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Abstract

This paper argues that message driven execution is an effective and efficient way
of dealing with communication latencies and irregularities in parallel computations.
It describes how message driven execution is supported in Charm portable parallel
programming system. It goes on to discuss a performance study on Intel’s Paragon
machine, that demonstrates the performance advantages conferred by message driven
execution, in the context of global reduction operations. To simplify specifications of
message driven programs, Charm supports a notation called Dagger and a visual editor
that accompanies it which is also briefly discussed.

1 INTRODUCTION

Communication latency and unpredictable delays in remote response times constitute sig-
nificant impediments to achieving high performance on massively parallel computers. A
processor arriving at a global operation such as gisum must wait idly until all processors
arrive at that point, the global reduction is then computed, and the result returned to the
processor. Even when a processor is waiting for a message from just a single neighboring
processor, the neighboring processor may not be in a position to send this message due to
the state of computations on that processor. So, even if communication technology were
to keep pace with improving processor speed, processor idling while waiting for messages
will remain a significant factor. Message driven execution — as distinct from mere message
passing — is a strategy designed to overcome this hurdle.

In message driven execution, a process does not block the processor it is running on
while trying to receive a message. Instead, processes are scheduled for execution depending
on the availability of the messages for them. Processes typically provide code in the form
of entry functions or continuations and a way of associating them with specific incoming
messages. With this information, the runtime system can invoke the appropriate code in
the appropriate process to handle a particular incoming message. Charm is one of the first
systems to embody message driven execution in a portable parallel programming system
running on stock multicomputers.

In this paper, we will present a performance study that demonstrates the benefits of
message driven execution. In Section 2, we will briefly introduce Charm. Section 3 defines
the problem — a simplified version of a core routine in a parallel application, describes the



library for global operations supported in Charm and the programming solution we developed
using it. It also presents and analyzes the performance data obtained with Charm and with
the native reduction library provided by the system. Section 4 describes Dagger, a notation
that simplifies the expression of message driven programs, and a visual editor for it.

2 CHARM

Charm [1, 2, 3] is a machine independent parallel programming system. Programs written
using this system will run unchanged on MIMD machines with or without a shared memory.
The programs are written in C with a few syntactic extensions. The system currently runs on
Intel’s Paragon, iPSC/860, iPSC/2, NCUBE, CM-5, Encore Multimax, Sequent Symmetry,
ALLIANT FX/8, single-processor UNIX machines, and networks of workstations.

Programs consist of potentially small-grained processes (called chares), and a special
type of replicated processes, called branch-office chares. Charm supports dynamic creation
of chares, by providing dynamic (as well as static) load balancing strategies. There may
be thousands of small-grained chares on each processor, or just a few, depending on the
application. Chares interact by sending messages to each other and via specific information
sharing modes.

A Charm program consists of chare definitions, message definitions, and declarations
of specifically shared objects in addition to regular C language constructs (except global
variables). A chare definition consists of local variable declarations, entry-point definitions
and private function definitions as illustrated in Figure 1. Local variables of a chare are
shared among the chare’s entry-points and private functions. Private functions are not
visible to other chares, and can be called only inside the owner chare. However, C functions
that are declared outside of chares are visible to any chare. Entry-point definitions start with
an entry name, a message name, followed by a block of C statements and Charm system
calls. Details about these systems calls (such as CreateChare, SendMsg), and other features
of the system (information sharing abstract data types) can be found in [4]. The Charm
runtime system is message driven. It repeatedly selects one of the available messages from a
pool of messages in accordance with a user selected queueing strategy, restores the context
of the chare to which it is directed, and initiates the execution of the code at the entry point.

3 PERFORMANCE BENEFITS

Message driven execution helps enhance the performance of parallel applications in multi-
ple ways. When there are multiple “processes” (chares) per processor — which is a feature
Charm supports — and a process needs to wait for a message, control is automatically trans-
ferred to another process which has a message to process, thus keeping the processor utilized.
Even a single chare can wait for multiple data items concurrently, processing whichever one



chare chare-name {
local variable declarations
entry EP1 : (message MSGTYPE *msgptr) {C code block} ...
entry EPn : (message MSGTYPE *msgptr) {C code-block}
private function-1() {C code block} ...
private function-m() {C code block } }

Figure 1: Chare Definition

is available first. (When many messages are available, the system chooses one based on user
selected priorities or scheduling strategies).

These advantages are particularly significant in the context of global operations. In
traditional SPMD programs, a global reduction adds a barrier: all processors must arrive
at the barrier before anyone is allowed to proceed beyond the barrier. Many application
programs involve multiple global operations (and their associated pre and post computations)
that are independent of each other. Here, the barrier created by the global operations are
completely artificial. It is simply an artifact of the blocking style of control transfer embedded
in the underlying SPMD programming model. Message driven execution provides a solution
in this context. We will illustrate its performance advantages by means of an example.

This example is abstracted and modified from a real application — a core routine in
parallelized version of a molecular mechanics code, CHARMM. Each processor has an array
A of size n. The computation requires each processor to compute the values of the elements
of the array and to compute the global sum of the array across all processors. Thus, the 7?
element of A on every processor after the operation is the sum of the i** elements computed
by all the processors.

In the traditional SPMD model, this computation can be expressed with a single call
to the system reduction library (gssum) preceded by the computation of the array on every
processor. Alternatively, one can divide the array A into k parts, and in a loop, compute
each partition and call the reduction library for each segment separately. Each call to the
reduction library is a blocking one, i.e. the code cannot initiate the local computation
belonging to the block before receiving the result of the current reduction. Therefore, in
either case, each reduction call makes the processor wait until the reduction is complete.
As the reduction involves a critical path of at least logp messages (either via a spanning
tree, or via a virtual hypercube-topology based algorithms), the idle time on all processors
is proportional to logp and to the size of A. An approximate expression for the completion
time for the blocking SPMD model can be written as:

Tblocking = nt; + (nt, + ka+ nB)logp

where t; is the computation per data item, ¢, is the reduction computation per data, a is
the communication startup time, p is the number of processors, and 3 is the communication
cost per data item being sent.



However, the computations for each partition are completely independent. In particular,
computation of the next k items (i.e., the next partitions) are not dependent on the result
of the reduction, and so could be started even before the reduction results from the previous
partitions are available. With this (message driven) strategy, one process that has just
finished computing a partition is willing to either process the result of the reduction of any
previous partition or compute the next partition. Thus the wait for reduction results for
a partition is effectively overlapped with the computation of other partitions. The time to
completion in this case is given by:

n

Tmessage_driven = nt; + nt, + kb, + (a + (8 + t,) P2 )log p

where £, is the overhead per partition in a message driven execution model. This overhead
includes context switching, scheduling and dispatching of the messages in addition to over-
head introduced at the user level algorithm. Overlapping is reflected by the fact that the
communication term is only proportional to the size of one partition (%) instead of the size
of whole array (n). In effect, one is required to wait only for the result of the last reduction.
One pays for this benefit with the overhead ¢, because of the larger number of messages

involved. A performance study is needed to determine if this tradeoff is worthwhile.

To implement the message driven strategy for the performance study, we used the con-
current reduction library provided in Charm which is described next.

3.1 Reduction Library

The Charm reduction library supports non-blocking global reduction operations. Due to
the asynchronous nature, the interface between the reduction module function and the user
program is different from the blocking version of the reduction (e.g., gshigh). First, the
caller must provide a return address for the result. Secondly, if there is a need for more than
one reductions that may overlap in time, they have to be carried out without mixing them
up. This can be achieved by having different instances of the reduction object. The library
provides the following functions in order support concurrent reductions:

id = ReductionType::Create(size) This call creates an instance of the reduction object
and returns a unique identifier.

ReductionType::depositData(id,x,y,fptr,caller id) A processor participates in a re-
duction by depositing its data to the reduction object. In this function call, the data
to be reduced is x. fptr, and caller_id is the return address. The reduction object
calls the function fptr of the calling chare caller id when the reduction is over and
the result i1s placed in y.

ReductionType::depositDataMsg(id,x,ep,caller id) This is another version of the de-
posit call. The difference is that the result is returned in a message to the entry point

ep.
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Figure 2: Concurrent Reductions, k=160,n=40960

3.2 Performance Results

We will present some performance results of the message driven implementation of the above
computation. The computation was programmed in C (using the Intel supplied native reduc-
tion library) for the blocking SPMD version and in Charm for the message driven version.
The runs were made on an Intel/Paragon machine.

In Figure 2-(a) shows the performance results of the case k=160, n = 40960, and up to 64
processors. The effect of pipelining of reductions in Charm is apparent from the flattening of
the curve beyond eight processors. The increase up to eight processors with Charm can be
attributed to the increase in the branching factor of the spanning tree used by the reduction
library.

Each processor in the above experiment did a fixed amount of computation (one floating
point addition) per element of the array before calling the reduction. In real applications,
this computation is likely to be larger, and more important, likely to vary from processor
to processor. Figure 2-(b) shows results of the computation for the same parameters but
with a random amount of computation added to each partition. The performance benefits
of message driven execution becomes more significant when there exist irregularities in the
computation. The blocking version makes every processor wait at a barrier for the last
processor to arrive at the barrier, thus making the completion time the sum of mazima (for
all partitions) as opposed to the mazimum of the sum for the message driven version.

To explore and understand the behaviour of the two versions over a broader range of
parameters, we performed more detailed studies. These involved varying k (the number of
partitions) and exploring a larger range of processors. Part of the data we obtained is shown
in Figure 3-(a), which shows the performance of the cases £ = 16 and 64, n = 16384 and
up to 256 processors. As the performance of the blocking version is optimum with & = 1,
we also include the data for this case. For the Charm program, the execution time increases
very slowly with the number of processors, while the time for the blocking version increases
significantly. The reduction function provided by the system appears to be proportional to
/P where p is the number of processors. This could be due the preliminary nature of the
current version of the Paragon software (or our use of it) and can be expected to be improved
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Figure 3: Concurrent Reductions, k=16,64, n=16384

in future releases. However, the fundemental advantage of message driven execution will still
be valid as the time for the blocking version must rise proportional to at least log p.

To study the effect of the degree of pipelining, we varied k for a fixed number of processor
in the Charm version. In Figure 3-(b) we plot the elapsed time as a function of the number
of reductions (k) on 128 processors. The time decreases up to 8 reductions, and then it starts
to increase. Here, at k = 8 the overhead starts to become dominant, and the execution time
increases. The crossover point will shift to the right for larger values of n, for more processors,
for larger communication latency per byte, or for smaller Charm scheduling overhead.

4 DAGGER

Although message driven execution improves performance and modularity, its expression
in a program may sometimes get cumbersome. Such programming has some similarities
to event based programming used for X-windows or Microsoft windows programs, but is
more complex due to dependencies among messages and the nature of this asynchrony. This
sometimes leads to bugs due to a message processing sequence that is different than those
anticipated by the user program. We have developed a notation called Dagger [5], and an
associated graphical program editor that helps programmers deal with this complexity.

The Dagger language augments the Charm language with a special form of chare called a
dag chare. A dag chare (dag: directed acyclic graph) specifies pieces of computations (when-
blocks) and dependences among computations and messages. A when-block is guarded by
some dependences that must be satisfied to schedule the when-block for execution. These
dependences include arrival of messages or completion of other when-blocks.

In the Figure 4, a template for a dag chare is shown. In addition to entries, a dag chare
may declare some other data local to that dag in the local variable declaration section. The
local variables are shared among when-blocks and private functions of the dag chare. Private
functions are regular C functions which may contain Charm or Dagger statements/calls, and
they can be called only within the static scope of the dag chare.



dag chare example {
local variable declarations
condition variable declarations
entry declarations
when depn _list 1 : {when_body_1} ...
when depn list n : {when_body_n}
private functions }

Figure 4: Dagger Chare Template

As in a chare definition, there are no explicit receive calls in a dag chare. The dag chare
declares entry points, and messages are received at these entry points. The entry point dec-
laration, which is in the form:

entry entry_name : (message msg_type *msg)
defines an entry with the name entry_name, and associates a variable with a specified mes-
sage type with that entry. Messages can be sent to entry points by supplying the entry_name
in the Charm system calls such as SendMsg. The variable msg is a pointer to the message
received by the entry.

Receiving a message at an entry point is not sufficient to trigger a computation. (In
contrast, in Charm, arrival of a message triggers a computation which is associated with
that entry point.) The computation must be in a state where it is ready to process the
message. A Dagger program tells the Dagger runtime system when it is ready to process a
message by using the expect statement:

expect (entry_name)
If a message arrives before an expect statement has been issued for it, Dagger will buffer
the message. The message becomes available only after the expect statement is executed.
A dag chare may have a special type of variable, condition variable. A condition variable is
declared as follows:

CONDVAR cond_var_name
The condition variable is used to signal completion of a when-block. In other words, it is
used to express the dependences among when-blocks which belong to the same dag chare. A
when-block can send a message to an entry which is defined in the same dag chare, however
to utilize a shared variable (condition variable) is more efficient. A condition variable is
initialized to the not-ready state when it is declared. It is set to the ready state by the ready
statement:

ready (cond_var_name)
Once a condition variable is set, the Dagger may schedule the when-blocks which are waiting
for that condition variable to be set. A when block is a computation which is guarded by a
list of entry names and condition names:

when e;,...,e,, ¢1,...,¢n ¢ {when-body}

where e; is an entry name, and ¢; is a condition variable. In order to initiate the execution
of the when-block, the dependence list of the when-block must be satisfied. The dependence



when E1: {C1();
expect(FFT):
expect(REDN);

PROCEED

INIT @ C1

when REDN[ANY] : { COPY ();}

when REDN : { PROCEED();}

Figure 5: A Dagger Example

list is satisfied if :

e a message has been received and expect statement has been executed for each entry
e; in the dependence list,

e for each condition variable ¢; in the list, a ready statement has been executed.

The when-body is a block of C code possibly including Charm system calls, and expect and
ready Dagger statements. The messages received by the entries e;’s are accessed inside the
when-body through the message pointers defined in the entry declarations.

As an example, consider the graph shown in Figure 5. The rectangles in this graph rep-
resent subcomputations and circles represent messages. Note that all the subcomputations
are part of a single process executing on a single processor. Arrows from messages to sub-
computations represent dependencies while arrows to messages represent readiness to receive
messages. Double circles represent entry points which may receive multiple messages. The
arrow from inner circle point to computations that are performed when any one message to
that entry point arrives. Arrows from the outer circle point to computations that are per-
formed when all expected messages for this entry point have been received. Thus the process
specified by this graph carries out the initial subcomputation then expects the E1 message.
When this message is received it carries out the C1 subcomputation, and is ready to receive
messages to either the REDN or FFT entry point. When all the messages to both these entry
points have been received it initiates the proceed computation. The dagger code fragment
corresponding to this graph is shown to right in Figure 5. Notice an extension to the Dagger
as defined above for the REDN entry point: ANY is a keyword that signifies that the when-block
should be triggered every time a message for REDN arrives, whereas the “when REDN ” block
is triggered only after all the expected messages for REDN have arrived. By programming in
this notation the need to specify counters, flags, and buffers to store messages, which would
otherwise be necessary to implement the same algorithm, is eliminated.

The visual notation shown in Figure 5 i1s very intuitive, and shows the flow of control
within a process (a chare) clearly. We have developed a visual program editor based on this
notation. One can create such graphs, provide necessary definitions and labels, and add



program text to the boxes using this editor. The visual program is automatically translated
to Dagger/Charm notation.

There are computations where the concurrent phases of a dag exist (in time). An example
of this is a dag augmented with a loop where different iterations of the loop may be executed
concurrently. Another example is a client-server type of computation. Client processes may
send multiple requests concurrently to a server dag. The server dag performs the same
computation for different requests concurrently. This type of computations are supported
by a reference number mechanism. Further details about this feature and Dagger can be

found in [5].

5 CONCLUSION

The advantages of message driven execution for multiple independent global operations can
be seen to arise from two separate factors.

1. the pipelining effect, which eliminates the critical path proportional to at least logp
during which processors would have remained idle in a blocking SPMD style program.

2. the relaxation of the need for every processor to wait at the barrier formed by the
reduction operation.

Of these, the former can be reduced or eliminated with special purpose hardware (for exam-
ple, a shared memory machines or a machine with a reduction network), with its associated
cost. However, the latter is a fundamental advantage which becomes significant particularly
when there is variations and irregularities in the application programs. As more “real” ap-
plications are explored, we believe such irregularities will occur more commonly and thus
establish the importance and necessity of message driven execution. A system such as Charm
can play an important part in this transition to message driven execution.

Message driven execution was proposed and studied in the Actor model by Hewitt[6], and
later by Agha[7]. Charm is one of the first systems to embody message driven execution in
a portable parallel programming system running on stock multicomputers (in 1986-87 [8]),
along with the reactive kernel of Seitz et. al. [9]. The recent work on Active Messages [10]
provides an efficient substrate for message driven execution, while the Split-C language [11]
developed at Berkeley is a recent message driven language that uses Active Messages. The
data flow approaches clearly embody message driven execution although they were based
on specialized hardware. Message driven execution is similar in spirit to macro data flow
approaches designed for general purpose parallel purpose machines.

Thread packages used on individual processors can also provide part of the benefit of
message driven execution. While a thread is blocked for a message, another thread may
continue. However, a thread is usually blocked waiting for only one message, unlike chares
which can wait for multiple messages concurrently. Thread scheduling is somewhat arbitrary,



and outside the control of the programmer, whereas Charm can schedule messages based on
priorities or user selectable control strategies. Stack management and efficient implementa-
tion are some of the additional problems for threads. More transiently, Charm is available
on many parallel machines whereas threads are not.

The original problem in the computation in CHARMM, used a basis for the performance
experiments in Section 3, was solved efficiently by Brooks. This solution is based on the
fact that all the reduction results are not needed on all the processors in the application.
For every partition, only one distinct processor needs to know the result of its reduction.
The dimensional exchange algorithm that reduces by half the data to be exchanged in every
phase was used based on this observation.

We plan to augment and optimize the reduction library in Charm in many ways. In
particular, we plan to support the reductions whose results are needed only on one (or a
few) processor. The algorithm for this purpose is based on multiple distinct spanning trees
rather than on dimensional exchange.

The Charm parallel programming system which embodies message driven execution is a
well-developed and stable system with a rich collection of primitives. Branched (replicated)
chares and specifically shared objects provide a highly expressive method for specifying par-
allel programs. As a result, the Charm runtime has much detailed and specific information
about the state of the computation. Intelligent performance feedback tools and debugging
tools can be built to exploit this knowledge. We have started in this direction with a pre-
liminary performance feedback tool called Projections, and are building the next generation
of the tools.
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