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1 Introduction

In the last decade, parallel programming has emerged as a powerful new technology. Many large
commercial parallel machines are available today, such as Intel iPSC/860 (and soon, the Paragon),
NCUBE’s 1024 processor machines, CM-5, etc. A large class of algorithms in science, engineering,
operations research, and artificial intelligence can potentially benefit from parallel processing. How-
ever most of the applications that have been successfully solved using parallel machines have a very
regular structure. Irregular computations, such as branch&bound, adaptive grids, are an important
class of algorithms. The effective parallel solution of irregular computations poses greater problems
because of the need for facilities for dynamic creation of work, and dynamic load balancing.

The features required of any software support for irregular computations are:

e Portability: The application program should be portable across the wide variety of parallel
machines that are currently available.

e Dynamic load balancing: The system should provide support for automatically balancing
load, in addition to the capabilities of user-controlled load balancing.

e Dynamic creation of work: A large number of irregular computations could be more easily
solved using parallel computers if tasks could be inexpensively created dynamically. The
support system should allow inexpensive, dynamic creation of tasks.

e Modularity and reuse: An application program could consist of different modules that may be
written by different programmers; therefore the system should allow programs to be written
in a modular fashion and the reuse of modules.

o Prioritization: In irregular computations, there may exist many different tasks in the system
at the same time. Additionally, the order of processing of these tasks may be important. In
such cases, the system should provide support for the prioritized execution of tasks.



Over the last six years, we have developed a machine independent parallel programming system
called Charm. The system provides all the support needed by a software support system for irregular
computation. Charm has been extensively used for sucessfully solving large irregular computations
arising in branch&bound algorithms, CAD problems etc.

In this abstract, we describe the basic features of Charm and an example of a branch&bound
algorithm that was successfully solved using parallel computers.

2 Charm

Charm is a machine independent parallel programming system. Programs written using this system
will run unchanged on MIMD machines with or without a shared memory. The system currently
runs on Intel’s iPSC/860, iPSC/2, NCUBE, Encore Multimax, Sequent Symmetry, ALLIANT
FX/8, single-processor UNIX machines, and networks of workstations. It is being ported to a

CM-5, Parsytec GC-el, and Alliant FX/2800.

Programs consist of potentially small-grained processes (called chares), and a special type of
replicated processes, called branch-office chares. Charm supports dynamic creation of chares, by
providing dynamic (as well as static) load balancing strategies. There may be thousands of small-
grained chares on each processor, or just a few, depending on the application. Chares interact by
sending messages to each other and via specific information sharing modes described below.

A charm program consists of chare (small processes or concurrent objects) definitions, mes-
sage definitions, and declarations of specifically shared objects in addition to regular C language
constructs. A chare definition consists of local variable declarations, entry-point functions that
handle incoming messages and private function definitions. Some of the important Charm system
calls are: CreateChare(chare Name,entryPoint,msg) and SendMsg(charelD,entryPoint,msg). Cre-
ateChare call is used to create an instance of a chare named as chareName. As all other Charm
system calls, CreateChare is a non-blocking call, i.e., it immediately returns. Eventually the system
creates an instance of chare chare Name on some processor, starts its execution the entryPoint with
the message msg. The SendMsg call deposits the message msg to be sent to the entryPoint of chare
instance charelD.

The execution model of Charm is message-driven. The runtime system on each processor selects
a message from the pool of available messages. If the message is directed to an existing chare, it
invokes this chare with the message. If the message specifies creation of a new chare, the system
creates it, and invokes it immediately with the message.

Messages represent just one mode of information sharing. Charm provides six information
sharing modes, each of which may be implemented differently and efficiently on different machines.
These include abstractions such as read-only variables, accumulators, distributed tables, and mono-
tonic variables [1, 2].

Charm also provides a sophisticated module system that facilitates reuse, and large-scale pro-
gramming for parallel software. From the point of this paper, the following properties of Charm
are important:



1. Charm provides efficient portability across a range of parallel machines,

2. dynamic creation of processes and dynamic load balancing and features such as priorities, and
distributed tables, Charm is uniquely suited for solving irregular problems.

3. Message driven execution in Charm enables creation of parallel programs that are highly
latency tolerant. Processors are never blocked waiting for a particular message. When one
processor waiting for data from a remote process, another ready process may be scheduled
for execution. Also, even a single process may wait for multiple data items simultaneously,
and continue execution whenever any of the expected items arrive.

4. The modularity features supported in Charm permit flexible reuse of parallel software. Sepa-
rately compiled library modules can be put together in a varying of combinations and contexts.

3 Application: Traveling Salesman Problem

The Traveling Salesman Problem (TSP) [3] is a typical example of an optimization problem solved
using branch&bound techniques. In this problem a salesman must visit n cities, returning to the
starting point, and is required to minimize the total cost of the trip. Every pair of cities 7 and j
has a cost C;; associated with them (if 7 = j, then C;; is assumed to be of infinite cost).

We have implemented the branch&bound scheme proposed by Little, et. al. [4]. In Little’s
approach one starts with an initial partial solution, a cost function (C') and an infinite upper bound.
A partial solution comprises a set of edges (pairs of cities) that have been included in the circuit, and
a set of edges that have been excluded from the circuit. The cost function provides for each partial
solution a lower bound on the cost of any solution found by extending the partial solution. The cost
function is monotonic, i.e., if 57 and S5 are partial solutions and S5 is obtained by extending 57,
then C'(51) <= C(S5;). Two new partial solutions are obtained from the current partial solution
by including and excluding the “best” edge (determined using some selection criterion) not in the
partial solution. A partial solution is discarded (pruned) if its lower bound is larger than the current
upper bound. The upper bound is updated whenever a solution is reached.

In the Charm implementation of the branch&bound solution of TSP, each partial solution is
represented by a chare and the cost of the partial solution is the priority of the new chare message.
A monotonic variable is used to maintain the upper bound.

Figure 1 shows the execution times and the number of nodes generated for runs of a 60-city
asymmetric TSP on the NCUBE/2 with the token load balancing strategy. Notice that the number
of nodes generated in this case are fairly constant for up to 512 processors and the speedups are
good.

We are working on developing a generalized branch&bound package that provides the parallel
component of the branch&bound algorithm. Different branch&bound applications can be written
on top of the parallel component by providing functions, such as branching and lower-bounding, for
that particular application.
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Figure 1: The figure shows the execution times and the number of nodes generated for exe-
cutions of a 60 city asymmetric TSP on the NCUBE/2 with upto 512 processors using the
tokens strategy to balance load. In this case the cluster size is 16 processors.

4 Discussion

We plan to use Charm to solve other irregular computations. These obviously include tree-
structured computations, such as state space search, bi-directional search game tree search, and
planning. More importantly, we plan to focus on numerical computations with dynamic or irreg-
ular structure, such as finite element computations and adaptive grid refinements. Several other
seemingly regular numerical computations also exhibit dynamic behavior due to indeterminacy in
message arrival times and critical path considerations.

In summary, Charm provides a great deal of support that is required in solving irregular
computations on parallel machines. We have illustrated its utility in the solution of a parallel
branch&bound algorithm. Using Charm, researchers developing algorithms to solve irregular com-
putations will be able to leverage their efforts and concentrate on the algorithmic issues by leaving
the task of machine dependent implementations, load balancing and prioritized scheduling to the
system.
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