Dynamic Adaptive Scheduling in an Implementation

of a Data Parallel Language*

Edward A. Kornkven
Department of Computer Science
University Of Illinois
Urbana, IL 61801
email: kornkven@cs.uiuc.edu
tel: (217)-333-5827
fax: (217)-333-3501

Abstract

In the execution of a parallel program, it is desir-
able for all processors dedicated to the program to
be kept fully utilized. However, a program that em-
ploys a lot of message-passing might spend a con-
siderable amount of time waiting for messages to ar-
rive. In order to mitigate this efficiency loss, instead
of blocking execution for every message, we would
rather overlap that communication time with other
computation. This paper presents an approach to
accomplishing this overlap in a systematic manner
when compiling a data parallel language targeted for
MIMD computers.

1 Introduction

Data parallel languages have proven to be efficient
platforms for programming in a wide range of appli-
cation domains. Parallelism is explicit and clearly
understood in these languages. From the user’s point
of view, the execution model is straightforward, un-
ambiguous, and is an “easy” way to attain a high
degree of parallelism. It is now also clear that the
underlying hardware need not have the same execu-
tion model and in fact, better performance might be
attainable on MIMD machines than on the original
home of data parallel languages, the SIMD comput-
ers. This is due in large measure to the ability of
MIMD processors to operate independently, on dif-
ferent parts of the program. This decoupling of pro-
cessors offers the potential for increasing processor
utilization by not forcing one processor to wait on
another when it could be doing useful work.

*This research was supported in part by National Science
Foundation grant CCR-91-06608

Laxmikant V. Kalé
Department of Computer Science
University Of Illinois
Urbana, IL 61801
email: kale@cs.uiuc.edu
tel: (217)-244-0094
fax: (217)-333-3501

Even on a MIMD machine however, there are pit-
falls that would inhibit the realization of maximal uti-
lization for a given program because the coupling of
processors, while eliminated in the hardware, may be
reintroduced by the program. That is, if the program
forces unnecessary waiting (e.g. unnecessary synchro-
nization or waiting for messages), the hardware will
still be under-utilized.

For a programmer, it can be difficult or impossi-
ble to recognize in the program just where synchro-
nization is necessary or where opportunities for over-
lapping communication and computation are. The
programmer might attempt to reorder program state-
ments in order to overlap communication with com-
putation, but in general these are influenced by run-
time conditions and cannot be completely predicted
statically. In this paper, we will present our ap-
proach to implementing a subset of data parallel For-
tran in which these difficulties are overcome for the
compiler writer by generating adaptive schedules at
compile time that enforce all the control and data
dependences correctly, while allowing the run-time
system to re-order processing of different messages
(and associated subcomputations) depending on the
arrival order of messages at run-time. The schedule
and computations are specified using Dagger nota-
tion, which is part of the Charm parallel program-
ming system. Charm is an explicitly parallel language
with a message-driven execution model. Since Charm
is machine independent and has already been ported
to numerous parallel machines, the code produced by
the compiler is machine independent by default.

The focus of this paper is to demonstrate the
feasibility of such adaptive schedules, and to intro-
duce the static analysis and code generation that a
compiler must carry out to implement a data paral-

lel source language in this environment. In section 2
we give a brief introduction to the source language.
In section 3 an overview of Charm and Dagger is
presented. In section 4 we discuss the compilation
problem in more detail and section 5 illustrates the
techniques used to compile various structures of the
source language. Finally, we discuss related research
in section 8 and summarize our results in section 9.

2 The DP Source Language

The source language that we wish to compile is a
subset of High Performance Fortran (HPF) [Hig92]
which we call DP. Like other languages in its class,
its distinguishing features include the ability of source
statements to operate on entire arrays or sections of
arrays at a time, and a large set of intrinsic functions
for manipulating those arrays. An assignment state-
ment will assign a scalar value to a scalar variable,
an array value to a array variable, or a scalar value
to a array variable. An assignment to a scalar in
which an array expression appears on the right-hand
side requires the use of a reduction function and is
discussed below.

Similarly, intrinsic functions may take scalar ar-
guments, array arguments, or both. As an example of
an intrinsic function that operates on arrays, consider
the assignment

k= SUM(A)

where k is a scalar variable and A is an array.
The SU M function is a reduction function—i.e., it “re-
duces” an array to a scalar value by performing some
commutative and associative combining operation on
all the elements of the array. In the case of SUM,
the sum of all the array elements is returned.

A DP fragment for a Jacobi iteration of an
approximation of Poisson’s equation is shown in
Figure 1. Variables A, Anew, and W are two-
dimensional arrays while ¢ is a scalar. CSHIFT
is an intrinsic function. There are two assignment
statements—they are both array assignments.

A = Anew
Anew = (1/(242x¢))* &
(CSHIFT(A,1,—1)+ CSHIFT(A,1,1) + &
¢x (CSHIFT(A,2,—1) + CSHIFT(A,2,1)) — W)

Figure 1: DP source statements for Jacobi iteration

In the HPF execution model (which we follow),
parallelism is attained by distributing array elements

across processors with each processor computing its
own section of the array. The distribution method
may be suggested by directives in the user program.
For this program, let us assume that the array is par-
titioned by blocks, where each processor is allocated
a “sub-rectangle” of the arrays A and Anew. We
will avoid details of declaring arrays and distribut-
ing them onto processors. It will be assumed in the
examples discussed here that all arrays are the same
size and shape, and that corresponding elements are
stored on the same processor. The reader is referred
to [Hig92] for further details of HPF.

Some statements will be able to execute entirely
locally on the processors—the first assignment state-
ment in Figure 1 is an example. Generally, however,
data will have to be shared between processors at
some time during execution of the program, necessi-
tating interprocessor communication. For example,
in Figure 1 the calls to the instrinsic CSH I FT serve
to reference neighboring elements from above, be-
low, left, and right respectively. These function calls
will force interprocessor communication for those el-
ements whose neighbors don’t lie on their home pro-
Cessor.

Let us be more precise about the code a compiler
might generate for each processor for the example
in Figure 1. In outline form, the steps involved in
executing this statement are as follows:

1. Send left boundary values (of the local array sec-
tion) to the processor on the left. Likewise for
the right, bottom, and top boundary values.

2. When the top message arrives, shift the array
and add it into Anew.

3. When the bottom message arrives, shift the ar-
ray and add it into Anew.

4. When both the right and left messages arrive,
shift them, add them, and multiply by ¢, accu-
mulating this product in Anew.

5. When all messages have arrived, complete the
calculation.

The computations of complex source language fea-
tures such as the CSHIFT intrinsic function can of-
ten be best expressed by intermediate-level instruc-
tions. We will use a sort of intermediate pseudocode
to enable us to discuss the code that the compiler
has to work with while still avoiding low-level de-
tails that are beyond the scope of this paper. That
intermediate-level pseudocode for our example ap-
pears in Figure 2. As a matter of convention, we
will capitalize the names of arrays, make the names

of built-in features all capitals, and leave scalars in
lower case.

We can illustrate this computation by a depen-
dence graph as shown in Figure 3. The rectangu-
lar nodes represent computations while the circu-
lar nodes represent points at which messages are re-
ceived. Arcs from circles to rectangles represent a
dependence on a message, arcs from rectangles to
circles represent the readiness to accept a message,
and arcs from rectangles to other rectangles indicate
dependences between computations.

Notice that some of these steps depend on other
steps but also that some are independent of others.
Note also that it will be difficult or impossible to
establish at compile time a schedule for these steps
that always allows a ready step to execute without
waiting on another step. For example, we probably
will not be able to predict in general whether the
message from a left neighbor will arrive before the
message from a right neighbor. Even if the behav-
ior were the same for all executions of the program,
it might even be that the order in which these two
messages arrives is different for different processors.
Clearly, then, ordering these statements for optimal
overlap is difficult and not amenable to a completely
static approach. An alternative dynamic approach is
the topic of this paper.

3 Dagger and Charm

Charm [Kal90, Cha92] is a machine-independent run-
time system which runs on a variety of shared-
memory and distributed-memory parallel computers
and supports an explicitly parallel C-like language.
Charm supports the dynamic creation, manipulation,
and scheduling of small tasks called chares. Chares
may create other chares or send messages to entry
points of existing chares, enabling those chares to be
scheduled for execution. Charm supports an asyn-
chronous programming style. Chares are designed to
execute for a relatively short time and then suspend,
waiting for another message. In the meantime, other
messages that have arrived are de-queued and exe-
cution continues, possibly in another chare. A spe-
cial kind of chare, the branch office chare, is auto-
matically replicated on each processor. Branch office
chares are useful for describing a computation that
is similar on all processors—such as the array process-
ing in DP. They are also useful for implementing dis-
tributed data structures and for defining interfaces
between parallel modules.

Dagger [Gur93] runs on top of Charm and is a
tool for performing computations that can be rep-

resented by directed graphs. Dagger facilitates the
expression of the synchronization of threads of ex-
ecution by specifying the condition under which a
thread executes in terms of the other threads that
must complete first. In this paper, we describe the
use of Dagger to schedule statements and messages of
an executing program-Dagger is the target language
of our compiler. At compile time, the conditions un-
der which a statement may execute are described but
the order in which they will actually execute depends
on which of those conditions are met first during a
particular execution of the program. Using Charm
constructs, Dagger can in effect “execute” a depen-
dence graph. This results in a dataflow-flavored ap-
proach which enables statements to be executed at
their earliest opportunity.

Dagger allows one to define a special form of
chare in which the code is segmented into when
blocks. A particular when block is tagged with de-
pendences that must be satisfied in order to enable
the when block to be initiated for execution by the
Charm run-time system. These dependences assume
one of two main forms in Dagger:

1. An entry-the target of message that will be sent
to the chare by some PE, or

2. A condition variable-a special variable that Dag-
ger watches.

A function called Ready is used to set the condition
variables, which are initialized to be “not ready”.
Syntactically, when blocks have the form

when CV1,CV2,CV3,...,CU;my,€1,€2,€3, ...
{ code to be executed }

L €n'

When all condition variables cv; are ready, and for
each controlling entry e; an expect statement has
been executed and a message directed at e; has been
received, the when block is ready to execute. When it
actually executes depends on which ready when block
Dagger next selects for execution.

As an example, we show an outline of the Dagger
code for the Jacobi iteration example in Figure 4. In
Dagger, a chare begins in its init block. For the sake
of brevity, some syntactic details not germane to this
discussion have been omitted. For the same reason,
we show the array computations in their intermediate
pseudocode form. Note in this example the rather
straightforward correspondence between the depen-
dence graph (Figure 3) and the Dagger code. The
remainder of this paper deals with deriving the Dag-
ger code from the source (or intermediate) code.

4 The Problem

There are, of course, many facets of the general prob-
lem of code generation for parallel computers. Our
concern here is how to derive the schedule of in-
structions that will be executed. Our goal is to
leverage the asynchronous, message-driven features
of Charm/Dagger to enable statements to execute as
soon as they are ready to be executed.

When we say that a program statement is
“ready” to execute, we mean that (a) there is no
data upon which that statement depends that is not
yet available, and (b) any control flow conditions im-
posed on the statement have been met. This means
that any statements that compute these antecedent
data must have already completed execution. In
commonly-used procedural languages, the ordering of
source statements also imposes dependences between
statements, but this ordering is unnecessary unless
the statements share data. For example, in the pro-
gram fragment

A=B+C
X=Y+7

variable A doesn’t necessarily have to be computed
before variable X even though that is the order spec-
ified by a top-to-bottom reading of the source code
(assuming there are no aliases that prevent it). Re-
moving these artificial dependences and allowing code
to execute in a different order from that specified by
the source program is the basis of many optimizations
for all kinds of architectures (not just parallel ma-
chines). Of course, most statements will depend on
at least one other statement and such dependence re-
lationships must be preserved. But suppose we have
the following source statements:

k=SUM(X)

A= SIN(X)
execute code

Each processor will equiva-

lent to the following intermediate pseudocode:
tmp = ComputeLocal SUM (X))
Send tmp to global SUM
Recetve back global SUM — k
A — SIN(X)

The third statement, the Receive, will cause exe-
cution to block if the message is not available. But in
that case, we could be executing the expensive SIN
function on the array X instead of waiting idly—each
processor will be unnecessarily underutilized. The
simple solution is to change the order in which we ex-
ecute these statements—move the calculation of A be-
fore the Receive. This will give the Receive a longer

time to finish. But of course, how do we know in
general that such a change will be enough? Should
we move another statement before the Receive?

Consider another example that uses two intrin-

sics, MAX and SORT:

k= MAX(A)
B = SORT(A)+ D
C= Ak

These statements are represented by the interme-
diate pseudocode shown in Figure 5. As we consider
how we might reorder these statements to maintain
full utilization we see that the situation is more com-
plicated. It helps to examine the data dependence
graph for these instructions (Figure 6). We could
start the SORT first and overlap its communication
with the local M AX computation. We could next
send tmpl, but then what? We are expecting replies
to two messages, each of which head up independent
threads of computation. However, in general we are
unable to determine at compile time which message
will be ready first and therefore which statement to
execute next. This is because at compile time we
may not know what the load of each processor at
run-time will be, exactly which instructions will exe-
cute for each processor, what the problem size will be,
perhaps the number of processors or even what kind
of processors will execute the program, etc. There-
fore, it is essential that our scheduling method be
able to generate dynamic schedules that adapt to ac-
tual execution-time conditions. We propose calculat-
ing dependences between statements at compile time
which, when satisfied at execution time, enable the
dependent statement to execute.

In the next section we explain how these adap-
tive schedules can be generated and expressed in the
Dagger notation. Then, we try to improve the gen-
erated code. One such improvement is to attempt
to reduce the overhead of scheduling statements by
reducing the number of times we return control to
Dagger.

One final note: the reader should bear in mind as
we discuss “processor utilization”, “overlapping com-
putation”, “scheduling”, etc., that we are concerned
here with the behavior within a single processor. Due
to the nature of the programming model that we are
compiling for (i.e., data parallelism), any solution to
the overlap problem obtained on one processor will
by definition be a solution on the others.

5 Owur Approach

In the following sections, we take progressively more
complicated cases of DP code in turn and show how
Dagger code will be generated.

5.1 Straight-Line Code

We first examine the translation of DP programs
without loops and conditionals. This will enable us
to introduce the method without bogging down in the
details that arise for branching.

5.1.1 Analysis Required

Let us consider again the Jacobi iteration example
from Figure 1. As previously discussed, we wish to
reorder instructions in an attempt to overlap wait-
ing for the completion of communication with other
independent computations. Our task is to do that re-
ordering, or more precisely, to enable that reordering
to happen at run-time. We will first create a data
dependence graph (DDG) for the program to assist
in our analysis. Each rectangle node in the DDG will
translate to a when block in the Dagger program. A
when block is labelled by condition variables and en-
tries corresponding to other DDG nodes upon which
the node depends.

Initially, let each node of the DDG correspond to
one statement in the intermediate code of the parsed
source program. The initial DDG corresponding to
the example code is shown in Figure 8. As explained
in section 2, the circle nodes in the graph represent
entries which receive messages and the rectangular
nodes represent computations that don’t involve re-
ceiving messages. These circle nodes are of special
interest because they indicate a statement that de-
pends on a run-time event which cannot be predicted
by the compiler (the receipt of a message).

Overhead will be incurred in this programming
model when Dagger schedules when blocks for execu-
tion. To reduce overhead, we would like to simplify
the DDG by merging statements into larger blocks.
Larger DDG nodes result in more user work being
done per scheduling event. Our node merging is con-
strained by a couple of factors. First, we don’t merge
circle nodes because, as previously stated, the receipt
of a message does not depend on the satisfaction of
data dependences but on the completion of message-
passing the time of which is unknown to the compiler.
Second, we cannot permit an invalid ordering of the
statements (i.e. one that violates our dependences).
Since this is straight-line code, we have no control de-
pendences to worry about and we know that the DDG

is acyclic. We might be tempted to merge nodes as
much as possible. However, when a pair of nodes are
merged, the new node must have as its incoming arcs
the union of the incoming arcs of the original nodes—
likewise for the outgoing arcs. This means that if we
merge a node with a successor node, that node will
now depend on everything on which its successor de-
pended. These are new dependences that we have
introduced and may be unnecessary for that state-
ment. Note however, that a node which depends
on only one other node may be safely merged with
that node. Therefore, our node-merging algorithm
will moderate the goal of maximal merging with the
goal of not introducing unnecessary dependences by
not merging nodes that have more than one predeces-
sor. The node-merging algorithm is given in Figure 7
and the DDG after merging is applied was given in
Figure 3.

The names used in the node-merging algorithm
have the following meaning:

v The node being examined for merging.

visit_count Number of times this node has been vis-
ited in the graph traversal (initially 0 for each
node).

child List of children of a node.

n_predecessors The number of predecessors of a
node.

new_block A routine that creates a new node in the
new DDG, inserts the statement corresponding
to the argument into the block, and updates the
pointers according to the pointers of the argu-
ment.

merge_tnto_pred A routine that merges the argu-
ment node into the block of the predecessor node.
If we are prioritizing statements for execution,
those priorities will have to be used here.

all_predecessors_same A function that returns
TRUE if all the predecessors of a node have the
same block in the new DDG being built by the
merge algorithm, FALSE otherwise.

Note that after node merging, a new node depends
only on statements upon which the first statement in
the block depended. Also, any statement that was
dependent on any of the original statements becomes
dependent on the new block.

One other refinement we can make to the DDG
is to remove redundant dependences. A dependence
arc is redundant when it specifies a dependence that

L3:

L4.

L9:

L1o:

L15:

Lie:

L20:

L21:

Figure 8: The labelled DDG before node merging.

L18:

L23:

is already a necessary condition of the correct execu-
tion of the program. Specifically, suppose we have
a DDG with nodes a, b and ¢. Let a 6 b mean
that statement b is dependent on statement a and
let @ 6* b mean that there is a sequence of depen-
dencesadxdy ... 52z60b. Thenifa é*band b é*c,
if there is also an arc a é ¢, we may remove it. Again,
the rationale for this is that if b must follow a and ¢
must follow b, it is redundant to say that ¢ follows a.

One situation in which redundant dependence
arcs appear in the DDG is illustrated in Figure 9.
In this example, the arc from S1 to S3 is redundant
because we already know that 81 6* S3 because S1
6 82 6 S3. However, careful implementation of our
node merging algorithm can eliminate this extra arc
and all three nodes can be merged into one.

Node merging presents a trade-off to consider
in our code generation. Larger blocks reduce over-
head by reducing the number of times that Dagger
has to select and initiate tasks. On the other hand,
smaller blocks (i.e. single statements) might present
more opportunities for initiating other tasks upon
the block’s completion thereby keeping processor uti-
lization high. However, we can safely make blocks
large without negatively affecting processor utiliza-
tion, at least not directly. This is true for the follow-
ing reasons. When we merge a node with its pre-
decessor, we are essentially removing a “degree of
freedom” by forcing that node to execute immedi-
ately after the predecessor node instead of possibly
later. Note though, that one still has the option dur-
ing the merger of reordering the statements in the
merged node by placing a higher priority statement
(e.g. a statement that initiates communication) first,
assuming there are no dependences being violated
by such a reordering. Since we don’t merge circle
nodes with their predecessors, this merging cannot
cause the node to block—Charm/Dagger guarantees
that once execution on a when block is initiated, it
will run to completion. So the processor must be
completely busy while executing the merged block.

5.1.2 Translation to Dagger

Given the new DDG, generation of Dagger code for
this segment involves the following steps:

1. Label the blocks in the new DDG to be used in
generating when block condition variable names.

2. Visit each rectangle node in the new DDG and
produce a when block for it, using the depen-
dences from the DDG and their labels from
the first step to create the conditions that will
trigger the when block. If a rectangle node in

the DDG depends on rectangle nodes (computa-
tions) b1, by, ..., by, and circle nodes (messages)
€1,€3,...,Cn, then create a when block that de-
pends on condition variables bq,b,...,b,, and
messages ¢1,Ca,.. Circle nodes have no
when blocks associated with them—they only in-
dicate that a message must be received.

. Cn-

3. For each rectangle node with an arc to another
rectangle node, emit a Ready statement at the
end of the block to indicate its completion. If a
rectangle node has an arc to a circle node, emit
an expect statement corresponding to the mes-
sage of that circle node.

4. Into the when block, insert the code from the
corresponding DDG node.

An outline of the Dagger code for this segment
was shown in Figure 4.

6 Branches and Loops

In this section we will discuss the translation of pro-
grams containing IF and loop statements. We will
focus our attention on loops since an IF statement
can be viewed as a special case of a loop which it-
erates zero or one times. (An IF-THEN-ELSE can
also be emulated by two simple IFs.) The DP lan-
guage supports only well-structured IFs and loops—
arbitrary GOTOs are not allowed. For the purposes
of this discussion, assume that we are dealing only
with Fortran’s IF and DO WHILE statements.

6.1 Issues Raised by IFs and Loops

In the presence of IF statements and loops, analysis
is complicated by the fact that the statements that
will generate the values used by other statements are
not known at compile time. For example, suppose we
have the Jacobi iteration code inside a loop as shown
below.

Anew = init_val

DO WHILE (not_done(Anew, A, epsilon))

A= Anew

Anew = (1/(24+2x¢))* &

(CSHIFT(A,1,-1)+ CSHIFT(A,1,1)+ &

cx (CSHIFT(A,2,—1) + CSHIFT(A,2,1)) — W)

END DO
D = Anew — A

When computing D, which definition of Anew
should be used? That depends on whether the loop
branch is ever taken—if it is, then the value of A from

the last iteration should be used; otherwise the value
of Anew will still contain init_val. Consequently, we
have to consider all possible sources of dependences
and make sure that in our Dagger program they will
trigger the dependent when blocks under the proper
conditions. Additionally, loops complicate our code
generation process in a number of other ways:

1. Iteration requires each block inside the loop to
execute repeatedly, but under the control of the
loop condition. This has a number of implica-
tions: (a) every block in a loop must be made to
depend on the loop condition in some way, (b)
we must be able to re-execute when blocks (un-
like in a straight-line code, in which each block is
executed at most once), and (¢) any communica-
tion done inside a loop will be done repeatedly—
therefore it is possible that a processor could find
more than one message for an entry (from differ-
ent iterations) in its message queue and must be
able to process those messages in the proper se-
quence.

2. The loop condition may be a function of one or
more of the variables defined in different blocks
in the loop body. So, the dependence of the loop
condition on specific blocks in the loop must be
considered.

3. In the presence of loop-carried dependences, ex-
tra care must be taken to assure that the correct
values are used for each iteration. A loop-carried
dependence arises when a statement in a loop
defines a variable that is used in a subsequent
iteration.

4. Variables that are both defined and used inside
the loop body but are used before they are de-
fined obtain values either from the definition be-
fore entry to the loop (on the first iteration) or
from the previous loop iteration (on subsequent
iterations). Therefore, we need a mechanism for
selecting the appropriate one.

5. Similarly, variables defined inside the IF/loop
body must forward (signal the “readiness” of)
their values to the statements that use those
variables that follow the loop, but only if the
IF branch/loop is taken. If it isn’t, the defined
values of those variables before the IF /loop must
be used. We must select the appropriate values.

6. In a loop, we must ensure that only a definition
from the last iteration is forwarded to subsequent

uses outside the loop. This implies that the con-
ditions that trigger the uses of those definitions
must include the termination of the loop.

To illustrate, let’s return to the previous exam-
ple. A and Anew are defined inside the loop. First,
the statement which computes D must be enabled by
etther the defining statement in the loop or the state-
ment that defines the variable if the loop is not ex-
ecuted (i.e., its defining statement before the loop).
In terms of Dagger, the statement D = Anew — A
will appear in a when block that depends on condi-
tion variables that trigger the when block after either
(a) the definitions of A and Anew in the loop, or (b)
the previous definitions of A and Anew if the loop is
not taken. Second, if the loop is taken (i.e. in case
(a)), the A and Anew definitions inside the loop must
not trigger the D = Anew — A statement until after
the last iteration of the loop. Also, suppose that for
some arbitrary processor P, a neighboring processor
Q sends a message to P (say, its left boundary for
a left CSHIFT). It could happen that before P pro-
cesses this message, it sends its right boundary to Q
(for the right CSHIFT), Q receives and processes all
of its messages, and begins the next iteration. Q then
sends another message to P before P has processed
the first. P must be able to match each message with
the proper iteration.

We first consider how to make all the blocks of
the loop body execute just the right number of times,
each variable using the correct value for every itera-
tion. A Dagger program is completely data-driven—
we have when blocks that are activated under certain
conditions which correspond to the computation of
data values. So we must construct a looping mech-
anism using this framework. We must also have a
way for multiple independent execution paths to be
coordinated by a single control mechanism (i.e. the
loop condition) while honoring the loop-carried de-
pendences. We take a conservative approach to satis-
fying these requirements by simply synchronizing all
threads through the loop after each loop iteration.!
This nullifies loop-carried dependences but may miss
some opportunities for overlap. In future work, we
will let loop iterations execute as independently as
possible by identifying paths of execution that can
execute independently and then providing extra sup-
port for allowing, if possible, different paths to exe-
cute different iterations. This is sufficient to coordi-
nate control within a processor, but we must still deal
with the problem of multiple messages arriving from

INotice that we are not synchronizing across all the proces-
sors. We are only coordinating the when blocks within a loop,
on each processor separately.

different loop iterations described above. We employ
a Dagger mechanism called reference numbers.

A reference number is a tag that may be attached
to a condition variable or message to enable Dagger
to group a set of condition variables and messages to-
gether. This enables Dagger to distinguish between
different instances of a computation (e.g. different
iterations of a loop). To use a when block that de-
pends on a set of such messages and condition vari-
ables, condition variables and entries are declared
with the MATCH option which tells Dagger to match
reference numbers when checking for fulfillment of a
when block’s dependences. A when block is not acti-
vated for execution until (a) a Ready statement (us-
ing a reference number) is executed for each of its
condition variables cv;, (b) for each of its entries e;
an expect for the same reference number has been
executed, and (c) for each of its entries e;, a corre-
sponding message with the same reference number
has been received. The reader is referred to [Gur93]
for more details.

The DDG as previously described is nearly suffi-
cient to support the translation of IF and loop state-
ments. We augment the DDG with a new node type
(the diamond) to represent IF and loop tests—these
statements require some special additional code to
be generated. The node-merging algorithm must be
modified to handle the loops and IF statements of
DP. The main point of this revision is to ensure that
we don’t merge nodes in different IF /loop nests.

6.2 Translating IFs and Loops

We turn now to the translation of IFs and loops. To
begin with, carry out the following analyses:

1. During parsing, the nest of each statement is
computed. We define the nest of a statement as
the sequence of all loops and IFs, ordered from
the outermost to the innermost, which contain
the statement. We can then name each loop and
IF statement and associate a nesting label with
each statement. The nesting label of a statement
is obtained by concatenating the names of the
loops and IFs of its nest, again, from outermost
to innermost. For example, the nesting label of
a statement directly nested in a loop named [
which is itself enclosed in a loop named [y is {1 _I5.

2. Construct the DDG, ignoring all loops and IFs.
I.e., as far as our dependence analyzer is con-
cerned, the program consists entirely of straight-
line code.

3. Do the node-merging on the DDG, but pre-
cluding merging two nodes which have different
nests.

After completion of these steps, we will have a
new DDG of merged blocks, each block containing
a list of the statements it contains and marked by
its nesting level and an identifier for the block. If
a block is not nested inside a control structure, we
can generate Dagger code for it as previously shown
for straight-line code. When the nesting information
reveals a loop, we need to know the following:

1. What statements (nodes) comprise the loop.
. The variables that are defined within the loop.

. The variables that are used within the loop.

[PCR)

. The variables that are both used and defined in
the loop and are used before they are defined
in the loop body (and therefore need to be for-
warded to the next iteration of the loop).

Given this information, we can generate code for
loops. First, we must select between multiple alter-
native definitions for a use of a variable. Since DP
has restricted control structures, we know that such
selections need only be made in certain situations:

1. When a variable being used in a statement might
be defined in an earlier IF or loop.

2. When a variable being used in a statement inside
a loop might be defined by a previous iteration
of the loop.

Consider the code and DDG in Figure 10 as an exam-
ple of the first case. The statement A = X may exe-
cute either (a) immediately after X =Y executes, or
(b) immediately after we discover that the branch will
not be taken and X = 1 has executed. We express
this in Dagger by the code in Figure 11. The compiler
emits a Ready statement for each block in the body
of the IF for the case that the branch is not taken.
In similar fashion, when a variable is defined inside
a loop and might be used inside the loop before it is
defined, we must select between the definition before
the loop (which is used in the first iteration) and the
definition that forwards its value to the next iteration
of the loop (which is used in subsequent iterations).

As previously mentioned, by synchronizing at the
end of each iteration our DDG will not have loop-
carried dependences. To accomplish this synchro-
nization, each when block corresponding to a block
nested in a loop will include code to call Ready for
a condition variable that indicates completion of the

block. Execution of the loop test is then made de-
pendent on the completion of those blocks.
Another complication to be worked out can
be illustrated by taking the example in Figure 10
and changing the IF to a WHILE as shown below.
X=1
1=10
WHILE i <n
X=X+Y
1=1+1
ENDWHILE
A=X

We are tempted to translate this as in Figure 12.
The problem with this translation is that the con-
dition variable that triggers the scheduling of the
last statement (Block_2) is set each time through
the loop. This means that block 3 (which is wait-
ing for the condition variable Block.2 to be set) will
be triggered after the first iteration whereas it should
be triggered only after all iterations of the loop have
completed. Our solution to this difficulty is to give an
alias to each block that is nested inside an IF or loop.
A condition variable with that name is used to sig-
nal the completion of that block during execution of
the loop but once the loop exits, the “usual” name is
used. This way, no code outside the loop needs to be
aware that the definition is even in a loop. Similarly,
we don’t want blocks before an IF or loop to trig-
ger blocks inside that IF or loop until the condition
of the IF/loop has been tested. A similar renaming
technique will handle that situation also.

7 Algorithm Outline

The following is the top-level view of our algorithm
for code generation to Dagger. It is assumed that
the program has been parsed and the usual informa-
tion from that phase is available (e.g. parse tree and
symbol table).

1. Compute the nest (inside IF or loop structures)
for each statement.

Construct DDGy, the initial data dependence
graph, ignoring control structures.

Perform node-merging on DDG, to yield DDG,
our working data dependence graph.

. Starting with all children of the START node,
traverse the DD, generating code for each node
as detailed below.

10

We begin by naming the nodes of the DDG. We
will name the nodes of the DDG by some sequential
numbering—this name we will call the actual name of
the node. If the node is a loop or IF condition its
actual name is the nesting label described in the last
section. Each node that is nested in a loop or IF nest
has one pseudo name for each “level” at which it is
nested. This pseudo name is formed by concatenating
its actual name with the nesting label for that level.
The Dagger program will consist of when blocks which
correspond to nodes of the DDG. The dependences
are expressed by condition variables and entries in the
when statement. The names of the condition variables
will be chosen to correspond to appropriate DDG
node pseudo names.

Next we consider the details of code generation
for a single DDG node. First, note that circle nodes
only indicate that a message is to be received—no when
block corresponding to a circle node is produced. The
following subsections examine different situations.

Suppose we have a DP DO WHILE loop L as

follows
DO WHILE (e(p1:p21p3: . :Pk))
Dy; Dy; Ds; .. .5 Dy
ENDWHILE

containing blocks D1, Ds, D3, ..., D;. We generate
the following when blocks for this statement. First,
generate the when block to do the loop test.
when node(p;), node(p2), node(ps), . . ., node(py):
if (e(p1,p2, P35 -, Pk))
Ready(take_loop_< loop name >);
else Ready(exit_loop_< loop name >);

where node(p;) is the DDG node that defined variable
pi-

Next, generate the when block for the end of the
loop. Recall that we make sure that all the blocks for
an iteration have completed before starting another.

when end_body_< loop_name >:

lf (e(plaPZapE}: e apm))
Ready(take_loop_< loop name >);
else Ready(exit_loop_< loop name >);

Then, emit a when block to exit the loop. When
we exit the loop, we must trigger blocks that depend
on blocks Dy, Do, Ds, ..., D;.

when exit_loop_< loop_name >:

Ready(y(D;, L));

where y(D;, L) returns the pseudo name for block D;
in the loop or IF that encloses L. (Recall that if
L isn’t nested in a loop or IF, v(D;, L) (the pseudo
name of D;) will be its actual name.)

Finally, a when block is emitted to signal the end
of the execution of the loop body.
when 7(D1:D1)a7(D2a DQ)a i -77(Dla Dl):
Ready(end_body < loop_name >);

We now turn our attention to the code that is
generated for the blocks that are nested inside loops.
Let D; be one of the blocks within the loop L for
some 1. If D; is a loop/IF, the same procedure being
described here is applied recursively. Otherwise D; is
a basic block containing code to be executed. Let

Bla32733:"'aBnyclaCQJCE}:"'aCm

be the nodes that D; depends on where each B;
occurs outside L and prior to L in the textual order
of the program and where each of C; occurs within
L prior to D;. The compiler will emit the following
when blocks that deal with D;.

when take_loop_< loop_name >,

Bl,BQ,Bg,, .. .,Bn,cl,CQ,Cg, .
Ready(start_D;);

,Cm:

when take_loop_< loop_name >,
end_body_< loop_name >,
Cl, 02, 03, ceey Cmi
Ready(start_D;);

when start_D;:
< code in D; >
Ready(y(D;, D;));

The first when block triggers D; on the first it-
eration through the loop. The second when block
does not trigger on the first iteration because of the
end_body_< loop_name >. It triggers D; in the sec-
ond and subsequent iterations when the blocks within
the loop that it depends on (C;) are completed. The
B;s are “consumed” when the first when block 1s fired
and so it cannot be triggered on subsequent itera-
tions.

To handle the problem arising from the pos-
sibility of multiple messages from different itera-
tions being available at the same time, we at-
tach a reference number to each condition vari-
able and message entry. This is done by maintain-
ing a single counter called refnum which is incre-
mented every time any loop body is iterated (when
Ready(end_body_< loop_name >) is executed). Ev-
ery Ready and expect statement is also modified to
include the current reference number as a parameter.

IF statements are handled analogously. The de-
tails are not included here due to lack of space.

11

8 Related Research

Numerous efforts have been undertaken recently
to compile languages based on data parallelism to
MIMD machines. Many of these efforts explicitly
address the problem of generating efficient commu-
nication. Typically, this problem is attacked on a
couple of orthogonal fronts: (1) generating efficient
communication (often by attempting to minimize the
amount of communication performed), and (2) at-
tempting to schedule communication so that it over-
laps with computation. In our compiler, we will profit
by improvements in the former category but our work
deals only with the latter. What distinguishes our
work is that the order in which these tasks are per-
formed is determined at run-time according to our
adaptive schedule. We know of no other machine-
independent run-time system that offers the asyn-
chronous, message-driven virtual machine to which
we compile.

[Koe91], for example, describes the generation of
code for performing communication for distributed
arrays in the Kali language. In that paper, mention
is made of the fact that interleaving communication
and computation can be done to improve efficiency.
However, the Kali compiler must schedule its receive
statements statically whereas our schedule is able to
be dynamically determined because of our underly-
ing message-driven virtual machine. Some other ex-
amples of projects in which efforts are made to over-
lap communication and computation include Fortran
D [HKT92] and the Crystallizing Fortran Project
[LCO1]. All of these efforts must rely on statically
scheduling program tasks.

Of course, the benefits of message-driven execu-
tion extend to the entire program (not just to commu-
nication/computation overlap) and serve to simplify
the entire scheduling task. A comparable approach,
known as the static macro-dataflow model of paral-
lel computation, was employed in [Sar89]. This the-
sis describes the execution of a parallel program as
the execution of units of computation called macro-
actors. These macro-actors are similar to our when
blocks—they are executed when they are “ready”, and
once initiated they run to completion. However, the
run-time scheduler in this scheme is also responsi-
ble for creating the macro-actors once their control
dependences have been met. In our case, a chare
contains the entire program for a processor and the
scheduler simply “awakens” it at appropriate entry
points (when blocks). Furthermore, [Sar89] states
that their scheduler is not designed to adaptively
overlap communication with computation.

9 Conclusions

We have shown the feasibility of leveraging an asyn-
chronous message-driven execution model to derive
dynamic adaptive schedules of execution threads in
support of a data parallel propgramming language.
We have also given an algorithm that uses an anno-
tated data dependence graph to produce such sched-
ules in the form of code in the Dagger notation, which
can be directly implemented on parallel machines.
Dagger turns out to be an invaluable substrate for
this problem, obviating the need to deal with many
nitty-gritty details of synchronization. Running on
top of Charm, it provides an easy path to a portable
implementation of DP running on a variety of paral-
lel machines.

The method we describe leaves open many op-
timizations that can be performed to reduce the
scheduling overhead incurred. These include elimina-
tion of redundant dependences in certain when blocks,
a reduction in the number of condition variables used,
etc. Another avenue of future research involves relax-
ing the local synchronization done at the end of each
loop body. This will allow different components of
the loop body to be executing different iterations. We
plan to explore these opportunities as well as carry
out a full-fledged implementation of DP and its per-
formance evaluation.

References
[Cha92] Parallel Programming Laboratory, Univer-
sity of Illinois Department of Computer Sci-
ence, Urbana, Illinois. The CHARM(3.0)
Programming Language Manual, December
1992.

[Gur93] A. Gursoy. Dagger: Combining the benefits
of synchronous and asynchronous commu-
nication styles. Submitted to 1993 Inter-
national Conference on Parallel Processing,
1993.

[Hig92] High Performance Fortran Forum. High
Performance Fortran Language Specifica-
tion (Draft), 1.0 edition, September 1992.
[HKT92] S. Hiranandani, K. Kennedy, , and
C. Tseng. Compiler support for machine-
independent parallel programming in For-
tran D. 1In J. Saltz and P. Mehrotra,
editors, Languages, Compilers and Run-
Time Environments for Distributed Mem-

12

[Kal90]

[Koe91]

[LC91]

[Sar89]

ory Machines, pages 139-176. Elsevier Sci-
ence Publishers B.V. 1992.

L.V. Kale. The Chare Kernel parallel pro-
gramming language and system. In Pro-
ceedings of the International Conference on
Parallel Processing, volume 11, pages 17-25,
August 1990.

C. Koelbel. Compile-time generation of
regular communications patterns. In Pro-
ceedings of Supercomputing ’91, November
1991. Analyzes data distribution and access
patterns for distributed data.

Jingke Li and Marina Chen. Compiling
communication-efficient programs for mas-
sively parallel machines. IEEE Transac-
tions on Parallel and Distributed Systems,

2(3):361-375, July 1991.

V. Sarkar. Partitioning and Scheduling
Parallel Programs for Erecution on Multi-
processors. The MIT Press, 1989.

/* Store Anew into A */
L1: CopyArr2D(A, Anew)
L2: Tmpl «— 0

/* Up Shift and Add */

L3: CopyRow(Umsg — Array, A, u_edge)
L4: SendMsg(u_neighbor, Umsg)

L5: RecvMsg(Dtmp2)

L6: Utmpl — LocalShift(A,1,-1)

L7: CopyRow(Utmpl, Dtmp2, d_edge)
L8: Tmpl — Tmpl 4+ Utmpl

/* Down Shift and Add */

L9: CopyRow(Dmsg — Array, A, d_edge)
L10: SendMsg(d_neighbor, Dmsg)

L11: RecvMsg(Utmp?2)

L12: Dtmpl — LocalShift(A,1,1)

L13: CopyRow(Dtmpl, Utmp2, u_edge)
L14: Tmpl «— Tmpl + Dtmpl

/* Left Shift */

L15: CopyColumn(Lmsg — Array, A, l_edge)
L16: SendMsg(l_neighbor, Lmsg)

L17: RecvMsg(Rtmp?2)

L18: Ltmpl «— LocalShift(A,2,-1)

L19: CopyColumn(Ltmpl, Rtmp2, r_edge)

/* Right Shift */

L20: CopyColumn(Rmsg — Array, A, r_edge)
L21: SendMsg(r_neighbor, Rmsg)

L22: RecvMsg(Ltmp?2)

L23: Rtmpl «— LocalShift(A,2,1)

L24: CopyColumn(Rtmpl, Ltmp2, 1_edge)

/* Both left and right have arrived */
/* so scale by ¢ and add them. */
L25: Tmp2 — ¢ * (Ltmpl + Rtmpl)

/* Finish the computation of Anew */
L26: Anew «— (1/(242*c)) * (Tmpl + Tmp2)

Figure 2: Intermediate code for Jacobi iteration

13

START

Send Up,Down
Left,Right

LocalShift
U,D, L, R

A = Anew

Copy D row||Copy U row|| Copy L col| | Copy R col
message message message message
Scale
and Add
Compute
Anew

Figure 3: The Jacobi iteration dependence graph

Dag Chare Jacobi {

CONDVAR both_left_and_right;

entry recv_up,recv_down,recv_left,recv_right;

init: {
/* Store Anew into A */
CopyArrSec(A, Anew);
Tmpl <-- 0;
/* Begin shifts--send boundary for each */
CopyArrSec (Umsg-->Array, UBoundary(A));
SendMsg (u_neighbor, Unsg) ;
CopyArrSec(Dmsg-->Array, DBoundary(4));
SendMsg (d_neighbor, Dmsg) ;
CopyArrSec(Lmsg-->Array, LBoundary(A));
SendMsg (1_neighbor, Lmsg);
CopyArrSec (Rmsg-->Array, RBoundary(4));
SendMsg (r_neighbor, Rmsg);
/* Expect four shift messages */
expect(recv_up); expect(recv_down);
expect(recv_left); expect(recv_right); }

when recv_up: {

tmpl = Compute Local M AX (X)
Send tmpl to global M AX
Recetve back global MAX — k
Send Ato SORT routine
Recewe sorted array — Tmp2
B —Tmp2+ D

C—Alk

Figure 5: Intermediate code for code using MAX and
SORT

/* Recv message, finish shift Up and add */

RecvMsg (Dtmp) ;
Utmp = LocalShift(A,up);
CopyArrSec(Utmp, Dtmp, u_edge);
Twpl <-- Tmpl + Utmp; }

when recv_down: {

/* Recv message, finish shift Down and add */

RecvlMsg (Utmp) ;
Dtmp = LocalShift(A,down);
CopyArrSec(Dtmp, Utmp, d_edge);
Tmpl <-- Tmpl + Dtmp; }
when recv_left: {
/* Recv message, finish shift Left */
RecvMsg (Rtmp) ;
Ltmp = LocalShift(A,left);
CopyArrSec(Ltmp, Rtmp, 1_edge); }
when recv_right: {
/* Recv message, finish shift Right */
RecvMsg(Ltmp) ;
Rtmp = LocalShift(A,right);
CopyArrSec(Rtmp, Ltmp, r_edge); }
when recv_left, recv_right: {
/* Both left and right have arrived-- */
/* scale by ¢ and add them. */
Tmp2 <-- ¢ * (Ltmp + Rtmp);
Ready(both_left_and_right); }

when recv_up, recv_down, both_left_and_right: {

/* Finish the computation of Anew */
Anew <-- (1/(2+2%c)) * (Tmpl + Tmp2); }

Figure 4: Dagger program outline for the Jacobi it-
eration example

14

START

Compute
A

— T~

Send A
to SORT

tmpl =
LocalMAX

Send tmpl
to MAX

Tmp2 + D

C=A/k

Figure 6: The data dependence graph for the MAX
and SORT example

START

X =

merge_DDG nodes(v) { IFi<n
if (node_type(v) == CIRCLE) X =Y
new_block(v) B
else if ((n_predecessors(v) == 1) ENDIF
if (node_type(first_pred(v)) != CIRCLE) A =X
merge_into_pred(v,first_pred(v)) -
else
new_block(v)
else if (++visit_count(v) != n_pred(v))
return
else if (all_predecessors_same(v))
merge_into_pred(v,first_pred(v))

Figure 10: Code using multiple definitions of a vari-
able with corresponding DDG

else
neW_block(V) when Block_0 : {
for all w e child(v) X = 1;
merge_DDG_nOdeS(W) if (i < n) Ready(take_branch);
} else Ready(dont_take_branch); }
when take_branch : {
X =Y;
Ready(Block_2); }
Figure 7: DDG node-merging for straight-line code when dont_take_branch : {
Ready(Block_2); }
when Block_2 : {
A =X;
Ready(Block_3); }
Figure 11: Dagger program example for multiple def-
initions
L1: when Block_0 : {
L2: X =1;
S1| A= .. o i o)
L4: if (i < n) Ready(take_branch);
L5: else Ready(dont_take_branch); }
L6: when take_branch : {
S2[X=4.. L7: =X
L8: i=1i+1;
L9: Ready(Block_2); }
L10: when Block_2 : {
Li1: if (i < n) Ready(take_branch);
S3 Y = A + X L12: else Ready(dont_take_branch); }
L13: when dont_take_branch : {
L14: Ready(Block_2); }
L15: when Block_2 : {
. L16: A =X;
Figure 9: Redundant dependence arcs L17: Ready (Block_3); }

Figure 12: (Incorrect) Dagger program for multiple
definitions with loop

15

