SIMULATING MESSAGE-DRIVEN PROGRAMS *

Attila Gursoy
Department of Computer Science
University of Illinois, Urbana IL

email: gursoy@cs.uiuc.edu

Abstract — Simulation studies are quite useful
for performance prediction on new architectures and
for systematic analysis of performance perturbations
caused by variations in the machine parameters, such
as communication latencies. Trace-driven simula-
tion is necessary to avoid large computational costs
over multiple stimulation runs. However, trace-driven
simulation of nondeterministic programs has turned
out to be almost impossible. Simulation of message-
driven programs is particularly challenging in this
context because they are inherently nondeterministic.
Yet message-driven ezecution is a very effective tech-
nique for enhancing performance, particularly in the
presence of large or unpredictable communication la-
tencies. We present a methodology for simulating
message-driven programs. The information that is
necessary to carry out such simulations is identified,
and a method for ertracting such information from
program ezecutions is described.

1 INTRODUCTION

An accurate performance prediction of parallel
computations plays an important role in designing
parallel algorithms and evaluating machines. Many
computational complexity models have been derived
for parallel algorithms. Although these analytical ap-
proaches are very useful to determine the fundamental
performance limits of parallel algorithms, they are of-
ten inadequate to analyze the parallel computations
and the interactions between computations and par-
allel architectures. Particularly, the load imbalance,
scheduling, synchronization, and the dynamic proper-
ties of the parallel computations make the analytical
approaches difficult, if not impossible, for this pur-
pose.

Simulation techniques offer a more realistic analysis
in this regard, and they have been used extensively to
predict the performance of parallel programs on spe-

*This research was supported in part by the National Science
Foundation grants CCR-91-06608 and ASC-93-18159.

Laxmikant V. Kalé
Department of Computer Science
University of Illinois, Urbana IL 61801

email: kale@Qcs.uiuc.edu

cific computers. There are various simulation tech-
niques that are suitable for different purposes depend-
ing on the accuracy of the prediction desired and the
complexity of the simulator itself. For example, one
can emulate the user code instruction by instruction
in the simulated environment. Although this method
provides very accurate results, the simulator itself is
very costly in terms of both the development and the
computation (for instance, emulating every instruc-
tion of a parallel code on a 1000 processors would
be very time-consuming). Another approach which
makes simulations more affordable is to use an ab-
stract model of the computation instead of emulating
a specific computation. The model may contain some
statistical properties such as average number of mes-
sages sent, average computation size etc. As no user
computation is executed during the simulation, the
simulation time (and the computation power required)
is small. However, this approach too may not capture
adequate details of the computation and is not useful
to predict the performance of a specific program.

Trace-driven simulation is another approach which
combines the advantages of both. Its complexity is in
between the above two, and yet it is powerful enough
to capture the details of the computation. A trace is a
time ordered sequence of significant events that hap-
pened during the execution of a program. The traces
are collected from an actual execution of the program,
and it is fed to the simulator. The simulator, then,
executes these traces on a model of the new system.
Trace-driven simulation has been successfully used in
studies of uniprocessor systems such as memory de-
signs, cache performance etc [11]. In such studies, the
order of events in the system to be simulated (such
as the sequence of addresses accessed) was assumed to
be deterministic. Therefore, the changes in the simu-
lated environment affected only the length of the time
interval between the events, not the actual sequence
of events.

The trace-driven simulation has been extended to

study parallel computations also [4, 9, 5]. However,
application of the trace-driven simulation to parallel
systems poses a problem. The behavior of a parallel
computation may change under a new environment
which invalidates the traces. Some of the trace-driven
simulations of parallel computations were limited to
programs written in traditional message-passing style
(i-e., single process per processor and blocking message
receives that ask a specific message with a given tag
and source processor). In these cases, the behavior of
the programs remains the same despite the changes in
the environment [9]. In general, message-passing pro-
grams may contain nonblocking message passing prim-
itives which introduce nondeterminism. With non-
blocking receives, the behavior of the program may
depend on the arrival order of messages. For example,
the program may check for a particular message, if the
message is not there, the program may choose a dif-
ferent action. In a simpler context, the problem posed
by this sort of non-determinism was addressed in some
trace-driven simulation studies [8]. These studies used
a hybrid method combining trace-driven simulations
and real execution of user code to study the perfor-
mance of shared memory systems. This approach is
difficult and expensive since it requires execution of a
part of user code during simulation. The execution-
driven simulation [3] or hybrid simulation of message
passing programs whose behavior depends on message
arrival order would be more difficult and impractical.

Message-driven execution, explained in Section 2, is
based on the ability to run computations in different
orders. Therefore, the simulation of message-driven
computations inherently involves dealing with this dif-
ficulty. In a message-driven computation, the mes-
sages may arrive in a different order due to numerous
reasons in the new simulated environment. The execu-
tion trace of the program becomes invalid at that point
because the rest of the computation is different from
the traces. In order to achieve accurate simulation, it
is necessary to reconstruct remaining sequence of com-
putation steps. This is impossible, in general, without
rerunning or interpreting the program instruction by
instruction. In some special cases, using the knowl-
edge about the algorithm/computation model, the se-
quence of computations can be reconstructed.

In this paper, we will describe a method to simulate
message-driven programs written in the Dagger lan-
guage [7]. The Dagger language, in addition to helping
the expression of message-driven programs, also turns
out to expose sufficient parts of dependence structure
of each parallel object so as to render accurate trace-
driven simulations feasible. Our approach depends on

extracting some semantic information from the Dagger
programs satisfying certain conditions (which will be
described later), and using this information together
with the execution traces to conduct the simulation.
The technique is not limited to the Dagger language.
It can be extended to other parallel programming lan-
guages such as CC++ [1], OCCAM with some modi-

fication.

The rest of the paper is organized as follows: Sec-
tion 2 describes the message-driven execution and the
Dagger coordination language. Section 3 discusses the
simulation of Dagger programs. The abstract machine
model that is used by the simulator is explained in
Section 4. The design of the trace-driven simulator is
discussed in Section 5. Some examples of illustrating
the usage of the simulator are presented in Section 6,
and the conclusion in Section 7.

2 MESSAGE-DRIVEN EXECUTION
AND DAGGER

The traditional method of programming dis-
tributed memory parallel computers involves a tra-
ditional message-passing style of programming. This
style involves one process per processor. The processes
may send messages to each other and issue blocking
system calls to receive a specific message. They may
also invoke global operations such as reductions and
scans which act as barriers, i.e. all processors must
invoke these operations in identical sequence and each
processor must wait until all processors have arrived
at each barrier. Despite its simplicity, this style of par-
allel programming often leads to severe performance
impediments, because it requires the programmers to
commit to a particular sequence in which the messages
must be processed. Although, one may use nonblock-
ing communication primitives to overlap communica-
tion and computation in traditional message-passing
style, its usage is limited to a single module: it is dif-
ficult to overlap communication latencies across mul-
tiple modules [6] without loosing modularity.

In message-driven execution, there are typically
many processes per processor. A process does not
block the processor it is running on while trying to re-
ceive a message. Instead, processes are scheduled for
execution depending on the availability of the mes-
sages for them. Processes typically provide code in
the form of entry functions or continuations and a
way of associating them with specific incoming mes-
sages. With this information, the runtime system can
invoke the appropriate code in the appropriate pro-
cess to handle a particular incoming message. There-

fore, Message-driven execution provides the ability to
overlap computation and communication, and toler-
ates communication latencies. It helps latency toler-
ance in two ways: First, when one process is waiting
for data from a remote process, another ready pro-
cess may be scheduled for execution. Secondly, even
a single process may wait for multiple data items si-
multaneously, and continue execution whenever any of
the expected items arrive. Message-driven style also
supports the use of parallel libraries without loss of
efficiency. In traditional message-passing programs,
the program has to yield control completely to the
parallel library. Thus, the idle times in the library
computation cannot be utilized effectively. Message-
driven execution on the other hand, allows the control
to switch between multiple concurrent library compu-
tations. Details of performance benefits of message-
driven execution can be found in [6].

Charm [10] is one of the first systems to embody
message-driven execution in a portable parallel pro-
gramming system running on stock multicomputers.
A Charm program/computation consists of poten-
tially small-grained processes or objects, called chares.
A chare consists of local data, entry-point functions,
and private and public functions. Public functions can
be called by any object on the same processor. Entry
functions are invoked asynchronously by an object on
any processor. Invoking an entry function in a remote
object can also be thought of as sending a message to
it.

Despite its performance benefits, the expression of
programs in a pure message-driven language, such as
Charm, is difficult due to the split-phase style that
it requires and the nondeterministic arrival of mes-
sages. Consider a concurrent object (listed in Fig-
ure 1) which performs the following calculations. The
object executes CO when it is created (assume entry
e0 is invoked by the creation message). Then, it can
perform either C1 or C2 in any order whenever their
corresponding entry is invoked due to message arrival.
After both C1 and C2 have been completed, then it
performs C3. Since el or e2 can be invoked in any or-
der, each entry must keep track of whether the other
one is already done, so that the later one invokes C3.
To achieve this, a counter is used as shown in the code.
The counter is set to 2 at the beginning (number of
subcomputations before €3). Whenever the counter
reaches zero, then C3 is called. In more complex com-
putations, the expression of such cases becomes quite
difficult (in addition to being difficult to simulate as we
will show later). In order to simplify the expression of
message-driven programs, a new notation, Dagger [7],

was developed to express dependences between sub-
computations and messages within a single object on
top of Charm language.

chare G {
int count;
entry e0 : { CO(); count=2;}
entry el { c10;
if (-—count==0) C3()};
entry e2 : { €20);
if(--count==0) €3();}
}

Figure 1: The Charm code for chare G

A Dagger program includes dag-chares as a spe-
cial form of concurrent objects in addition to regular
chares. The dag-chare for the previous Charm code
is listed in Figure 2. The message receiving points
are specified by entry declarations. The subcomputa-
tions within a dag-chare are called when-blocks. The
when-block when €0 is executed when a message has
been received at the entry e€0. The execution of a
when-block is completed without interruption. The
when-block code may contain some sequential com-
putation as well as some specific Dagger statements
for synchronization such as Expect, and Ready. The
instruction Expect(e;) tells the Dagger that the mes-
sage for the entry e; can be made available to the
dependent when-blocks. In other words, reception of
message is not sufficient to trigger a subcomputation,
it must be expected also. Ready is equivalent to send-
ing a message to an entry-point within the same dag-
chare and issuing an Expect for this message. Since
the message is local to the dag-chare, it can be im-
plemented more efficiently than actually sending the
message. The efficient implementation is achieved by
conditional variables — a special synchronization vari-
able that is local to the dag-chare. In addition to sim-
plifying the expression of message-driven programs, it
turns out that Dagger also provides necessary informa-
tion to simulate message-driven programs by allowing
us to trace additional events as discussed in the next
section.

dag chare G {

local-variable-declarations

entry e0 : (message MSG *m0);
entry el (message MSG *ml);
entry e2 : (message MSG *m2);

CONDVAR c1;
CONDVAR c2;

when €0:{C0() ;expect(el);expect(e2);}
when e1:{C1();ready(c1);}

when e2:{C2();ready(c2);}

when c1,c2: {c30);}

Figure 2: The Dagger code for dag-chare G

3 SIMULATION OF DAGGER
PROGRAMS

An accurate trace-driven simulation of message-
driven programs is not possible without a complex de-
pendence analysis of various paths through the each
entry-point. Traces from one instance of execution
may not cover all the possible execution paths which
may depend on message arrival order.

We will explain why simulation is not possible with-
out the dependence information for the program given
in Figure 1. Traces from an instance of execution of
the program consist of the duration of execution of
each entry-point (and relative timings of any message
sent during it). Assume that an instance of the chare
G is created when a message for the entry eO is re-
ceived. Then, G awaits two messages concurrently, one
for e1 and one for e2. In a particular execution, as-
sume that the message for el arrives first. This causes
the execution of C1. Then, when the message for e2
arrives, C2 is executed followed by C3. However, if the
messages arrived in the reverse order, the code at e2
would only execute C2 leaving the execution of C3 to
the other entry-point. If traces are obtained with the
former sequence with A time units for the execution
of e1, and B time units for e2, and during simulation
the machine conditions lead to the latter sequence, it
is not possible to reconstruct the times of €2 and el
from A and B.

If the individual times for computations C1, C2 and
C3 were recorded, one would be able to reconstruct the
timings in presence of the new sequence. It may seem
simple then to record these times. However, note that
C1, C2 and C3 need not be function calls as shown
here. The if statements as well as the computation
blocks might be deeply buried inside complex control
structures. Therefore, in general, it is not easy to
retrieve the timings of the individual blocks. Further-
more, the connection between the value of counter be-
coming zero and arrival of messages may not be easy
for the compiler to deduce.

In order to accurately simulate a message-driven
program via trace-driven simulation, the simulator
needs to reconstruct the execution sequence under the
new runtime conditions. Dagger facilitates this recon-
struction by

e tracing the execution at the level of basic blocks
rather than only messages, and

e providing information about dependences among
messages and computations.

Dagger statically captures the dependences, and its
runtime is able to trace the beginning and end of each
individual when-block. The dependencies among the
blocks and messages forms a partial ordering. The
actual execution sequence in a given run will depend
upon message arrival sequence, but must be consistent
with the partial order. The simulator knows the mes-
sage arrival order from its runtime environment and
the dependence structure from the Dagger translator,
and thus, can mimic the Dagger runtime to recon-
struct the new sequence correctly without re-executing
the user code.

For the example in Figure 2, let’s assume that mes-
sage arrival order in the real execution is (e0,e1,e2)
and the order of subcomputations is (€0,C1,€2,C3).
During simulation in a new environment, assume that
messages arrive in the order (e2,e0,e1). When a mes-
sage has been received at €2, the subcomputation C2
cannot be executed because CO is not completed yet.
Later, when the message for e0 arrives, we can ex-
ecute CO. Now the subcomputation C2 is ready for
execution. However, in the execution trace, the next
one is the subcomputation C1. In the partial order,
C1 and C2 are incomparable, that is, they can be exe-
cuted in any order. So we can execute C2. When el
recelves a message, then we can execute C1 and then
C3. So the simulator executes the blocks in the order
(co,c2,c1,C3) without violating the partial order.

For the above reconstruction to be valid, an addi-
tional condition, which is quite natural, must be sat-
isfied. To see the need for this condition, consider the
same example again. If the code inside the block C1
contains sections whose execution time and data val-
ues depend on variables set in C2, the execution under
the new arrival order will not match the traces (i.e.,
block C1 may take more or less time or even may send
out different number of messages). Such uncaptured
dependences constitute a bad programming style and
occur very rarely in parallel programs. The condition
required for accurate simulations can be stated con-
cisely as follows:

A variable used in a when-block W must not
be modified by any other when-block that is
incomparable® to W in the partial order de-

fined by the DAG (dependency graph).

The Dagger compiler extracts the dependency infor-
mation from the user program to be used by the sim-
ulator. The compiler also inserts the necessary code
to produce the traces during execution. The traces
from an execution are gathered and combined with
the static dependency information. Since we know the
basic blocks and their dependencies, we do not need
to trace every instruction that is executed during the
run. Only a small number of events have to be traced,
and only a small amount of data needs to be stored
for each event. This reduces the computational cost of
the simulations significantly. The events to be traced
that are sufficient for the simulation are:

1. beginning of a when-block

2. send message

3. broadcast message

4. expect and ready,

5. initialization of condition variables, and

6. end of a when-block.

4 ABSTRACT PARALLEL MACHINE
MODEL

In this section, we will define a model for the paral-
lel machine to be simulated. Despite the large diversi-
ties among the parallel machines, they have a common
property: to access remote data takes longer than to

2Two blocks are incomparable if neither is a successor or
predecessor of the other

Figure 3: Sending A Message

access local data. The machine model emphasizes this
property. In this model, a parallel machine is a col-
lection of processing elements (PE) interconnected by
a communication network. A processing element con-
sists of a processor, a local memory, and possibly a
communication processor. The communication pro-
cessor interfaces the processor to the network. It can
access to the local memory and interact with the net-
work without blocking the processor, therefore it re-
leases the processor from most of the communication
related tasks. The network provides communication
among PEs. In reality, there exist various commu-
nication network structures with different topologies
and communication protocols. From the point of view
of our simulator, the network provides data transfer
with a latency that may depend on the network load
in an arbitrary fashion, and it has a finite capacity.

Communication between two processors involves a
number of steps. Each step requires a distinct time
interval which must be charged to appropriate com-
ponent of the system. We will explain these steps by
an example which is depicted in Figure 3. Proces-
sor P; starts sending a message to P at time A. P;
spends o; time units for the send operation. Then,
the communication processor interacts with the net-
work and spends g; time units. After ! time units, the
message arrives at the destination node. The com-
munication processor on the destination node receives
the message. The message becomes available to the
processor after g, time units, and to the user program
after an additional o, time units. The total delay that
the message experiences, or the time between the user
program issues a send operation and the message be-
comes available to the user program at the destination
processor is the sum of these delays:

0s+gs+1+4gr+or

The sending processor is blocked only during the o,
time units (similarly the receiving processor is blocked
or time units), and duration of the other parts of the
delay, the processor is free to perform computation.
Similarly, the communication processor is blocked by

gs (or g,) time units. (This limits the amount of and
the number of messages a processor can inject and re-
ceive from the network per unit time.) Therefore, the
gs + 1+ g, part of the remote information access delay,
can be potentially overlapped with useful computa-
tion.

Each of these parameters has a fixed part and a
variable part that depends on the size of messages.
As in many studies, we have chosen to model each of
these parameters as

a+ fBn

where a is the startup cost, 8 is the time per data
item and n is the number of data items in the mes-
sage. The time spent in the network, I, in our model
is also affected by the finite capacity of the network.
The capacity limitations are similar to those described
by [2]. The finite capacity of the network is modeled
by blocking the sender communication processor if the
volume of messages traveling in the network is above
a threshold. The communication processor has a fi-
nite buffer to hold messages deposited by the processor
also. If it runs out of buffer space, then the proces-
sor is blocked. This model subsumes the LogP model
presented in [2].

5 SIMULATOR

The simulator consists of three major components:
the preprocessor, the parallel machine simulator, and
the trace interpreter. The traces may be obtained
from a run on a parallel machine or on a uniprocessor
emulating a parallel machine.

A simulation session starts with the preprocessing
of the execution traces. The output of this stage then
is interpreted by the the trace interpreter on the sim-
ulated parallel machine model.

Preprocessor

The Charm/Dagger programming system allows
multiple module compilation, i.e., independently com-
piled Dagger programs can be linked at run time. The
Dagger translator produces a separate dependence in-
formation for each module. Therefore, dependence in-
formation from individual modules and the runtime
trace information are reconciled and a single consis-
tent dependence graph and trace information are pro-
duced. The preprocessor also converts all timing infor-
mation to relative times. The traces from Dagger pro-
grams contain absolute times. For example, a when-
block trace with absolute times might look like this:

when-block instance A started at time t1i,
sent message B at t2,
when-block instance A ends at t3

The simulator uses relative timings:

when-block instance A elapsed time t3-tl1,
sent message B at t2-t1,
when-block instance A ends

After the preprocessing, a when-block record in the
trace information forms one entity. The simulator
reads a when-block record at a time and processes
it. The instances of when-blocks are identified by a
quadruple <p,b,i,r> where p is the processor num-
ber, b is the static identification of the when-block, i is
the instance of the dag-chare to which the when-block
belongs, and r is the reference number. A program
may contain many instances of a particular chare (and
dag-chare), and a particular instance is identified by
this dynamic component, i. The reference number is
a feature in the Dagger language that has not been
discussed in this paper. Within the context of the
simulator, it is sufficient to assume that a when-block
is completely identified with this quadruple.

Parallel Machine Simulator

The simulator uses an event-list based approach to
simulate the machine model. An event contains the
event-time, event-type, and other information depend-
ing on the event type. The events are kept in a heap.
There is one entry for each processor and communi-
cation processor in the heap. Each entry contains a
sorted list of events that are to happen on that proces-
sor or communication processor. The time stamp of
the heap entry is that of the earliest time event in its
list. The simulator removes the next event from the
heap and processes it until the heap becomes empty.
The communication processor events handle network
level the message transfers. They contain the neces-
sary information about the communication including
message destination, length, priority etc. Processor
events are either user events (a when-block execution)
or system events such as send or receive a message.

Interpreting the Traces

Interpreting the traces requires modeling of the
Dagger runtime. The simulator has to schedule when-
blocks based on the arrival order of messages without
violating the dependencies in the same way the Dagger
does. The simulator models the Dagger by maintain-
ing three major queues: a scheduling queue, a when-

block-wait-queue, and a when-block-ready-queue. All
the incoming messages are buffered in the scheduling-
queue. The management of this queue is FIFO by
default. It may use other queuing strategies. The sim-
ulator supports LIFO (stack), prioritized FIFO, and
prioritized LIFO strategies. The prioritized message
scheduling can be used in certain applications to de-
crease the execution time. By adding this feature to
the simulator, it is possible to experiment with such
applications also. The wait-queue is a list of when-
block instances waiting for some messages or comple-
tion of other when-blocks. This queue is necessary be-
cause a when-block may depend on multiple messages
or when-blocks. When all the dependences of a when-
block are satisfied, it is moved from the wait-queue to
the ready-queue.

The processor continuously fetches the messages
from its incoming message queue (where the commu-
nication processor puts the messages received from the
network) and puts into the scheduling queue. If the
incoming message queue is empty, the next message
from the scheduling queue is retrieved and the simula-
tor emulates the Dagger runtime to process the mes-
sage. It checks the dependency graph to determine if
any when-block instance depends on this message. If
so, then it checks the wait-queue to see if the when-
block instance has already been created, otherwise it
creates the when-block instance and puts it in the
wait-queue. If the arrival of the message causes addi-
tional when-block instances to become eligible for ex-
ecution, those when-blocks are put in the ready-queue
for execution. If there are more than one when-block
instances in the ready-queue, the first when-block in-
stance from the ready-queue is interpreted by default
(however, this queue can be managed differently sim-
ilar to the scheduling queue). The trace record of the
when-block instance is then is read from the trace files
and the events that are recorded in the when-block
trace are executed in the same sequence. Note that
the trace contains only the events that denote send-
ing of messages, synchronization, and the elapsed time
between these events. The local time of the processor
is incremented by the appropriate delay of each action
including blockings due to network load. At the end
of the execution of the when-block, the dependence
graph is inspected again to see if any other when-block
instance is waiting for the completion of the currently
executing when-block. The cost of management of
when-block-queues and cost of moving messages be-
tween various queues are also reflected in the simula-
tion time by user supplied various cost parameters.

6 SOME SIMULATION RESULTS

We will present some of simulation studies taken
from a larger study [6] to illustrate the impact of a
single machine parameter on the performance. The
broader study demonstrated that message-driven exe-
cution often leads to better performance compared to
the traditional message-passing style. In this paper,
we only present some of the data from that study to
illustrate the utility of the simulation framework.

These studies are intended to analyze and project
the trends in a somewhat qualitative manner. For
full-fledged performance prediction (e.g., performance
of a new, yet to be available, machine), such trend
analysis is not adequate. Repeated calibration and
validation studies with accurate machine parameters
are necessary. This is a topic for future research.

The example code that is used in this simulation
study is abstracted and modified from a real applica-
tion — a communication module in a parallelized ver-
sion of a molecular dynamics simulation code. Each
processor has an array of size n elements. The com-
putation consists of many iterations. Every iteration
involves computation of all the elements in each pro-
cessor locally and then the global sum of each element
across all processors, i.e., each processor gets the sum
of the first elements, the sum of the second elements
etc. The computation of each element and its global
sum is independent of other elements with the itera-
tion.

In the traditional message-passing implementation,
each processor first computes all the elements of its
array, then calls a single global reduction operation
(of size n) which is a blocking library call usually pro-
vided by the message-passing library. The message-
driven version, on the other hand, exploits the the fact
that global sum of the elements can be done concur-
rently. Each processor divides its array into k parti-
tions. Then, the global sum of elements in a partition
is computed with a non-blocking reduction operation.
Thus, it pipelines the global sum operation of & parti-
tions of size 7 each. The traditional message-passing
version could divide the arrays into k partitions but it
would experience performance loss due to the blocking

nature of the reduction operation it invokes.

We gathered traces from both traditional message-
passing (which will be referred as traditional-spmd)
and message-driven programs on 64 processors, and
conducted simulations by changing various machine
parameters. Figure 4, illustrates the impact on per-
formance of the two programs as we increased the net-

work latency. The time is reported in terms of simu-
lation time units. In these examples, one simulation
time unit corresponds 100 nanoseconds. The graph
(a) plots the completion time versus the network la-
tency. That is, os, gr, 0r, and g, is kept fixed, but the
network latency, anet, (i.e., @ in ! = a 4 fn) is varied.
For k& = 1, the elapsed time of traditional-spmd and
message-driven programs are the same, and as et
is increased, the elapsed time for both programs in-
creases slightly since the communication takes place
in one reduction operation only. For pipelined cases
(i.e, k > 1), the performance of the traditional-spmd
program shown by dotted lines deteriorates rapidly
with increasing communication latency, whereas the
performance of the message-driven program does not
deteriorate indicating that it is tolerating the latency.
Also notice that, the message-driven performance for
k = 8 and k = 64 is better than the case k = 1 (note
that the problem size per processor, n, is fixed). How-
ever, the k = 64 case is worse than the one for &k = 8.
This is due to the overhead per message incurred by
the message-driven execution. For k = 64, the total
overhead exceeds the performance benefits achieved

for k = 8.

To illustrate some other features of the simulator,
the second plot in Figure 4 shows the result obtained
by varying the the network latency in a random fash-
ion. Randomized variation can be found in ethernet
connected workstations for instance. In this exper-
iment, additional random delays (exponentially dis-
tributed) were introduced to the network latency. The
message-driven program appears to tolerate the un-
predictability of communication latencies better than
traditional-spmd program as indicated by the slope of
the curves.

Figure 5 illustrates how a communication proces-
sor differentially impacts the performance of the two
programs. The horizontal axis shows the fraction of
message passing overhead taken over by the communi-
cation processor. Again it was seen that, the message-
driven program can exploit the presence of a communi-
cation processor better than the traditional-spmd pro-
gram. As the communication processor handles more
of the message delays, the total elapsed time of the
two programs decreases. However, the elapsed time
for the message-driven program is less than the tra-
ditional one, and the rate of decrease in elapsed time
is better also. It should be noted that multi-threaded
programming style will yield similar performance ben-
efits as message-driven execution.

(a) Effect of network latency

/// md k=1 ——
(%) - /// k:8 N
z2 4 K8
[
= spmd kel
£ 3} 1 |
2 L k:64 o
§>D< 2
£ 1l |
0 L 1 L))
o 2 4 6 8 10
Network Latency (1000 sim. units)
(b) Effect of random latency variations
7 : : | .
one partition --e---
) °T 8 partitionmd —— |
g 5+ 8 partition spmd ——- |
>
£
5 4t |
[{e]
B/ L = 7”4/,44—7»—+ - |
e —)
1k,
0 - . | |

0 5 10 15 20
Average random latency increase (1000 sim. units)

Figure 4: Impact of latency on message-driven and
traditional message-passing programs (64 processors)

7 SUMMARY

We presented a technique to conduct trace-driven
simulation of message-driven programs. The message-
driven execution has performance advantages by pro-
viding the ability to overlap the latency with computa-
tion. However, the simulation of such programs poses
problems. The difficulties in carrying out simulation
of such programs has been identified. For a specific
class of programs using the expressions of the Dagger
language, it has been shown that the compile time in-
formation and execution traces are enough to achieve
accurate simulation of message-driven programs even
the runtime conditions changes. The design of the sim-
ulator has been presented, and some preliminary per-
formance studies conducted using the simulator were

Effect of communication processor

9 T T T T

) md k=1 < |
7 B - g---——-B k=8 —+——
'E 7 k=64 =— 7
5 gt spmd k=1 - |
e k=8 -+---
® ST k=64 =
©
g 4r -
Z
o 3]
IS 2L |
= B e o +

— N
1F e 1
O 1 1 1 1

0 02 05 075 1
Comm. processor - processor latency ratio

Figure 5: Impact of communication processor on
message-driven and traditional message-passing pro-
grams

discussed. Results of a larger study conducted using
this simulator are presented in [6]. Although the simu-
lator is limited to the programs written in Dagger lan-
guage, the technique can be applied to programs writ-
ten in other languages with parallel constructs (such as
parbegin parend) provided that the programs satisfy
the condition described in Section 3 and the compiler
produces dependence graph for subcomputations.

8 ACKNOWLEDGEMENTS

The authors would like to thank to Sandia National
Laboratories for providing access to the nCUBE/2 and
Intel Paragon computers.

References

[1] Chandy, K.M. and Kesselman, C., “CC+-+:
A Declarative Concurrent Object-oriented Pro-
gramming Notation”, Editors Agha, G. et al., Re-
search Directions in Concurrent Object-Oriented
Programming, MIT Press, 1993, pp281-313.

[2] D.E. Culler et al, “LogP: Towards a Realistic
Model of Parallel Computation”, Proceedings of
the Fourth ACM SIGPLAN Symposium on Prin-

ciples & Practice of Parallel Programming, May
1993, ppl-12.

[3] H. Davis, S. Goldschmidt, and J. Hennesy, “Mul-
tiprocessor Simulation and Tracing using Tango”,

Proceedings of the International Conference on
Parallel Processing, Vol 11, Aug 1991, pp99-107.

[4]

[10]

M. Dubois, F.A. Briggs, I. Patil, M. Balakrish-
nan, “Trace-Driven Simulation of Parallel and
Distributed Algorithms in Multiprocessors”, Pro-
ceedings of the International Conference on Par-

allel Processing, Aug 1986, pp909-915.

C. Eric Wu, et al, “The Design of A Timing Sim-
ulator for Distributed Applications”, Proceedings
of 1992 International Conference on Parallel and
Distributed Systems, Taiwan Dec 1992, ppb0-57.

A. Gursoy, “Simplified expression of message-
driven programs and its impact on performance”,
Ph.D. thesis, University of Illinois at Urbana-
Champaign, May 1994.

A. Gursoy, L.V. Kale, “Dagger: combining the
benefits of synchronous and asynchronous com-
munication styles”, Proceedings of the Interna-
tional Parallel Processing Symposium, Cancun,

Mexico, Apr 1994, pp590-596.

M.A. Holliday, C.S. Ellis, “Accuracy of Mem-
ory Reference Traces of Parallel Computations in
Trace-Driven Simulation”, IEEE Trans. TPDS,
Vol.3, No.1, Jan 1992, pp97-109.

J.M. Hsu, P. Banerjee, “Performance Measure-
ment and Trace Driven Simulation of Parallel
CAD and Numeric Applications on a Hyper-
cube Multicomputer”, IEEE Trans. TPDS, Vol.3,
No.4, Jul 1992, pp398-412.

L.V. Kale, “The Chare Kernel parallel program-
ming language and system”, Proceedings of the
International Conference on Parallel Processing,

Vol II, Aug 1990, ppl7-25.

A. Smith, “Cache Memories”, ACM Comput.
Surveys, Vol.14, No.3, Sep 1992, pp473-530.

