any
value. Eventually, the variable is “installed”, and a message containing a unique name assigned to
the new variable is sent to the designated entryPoint of the designated chare. This unique name
can be passed to other chares, which can access the variable by calling DerefWriteOnce.

A ccumulator variables are counters, with one difference. The initial value of an accumulator

must be zero. Accumulator variables have associated with them two functions - an accumulating
function that adds to the counter, and a combining function that combines two counter variables.
An accumulator variable is initialized during initialization of the main chare, and can be read only
once, destructively. It can be modified only via a function Accumaulate, which adds a given value to
the accumulator. The destructive read is performed via the (non-blocking) call CollectValue, which
results in eventual transmission of a message containing the final value of the accumulator to the
named chare. It is easy to think of the accumulator as an integer to which we want to add other
integers from time to time, although the language allows it to be any type, with any user-defined
commutative associative operation.

A monotonic variable is global variable that “increases” monotonically in some metric by
the application of an idempotent function. It is used typically in branch-and-bound computations.
Its (approximate) current value can be read by any chare at any time using the call Mono Value, and
a potential new value for it can also be provided by any chare using the call New Value. The supplied
value replaces the old value if it is “better” than the old value, using a user-supplied comparison
function. It is only guaranteed that the value read from any other chare will be eventually better
or equal to the new value supplied.

A distributed table consists of a set of entries, each with a key part and a data part. Various
asynchronous access and update operations on entries in the table are provided. For example,
one may call Find(tbl, key, entryPoint, chareID). The call immediately returns, and eventually a
message containing the data associated with the given key is sent to the specified chare at the
specified entryPoint.

Synchronization characteristics:

The synchronization requirements of a Charm program are not easily available either stat-
ically or dynamically. However, information about object-level synchronization can be acquired
automatically in Dagger [5], which is a high-level notation on top of Charm. Dagger allows the user
to easily express synchronization even in asynchronous message-driven execution models. Further,
system-level (across all objects) synchronization can be identified if a known library such as the
reduction library is used.

Granularity, scheduling, load balance:

In the Charm execution model, all new-chare and for-chare messages are deposited in a
message-pool from where messages are picked up by processors whenever they become free. In the
shared memory implementation of Charm, the pool of messages is shared by all processors; in the
nonshared memory implementation, the message-pool is implemented in a distributed fashion with
each processor having its own local message-pool. New-chare messages are the only messages that
may not have a fixed destination, and are therefore the only messages which can be load balanced.
In nonshared memory implementations, load balancing strategies attempt to balance the sizes of
the local message-pools on each processor. New chare messages may move among the available
processors under the control of a load balancing strategy till they are scheduled for execution.
Once picked up, a new chare message results in the creation of a new chare, which is subsequently
anchored to that processor.

We have instrumented the Charm run-time system to monitor various attributes of a message,
such as sender and receiver objects, intermediate locations while being load balanced, and the times
at which the message was created, enqueued, dequeued 2, and then processed. This information

®Note that in a dynamically load balanced system, such as the one provided by Charm, a message can potentially

allows us to determine the grain-size of tasks, the number of messages in a processor’s message
pool, and the utilization of each individual processor. The last two quantities provide information
about the balance of message-load and the balance of processor-utilization.

The Charm runtime system allows the user to choose from a wide variety of scheduling
strategies, such as lifo, fifo, fifolifo, etc. It allows the user to add further control on the scheduling
of messages on a processor by attaching priorities to messages. The system has various prioritized
scheduling strategies, again user-selectable, that schedule messages according to their priorities.
The choice of a particular scheduling strategy is made at link-time, so the runtime system has
information about the strategy chosen.

5 Intelligent performance feedback: Projections

In this section, we outline the design of Projections, the display and analysis component of a
framework for providing intelligent feedback about the performance of Charm programs. The
Projections performance analysis environment has two components: display and analysis. Both the
components are post-mortem: they use traces of the program execution. Projections traces can be
obtained automatically by linking with the projection binaries: no change is necessary to the user
program. The first component is a tool to display Charm specific data. The second component of
the performance analysis environment analyzes information about the various characteristics of a
parallel program and provides the user with feedback about the performance of the program. We
describe these components in more detail in this section.

5.1 The display component

A preliminary version of the display component of Projections was presented in [2, 3]. The display
component provides the user with a mechanism to view:

1. System specific performance information. This includes properties of system, such as busy
time, queue lengths, creation and processing of messages, and creation of new tasks. Charm
is based on the MPMD (Multiple Program Multiple Data), while most currently available
programming tools target the SPMD (Single Program Multiple Data) model. Thus features
unique to the MPMD model, such as the creation of new processes need to be displayed in
Projections.

2. Program specific performance information. Projections allows the user to view information
about the creation, processing, granularity of messages to entry points. Since messages in
Charm are addressed to specific entry methods in chares, providing information about mes-
sages using the reference point of the corresponding chare and entry method will provide the
user with information which can be related to relevant portions of the parallel program.

We will collectively refer to system and program specific performance information as program
attributes. Projections displays data about program attributes which allows the user to identify
when, where and what type of work occurred during the execution of the program, and how that
corresponds to the processor utilization. The most basic Projections views treat program attributes

be enqueued and dequeued more than once.

as a function of two variables: stage and processor index. Each program attribute can be thought
of as a three-dimensional object, and the views are merely projections of this object onto the
coordinate axes defining the object space. The execution of the user program is divided into equal-
length periods of time called stages. The length of the time period, called timestep, used to cut
up the execution time into stages is user-defined and can be changed interactively by the user
program to define finer and coarser stages, as desired. The views provide different projections of
this two-variable function. We can represent the function, F,, for the program parameter, a, as

a= Fu(s,p)

In the above equation s is the stage of program execution and p is the processor index. The
stage, s, and the processor index, p, range over a stage-set and a processor-set, respectively. In the
default case the stage-set ranges over the stages for the period of execution of the program, and
the processor-set ranges over the processors used for execution.

The attached plate shows a sample of views available in Projections. The top-level window for
Projections appears at the far-left corner. There are there types of views — overview, detailed, and
animation. An overview shows an aggregated (added across all processors, or across time) summary
of the values of various attributes. A detailed view shows a complete view of all attributes either
across processors or across time. One can also query inside the detailed view to get a timeline 3 of
events occurring on the chosen set of processors for the chosen period of time. This view is useful
in understanding what happened on which processor at what time. Note that both the overview
and the detailed view has an View-User-Parameters button in the menu. This menu item allows
the user to select user-defined attributes. It is different for each program, and reflects the structure
of the program: the chares and the entry-functions that compose the chare. For example, in this
program, there are three chares: main, RB2, and REDN. And the chare RB2 has entry points:
red_ws, red_en, init, black_wn, black_es, and dag9. Using these, the user can display information
about the creation and processing of messages to any of the entry points.

5.2 The analysis component

Based on our experience in analyzing the performance of several Charm programs, we have identified
a decision-tree based approach for performance analysis. Figure 2 shows part of the decision-
tree. Notice how different nodes of tree correspond to acquiring information about the program
characteristics that we have talked about in Section 4. The first two levels of the tree are used to
identify when and where the program performed poorly: this identifies periods in time and sets of
processors for which the program did not perform well. The lower levels of the tree are used to
determine the exact nature of the cause of poor performance. A portion of the lower levels of the
tree appears in Figure 2: the triangles indicate positions in the tree which have further branches.

A performance analysis tool should embody this expertise and automate its application to
the execution of a particular program. It should have the ability to perform individual analysis
required at the various nodes of the tree. Projections is intended to be such a tool. In Section 4,
we have discussed how one can acquire information about the characteristics of a Charm program.
Based on such information and the decision-tree in Figure 2, Projections can analyze the execution
of Charm programs. Our current analysis component consists of critical path analysis and some
granularity and placement analysis. We are in the process of implementing other portions of the
decision-tree.

3This view is inspired by the performance tool developed at the Argonne National Laboratory called Upshot [6].

8] Detailed View

Edit Yiew Yiew-Systen-Parangters AN —

File Edit View File

(uerYiew Jetailed fnination P
- red v b [reation

reden Fracessing
init &
black_un &
black es &
dagd B

red_en Processed
red_us (reated
red_us Processed
_dagd Created
_tagd Processed
distribute Created

4] Time Line

distribute Processed
File Yiew

oo callect Created HESSAGES
collect Processed .
. init Created m

|3

Overyiew

1
T
L
1
i
* F
1
i
1
1
4

T MUY ETBI00282

File Edit View-Systen-Paraneters

012345
STRGES (Each stage is 100000 microseconds)

. figaregate

PERCENT
BUSY

ile

ik CRITICAL PATH ANALYSIS ik
ritical path analysis showed possibility of inprovement,

he following tasks are critical,

PROCESSORS

Figure 1: A sampling of Projection views

Identify a period in time where
overall utilization was poor. Check
utilization-balance.

1
[1

Utilization imbalance exists. Do the There is no utilization imbalance. Do the
message queues on poorly performing message queues on poorly performing
processors have sufficient work? processors have sufficient work?

I L . L
Insufficient work. Compare Sufficient work. Compare

message load balance of grain-size of tasks to analysis and check
these processors with processors overheads of message for degree of parallelism
that perform well. creation/processing. v

1
Sufficient work. Compare
grain-size of tasks to
overheads of message
creation/processing.

l—%

Grain-size is small. Good, perhaps

Perform critical path

[l 1 r L 1 E

Imbalance exists.

No imbalance.

Grain-size is small.

Good, hence it must

Increase grain-size.

there was lots

Is placement Check for grain Increase grain-size. be system messages of system work
fixed? size balance. which interfere with the going on. E.g.,
i f user messages. shared variable
—— — processing o
E.g., load balancing strategy, access (non-local
Placement Placement Yes, they Hence there must R)
. ’ I : A shared variable access (imbalance table requests), load
is not fixed. is fixed. The have varying be interference by ST T E— .
. in table requests) balancing strategy,
It could be problem granularities. system messages, . .
. . v dynamic creation of
duetoa may be a User: balance e.g., load balancing, work
bad Idb. user-ldb, sub-task sizes. shared variable D v
v or some access, etc.
izati - . F
synchronization
A e v
problem. c
B

Figure 2: Framework in which all performance data is to be analyzed.

The process of analysis is designed to be iterative. A pass of the analysis component will
provide the user with feedback on possible modifications to improve the performance of the program,;
the user after making appropriate modifications will invoke the analysis component again to get
more suggestions, and the process of analysis-modification continues. We believe that the end-result
of this iterative analysis-modification process will be an efficient parallel program. To illustrate the
kinds of analyses that can be performed, we shall discuss in greater detail two of the branches of
the decision-tree.

Branch C (Figure 2)

One of the concerns in branch C is whether shared variable access is a source of problem for the
performance of the program. The usage of one of the five information sharing mechanisms available
in Charm, provides some insight into the nature of information exchange in the program. This
insight can be utilized to provide a more accurate analysis of the performance of programs. Some
of the performance concerns that could be addressed when one knows the nature of information
sharing (through specifically shared variables) in a Charm program are *:

o If distributed tables were being used, then it would be necessary to check whether the distri-
bution of keys and access of table entries were uniform over all processors.

e Monotonic variables are often used in speculative computations, where the speculative com-
ponent could depend to a large extent on the value of the monotonic variable. In such cases,
it would be useful to provide the user with information about the speculative component of
computation and when updates were made to the monotonic variable.

*Note that all the concerns listed do not correspond to load imbalance. This is because we are describing the
module that’s called for all shared variable access analysis, and only some of those cause load imbalance.

10

e If some information is represented as an entry in a distributed table, and it is accessed very
frequently by many different processors, a performance analysis could suggest that the data
be made write-once.

e If some information is represented as a read-only variable or a write-once variable, and is
not accessed often, the cost of replicating the variable on nonshared memory machines might
exceed the savings in access time. In such cases, it might be better to make the variable into
an entry in a distributed table.

e If a monotonic variable is updated frequently, the spanning tree [4] implementation should
be chosen. However, if it is updated rarely then the flooding [4] implementation should be
chosen.

e If a large number of entries in the distributed table are accessed only once, and if the entries
were located on a processor distinct from the one that inserted it into the table, or the one
that accessed it, the cost of insert is the cost of 1 message and the cost of an access is the
cost of 2 messages. The cumulative costs of insert and access could be reduced if the entry
was inserted into the table for the processor which made the insert request.

A performance analyzer that has an inventory of such concerns, would check programs for
the existence of one or more of these concerns. If one of them did exist, the performance analysis
could suggest a method to improve performance.

Branch E (Figure 2)

One possible analysis in branch E is critical path analysis. The critical path is the longest
chain of computation in a program. It determines the set of tasks which affect the execution time
most severely, and hence need to performed more efficiently.

We define tasks on the critical path of the execution of a program as critical tasks, and others
as non-critical tasks. In the context of Charm, where messages drive execution and messages are
scheduled for execution on the basis of a user-selected strategy, it is possible to shorten the length
of the critical path by giving preference to the tasks on the critical path, i.e., if critical tasks are
allotted higher priority than non-critical tasks in the scheduling scheme. Our experience shows
that the above technique works only if the following conditions are met:

1. There are critical tasks whose execution is preceded by idle periods. This criterion establishes
the possibility of improvement, because one could schedule the execution of non-critical tasks
during these idle periods (of course, without causing other idle periods), thereby increasing
processor utilization.

2. There are critical tasks which wait to be scheduled while other non-critical tasks are executed.
This criterion determines non-critical tasks whose execution could be scheduled later when
processors are waiting for critical tasks to exeecute.

Critical path analysis in Charm consists of three components: the first component determine
the critical path in the program’s execution, the second component checks whether there are any
critical tasks which were scheduled for execution on idle processors, and the third component checks
for non-critical tasks which were executed while critical tasks were non scheduled for execution. In
the next section, we present a sample of critical path analysis for a program.

11

6 Example: Gauss-Siedel application

We considered an application which tries to solve n independent sparse penta-diagonal systems
using the Gauss-Siedel (red-black) iterative method. Such computations arise in unsteady fluid
flow calculations. Since the systems are different (and have different boundary conditions), they
converge at different rates. In the Charm implementation, the solutions of all the n systems were
carried out simultaneously — this was done so as to exploit the possibilities of overlap provided by
message driven execution. The solution of each system goes through multiple iterations. In each
iteration, a processor exchanges data with its neighbors, computes upon the data it has received,
participates in a global reduction on the new values, and then starts the next iteration on receiving
the result of the reduction.

Figure 1 shows a picture of some of the Projections views of the program’s execution trace.
The expert analysis informed us that the critical path analysis indicated improvement if certain
entry points lying on the critical path were prioritized. However even though many entry points
were listed on the critical path, only two were listed as potentials for prioritization. The timelines
for this trace provide an explanation for this analysis.

Figure 3 shows timelines for stage 7 (one of the first stages of the execution of the program)
and stage 35 (one of the last stages of the execution of the program). The timeline on the left
corresponds to the former, and the timeline on the right corresponds to the latter. The dark-blocks
are reduction phases in the execution. The timeline on the left shows that the processors continue
solving other systems, while reduction is being carried out for one system. Consequently, there is
high degree of overlap in stage 7 (and most of the stages during the beginning stages of execution).
In the timeline on the right, one notices that processors idle while the reduction is being carried
out. This occurs because only one system remains to be solved at the very end, and therefore there
is no possibility of overlapping the reduction with the solution of other systems.

Critical path analysis, therefore, correctly identified the critical tasks (the ones solving the
last system); however most of the same tasks were also non-critical because the program used
the same object to solve all the systems. Therefore the analysis could not suggest an effective
prioritization scheme — CharmlInit and Init are initialization entry methods and are executed only
once. Of course, there is no prioritization scheme applicable for this program, because it would be
necessary to prioritize that system which takes the longest to be solved; however this cannot be
done without knowing beforehand the system that would take the longest to solve.

This example illustrates the usefulness of critical path analysis. It also illustrates that the
limitations of any expert analysis comes primarily because the user often re-uses code blocks for
different portions of the computation, which the analysis tool needs to comprehend in order to
be able to completely analyze the program. This could be overcome if the tool had additional
information of the structure of the object itself, such as that provided by the Dagger notation.

7 Discussion and future work

In previous work, Jamieson [7] has used the characteristics of parallel algorithms, in conjunction
with the characteristics of parallel architectures, to provide an understanding of how well the al-
gorithm is suited to different architectures. Recently, Hollingsworth and Miller [8], have developed
an approach called the W2 model, which attempts to reduce the amount of data traced for parallel

12

File View

i

AN

| VAR R
A o —
4

Figure 3: The figure shows timelines for some of the processors for stages 7 and 35 of the
program execution

13

program performance analysis by intelligently activating the trace dynamically when and where
it’s needed. Their model attempts to make such decisions based on low level architecture/language
characteristics, such as lock-usage, semaphores, and barriers, and some generic high level character-
istics, such as an object’s wait-time for messages. Our approach deals with more program-specific
characteristics of the program, and will provide more language level suggestions for performance
improvement.

Even though the size of the trace information needed by us is significantly smaller than those
necessary for shared memory programs, it is still large enough for concern. In future, we plan to
explore avenues for reducing the amount of trace information needed. One possible technique is to
acquire information necessary for replaying a Charm program, and then progressively acquire more
detailed trace information about the program as needed by replaying the execution of the program,
and tracing only the events needed.

In future work, we need to develop acquisition mechanisms further to acquire information
about synchronization characteristics and the degree of speculative computation. We plan to use
the Dagger notation to acquire information about task-level synchronization in the program. We are
still developing mechanisms to acquire information about speculative computations in a program.
Once information about synchronization and degree of speculative computation is available, more
analysis of the program will be possible.

References

[1] Kale L.V. The Chare Kernel Parallel Programming System Programming System. In Interna-
tional Conference on Parallel Processing, August 1990.

[2] A. B. Sinha and L. V. Kale. A load balancing strategy for prioritized execution of tasks. In
International Parallel Processing Symposium, April 1993.

[3] L. V. Kale and A. B. Sinha. Projections: a preliminary performance tool for charm. In
International Parallel Processing Symposium, April 1993.

[4] L. V. Kale and A. B. Sinha. Information sharing in parallel programs. In International Parallel
Processing Symposium, April, 1994.

[6] A. Gursoy and L. V. Kale. Dagger: Combining the benefits of synchronous and asynchronous
communication styles. Technical Report 93-3, Parallel Programming Laboratory, Department
of Computer Science, University of Illinois, March 1993.

erry Disz and Ewing Lusk. raphical tool for observing the behavior of parallel logic
6] T Di d Ewing Lusk. A graphical 1 for observing the behavi f llel logi
programs. Technical Report CSRD 746, Argonne National Laboratory, February 1988.

[7] Leah H. Jamieson. Characterizing parallel algorithms. In Leah H. Jamieson, Dennis Gannon,
and Robert J. Douglass, editors, The characteristics of parallel algorithms. The MIT Press,
1987.

[8] Jeffrey K. Hollingsworth and Barton P. Miller. Dynamic control of performance monitoring on
large scale parallel systems. In International Conference on Supercomputing, July 19-23 1994.

14

