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Abstract

We present arguments for the adequacy of medium grained execution for concurrent ob-
ject oriented systems such as Charm++ on current stock multicomputers. We briefly describe
Charm++ and present performance data for two of its basic primitives. We argue that although
grainsize decisions must be made by the programmer, they remain portable across different ma-
chines and with different numbers of processors.

1 Introduction

Concurrent object oriented systems can be broadly classified into two categories. The first category
comprises systems in which all objects can execute in parallel on remote processors. Such systems
are usually fine grained because every object can be potentially fine grained, hence message passing
and object creation overheads must be low, in order to balance computation and communication.

The second category comprises systems which distinguish between sequential and parallel ob-
jects. Explicit grainsize control is usually needed to create sequential computations of sufficient size
such that message passing overheads are amortized. These sequential computations are coordinated
by parallel objects. Charm++ [KK93] is such a medium grained concurrent object oriented system.
In the next few sections we present arguments for the advantages of medium grained systems such
as Charm++ and compare it to the first category.

2 A brief description of CHARM++

Charm++ is an explicitly parallel language consisting of C++ with a few extensions for specification
of parallel objects and communication between parallel objects. The execution model of Charm-++
is message driven, thus helping one write programs that are latency-tolerant.

Charm++ provides a clear separation between sequential and parallel objects. This is desirable
in order to make the cost of an operation (expensive remote calls as opposed to simple local calls)
clear to the programmer, and also to emphasize the split-phase nature of Charm++ calls. Moreover,
separating the parallel part of the algorithm (which coordinates the sequential computations) is
helpful for algorithm design.
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The language supports multiple inheritance, dynamic binding, overloading, strong typing, and
reuse for parallel objects. Charm-++ provides specific modes for sharing information between
parallel objects. Extensive dynamic load balancing strategies are provided. It is based on the
Charm parallel programming system [Kal90, SK90], and its runtime system implementation reuses
most of the runtime system for Charm.

3 Timings for basic primitives in CHARM++

We measured the times for two basic operations in Charm++, viz. intra node object creation and
round trip messaging. The times for the CM5 are in Table 1.

Primitive Intra Node Object Creation | Round Trip Messaging
Times (us) on the CM5 150 645

Table 1: Times (in microseconds) for two Charm-+ primitives on the CM/5.

Round trip times were measured for a user program message size of 4 bytes. The messages were
sent from user program to user program and back, hence the times represent latencies as seen by
the application program. It was observed that the Charm-++ overhead itself was about 200 us, the
rest being overhead due to the asynchronous messaging software and network latencies on the CM5.
The object creation time includes the time to allocate and fill in a message for creation of an object,
time spent by the runtime system in scheduling the message (i.e. enqueueing and dequeueing it in
the scheduler’s queue, etc), creation of the actual object, and execution of the code for initializing
it, in addition to the routine overheads of checking for the presence of remote messages, etc.

We observe from the table that the times are much smaller compared to Unix ( or operating
system level ) processes, which are typically of the order of a few tens to hundreds of milliseconds.
Thus one can create more than 6000 chares per second on each processor. The Charm runtime
system is being optimized and one can expect a further reduction in these times. Despite this,
however, the times in Charm are substantially higher than the results reported for fine grained
systems such as ABCL [YMY92] and the J-Machine [D*89], which are usually of the order of a few
tens of microseconds. Thus Charm++ may be said to be a medium grained system.

4 Why medium grained systems ?

Medium grained systems are currently a good choice for a programming system because :

Implementation : Medium grained systems can be easily implemented in a portable manner on
stock commercial multicomputers. This is because they can take advantage of existing message
passing software (such as CMMD on the CM5) and compilers (such as a C++ compiler) on com-
mercial multicomputers. Typically they consist of a translator integrated with a runtime system.
Because of easy portability, such systems can be quickly ported to new machines.

Grainsize control : The execution time of a parallel program as a function of grainsize can be
approximated by the curve in figure 1.

The communication overhead of a system is proportional to é where g is grainsize. For small
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Figure 1: Parallel overhead of a system as a function of grainsize.

grainsizes communication overhead and hence execution time decreases rapidly with an increase
in grainsize. The large, almost flat region at the bottom of the curve can be expected because
the communication overhead becomes a small fraction of the overall execution at medium to large
grainsizes. Thus although the overhead continues to decrease with increasing grain size, its impact
on execution time is insignificant. When grainsize increases beyond point Gy on the curve, loss of
parallelism causes processor cycles to be wasted and hence there is an increase in execution time.

When the number of processors increases, Gy moves to the left because more processors remain
idle for a particular grainsize. However, G, can be expected to remain approximately at the same
point, because it depends on the value of the grain size in relation to message passing overhead.

With the above in mind, the programmer can set a fixed grainsize without affecting performance
portability for varying numbers of processors and different machines, because :

e by using the smallest grainsize (corresponding to point Gy, on the curve) which sufficiently
amortizes overheads, we are assured of good performance with a small as well as a large
number of processors. With a large number of processors this is appropriate because there is
sufficient parallelism. For a small number of processors we will get good performance because
the overheads are small compared to the actual computations (in fact, a larger number of
small grained computations can be better load balanced).

e techniques such as message driven execution as used in Charm-++ can mitigate variability of
communication delays on different machines. With message driven execution a processor can
adaptively execute useful computations while waiting for arrival of a message, thus effectively
overlapping communication with computation. For most computations this will ensure that
the communication latency (the time for data to physically move across the network) is
effectively hidden and does not impact execution times. Thus the communication overhead
that determines G, is mainly the software overhead. Even though the processor speeds are
different, the number of instructions contributing to the software overhead is the same, hence



the ratio of software overhead to grainsize is approximately a constant across machines. Hence
the performance of the program is portable across a wide range of machines without change
in grainsize.

Medium grained systems are sufficient for a large class of applications. By involving the pro-
grammer directly, medium grained systems can yield better performance, since the programmer
can tune the grain size to optimize parallelism and reduce communication. In contrast, automatic
grainsize control techniques are not sufficient to yield optimal grainsize decisions in all cases. More-
over, compiler generated transformations may affect performance in unpredictable ways. Finally,
a system such as Charm++ can be used as a portable back end even when automatic grainsize
control techniques are deemed sufficient.

The disadvantages of medium grained execution are increased programmer involvement, and
its unsuitability for inherently fine-grained applications. Research in fine grained systems and
automatic grainsize control may remove these disadvantages in the future.
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