Unsteady fluid flow calculations using a machine independent par-
allel programming environment *

A. Gursoy®, L.V. Kale®, and S.P. Vanka®

*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana

IL 61801, USA

5Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-

Champaign, Urbana IL 61801, USA

Abstract

A portable parallel implementation of a fractional step method to solve 3D unsteady
incompressible Navier-Stokes equations on MIMD machines is described. The context
currently considered involves uniform grid spacing in one of the directions. A parallel
decomposition strategy and its implementation on a portable parallel programming system
(Charm) is described. Some optimizations including one that reduces the cost of parallel
convergence tests are described. Performance results for calculation of flow in a driven
cavity on different parallel computers are presented.

1. INTRODUCTION

The performance of MIMD multiprocessor systems has increased significantly in recent
years. Many hope that massively parallel systems will be used routinely to solve difficult,
computationally intensive scientific applications. However, programming and portability
issues still pose a problem which could limit the expected usage of these machines.

Computational Fluid Dynamics (CFD) is one of the most computationally demanding
application areas. Until recently, only the supercomputers such as a CRAY have been
providing the required computing power. Powerful vectorizing compilers facilitated the
task of programming on these machines. More recently, these supercomputers evolved into
multiple vector processors systems delivering four to eight times more performance than
their uniprocessor versions. With the availability of low-cost, high-performance nonshared
memory parallel machines including intel iPSC and NCUBE hypercubes, there has been
growing interest in the scientific community to use these machines [1]. Programming on
these machines is obviously more difficult than sequential programming. It is necessary
to simplify and support the task of writing parallel applications, and also to ensure that
the investment in parallel software is protected through architectural advances and new
generation of parallel machines.

1This work was supported in part by the NSF grant CCR-90-07195 and NASA-NAG 3-1208

In this paper, we will discuss a machine independent parallel implementation of 3D
unsteady incompressible flows on MIMD machines. Machine independence is achieved by
using Charm parallel programming environment [2]. Charm is a runtime support system
which allows machine independent parallel programming across MIMD machines. It pro-
vides an explicit parallel language which uses C as its base language. It hides the details of
underlying machine architecture, communication and process management from the user.
It has already been implemented on various shared and nonshared memory machines in-
cluding Sequent Symmetry, Alliant FX/8, intel’s iPSC/2 and iPSC/860, NCUBE/2, and
is currently being implemented on a network of Sun workstations.

In section 2 we will discuss briefly the relevant Charm language features. The CFD
problem and its parallel implementation will be described in sections 3 and 4, followed by
the performance results.

2. CHARM LANGUAGE

A Charm program consists of chare definitions, message definitions, and declarations of
specifically shared objects in addition to regular C language constructs (except global vari-
ables). A chare is a medium grained process which can dynamically create other chares,
send messages to other chares, and share information through specifically shared objects.
The Charm system takes the responsibility of scheduling chares, dynamic load balancing,
resource management, and efficient machine specific implementation of specifically shared
objects on different architectures.

A chare definition consists of local variable declarations, entry-point definitions and
private function definitions as illustrated in Figure 1. Local variables of a chare are shared
among the chare’s entry-points and private functions. Private functions are not visible to
other chares, and can be called only inside the owner chare. However, C functions that
are declared outside of chares are visible to any chare. Entry-point definitions start with
an entry name, a message name, followed by a block of C statements and Charm system
calls. Some of the important Charm system calls are:

CreateChare(chare Name, entryPoint, message)
This call is used to create an instance of a chare named as chareName. As all other
Charm system calls, CreateChare is a non-blocking call, that is, it immediately
returns. Eventually as the system creates an instance of chare chareName, it starts
to execute the entryPoint with the message message.

SendMsg(charelD, entryPoint, message)
This call deposits message to be sent to the entryPoint of chare instance charelD.
chareIDrepresents an instance of a chare. It is obtained by a system call MyChareID(),
and it may be passed to other chares in messages.

The runtime system is message driven. It repeatedly selects one of the available
messages from a pool of messages in accordance with a user selected queueing strategy,
restores the context of the chare to which it is directed, and initiates the execution of the
code at the entry point.

A BranchOffice chare (BOC) is a form of chare that is replicated on all processors.
An instance of BOC has a branch on every processor. All the branches have the same
ID. A BOC definition is similar to a chare definition except it contains public functions
which can be called by other chares. BOC’s are useful for some computations such as

chare chare-name {
local variable declarations

entry EP1 : (message MSGTYPE *msgptr) {C code block}

entry EPn : (message MSGTYPE *msgptr) {C code-block}
private function-1() {C code block}

private function-m() {C code block }

Figure 1: Chare Definition

reduction operations (i.e., collecting some information locally on each processor, and then
combining it across processors), as well as for expressing static load balancing.

In addition to messages and BOC’s, Charm provides some other ways of information
sharing:

readonly A readonly variable is initialized at the beginning of a Charm program, and
its value can be accessed by ReadValue call from any part of the program.

write-once A write-once variable is created and initialized at any point of the execution
(only once). The system provides a global ID for the write-once variable, and this
ID is used to access its value on any processor.

dynamic table A dynamic table is a set of entries with key and data fields. A number
of asynchronous access and update calls are allowed on table entries.

The Charm system provides other information sharing mechanisms such as monotonic
and accumulator variables. Details about these features can be found in [6]. It also
provides a sophisticated module system that facilitates reuse, and large-scale programming
for parallel software.

3. PROBLEM

3.1. Governing Equations and Numerical Method

We consider three dimensional, unsteady incompressible flows governed by the following
equations:

Ou O 0 0 _ 0p 1,

s + 8_a:(uu) + @(u”) + a(uw) i + Rev u (1)
v 0 0 0 _ O6p 1,

ot + Oz (vo) + (9y(m)) + 8z(vw) T Oy + ReV K (2)
Ow 0 0 0 _ 0p 1,

E + 8_w(uw) + 8_y(vw) + E(ww) - 8z + Rev w (3)

Ou Ov Ow
Oz i Oy + 0z 0)
where u, v, and w are non-dimensional velocities, p is non-dimensional pressure, and Re
is the Reynolds number.

These equations are discretized on a staggered grid using the central difference scheme
of Harlow-Welch [3]. A fractional step method [4] is used for the time integration. The
resulting discretized equations are:

- g)
VRt L (6
- gH 7
V%Z-i(%—l-g—z—l-g—f) (8)
W = Atg—z (9)
vl =4 — Atg—z (10)
wt = — At% (11)
where
H? = — (%(uu) + 8%(1“;) + %(uw)) + évzu (12)
HF' = — <%(uv) + %(vv) + %(vw)) + %V% (13)
H = — (w0 + pou) + () + oV (14)

There are two distinct patterns of computation in these equations: the first one deals
with the evaluation of the intermediate velocity fields and the second one is the calculation
of the pressure field. At time-step n, intermediate velocities 4, v, and w are calculated by
using velocity values from previous time-steps. Next, a Poisson equation is solved for the
pressure field, p. For the current problem, we assumed that the grid is uniform along the
z direction. Therefore, the Poisson equation is solved by applying FFT in that direction.
The resulting penta-diagonal equations are solved with Stone’s method [5] (a strongly
implicit iterative method). Finally, the intermediate velocity fields are corrected using
the pressure values. Algorithm-1 shows the basic flow of this computation.

Algorithm-1
Basic Flow of Sequential Algorithm

1. Initialization
2. Time-stepping loop

a

b

—_~

compute intermediate velocities

—_~

calculate the right-hand side of the pressure equation

c) FFT along the z direction

N~

inverse FFT along 2

)
)
)
d) solve for pressure in all xy-planes with Stone’s method
o
)

—_—~

f

correct velocities

Figure 2: Decomposition of the computational domain

4. PARALLEL IMPLEMENTATION

In this section, we will discuss parallelization of the above algorithm. A natural way
to implement parallel solution of partial differential equations is to divide the computa-
tional domain into several subdomains, and distribute them to the processors. In most
finite difference applications, a static and rectangular domain partitioning is implied by
the inter-grid dependencies (e.g., the dependencies in a five-point stencil etc). A de-
composition scheme must address some computational issues such as load balancing and
minimization of communication cost. The optimum decomposition scheme depends on
machine and problem characteristics such as the number of processors, inter-grid depen-
dencies, numerical solution techniques, etc.

We chose to partition the computational domain into n x m rectangular boxes which
extend along the z direction, where n x m is equal to the number of processors. In
Figure 2-a, this 2D partitioning scheme is illustrated for the four processors case. The
grid points along the z direction belong to one processor which makes this partitioning
scheme more suitable than other partitioning schemes as explained in following sections.

Parallel implementation of Algorithm-1 requires communication at some points. The
parallel version, Algorithm-2, shows the points where communication is necessary. The
sequential one contains two major phases as described previously: momentum equations
and the pressure equation. Boundary values for intermediate and modified velocity vari-
ables are exchanged after their calculation (Algorithm-2, steps b and h). Since the grid
points along the z direction are local to a processor, no communication takes place in that
direction.

The solution of the pressure equation, steps d through f in Algorithm-2, involves FFT
and solution of penta-diagonal linear systems. One of the advantages of 2D partitioning
over 3D appears in the FFT phase. Each FFT along the z direction is a local operation.

Algorithm 2
Basic Flow of Parallel Algorithm

1. Initialization
2. Time-stepping loop

) compute intermediate velocities
b)
(c) calculate the right-hand side of pressure equation
(d) FFT along z direction

(e)

(a
(

exchange intermediate velocity boundary values

e) Pressure loop

i. solve local subdomain (all xy-planes)

1. exchange boundary values for pressure

o

1. test global convergence

=

i
iv. if all processors converged then exit Pressure loop

(f) inverse FFT along z

(g) correct velocities

(h) exchange boundary values of corrected velocities

Figure 3: Dynamic messages

Each processor applies FFT to its own data which results in full parallelism over the
computation domain. FFT removes the inter-grid dependencies along the z direction
which results in n, independent xy-planes to be solved (each of which is a penta-diagonal
linear system), where n, is the number of grid points in the z direction, as illustrated in
Figure 2-b. Due to the 2D partitioning, an xy-plane is spread across processors. These xy-
planes are solved iteratively with Jacobi-like relaxation across processors. The local part
of an xy-plane is solved with Stone’s method. Each processor first solves for local points
and exchanges information at boundaries. The global convergence is then tested. This
process continues until the desired global convergence is reached. The xy-plane solving
phase involves two kinds of communication patterns: nearest neighbor communication
for pressure values, and a spanning tree communication for global convergence check.
For a particular plane, if at least one of the processors reports non-convergence, then all
the processors iterate one more level for that plane. Each processor calculates its local
convergence. When all of its children processors report their convergence information, the
combined information is propagated to the parent processor. Finally the root processor
broadcasts the result to other processors.

There are n, planes to be solved. Iterations last until the last plane converges. In
order to reduce both computation and communication cost, the converged planes are
dynamically eliminated from the computation. In the first iteration, all planes are in
the computation list. Therefore boundary values for all xy-planes are exchanged. After
every iteration, xy-planes that are globally converged are not solved locally, and boundary
messages contain only boundary values from non-converged planes as shown in Figure 3.
The load is also automatically balanced among processors with a 2D partitioning scheme,
because each processor owns an equal sized piece of every xy-plane. After all planes have
converged, inverse FF'T is applied locally to get the pressure values. Then the velocities
are corrected, and new values of velocities are exchanged to be used in next time step.

4.1. Initial Results

In this part, initial performance results for the driven cavity problem will be discussed.
The problem domain involves a unit cube, and the flow is driven by moving the top wall.
The performance results are gathered from runs with Reynolds number set to 100 for 50
time steps. Table 1 shows the performance results on a shared memory machine, Sequent
Symmetry, for fixed domain size. Shared memory results are satisfactory. The speedup
is below the linear speedup because as the number of processors increase, number of
iterations to solve the pressure equation increases due to the relative weakness of Jacobi-
like relaxation. The Mflop rate is almost doubled as the number of processors doubled.

Table 2 and Table 3 show the performance on two nonshared memory machines:
iPSC/860, and NCUBE/2. The subdomain size is kept fixed in nonshared memory runs
because the number of processors is varying over a wide range. As the physical size of the
cavity is still fixed as a unit cube, this leads to a finer grid. The execution time increases
as the number of processors increases despite the fact that the subdomain size is fixed.
This i1s due to the slower rate of convergence of the Poisson solver. However, the Mflop
rate is perhaps a better indicator for the effect of parallelization strategy. The Mflop rate
is tripled as the number of processors is quadrupled as shown in the tables.

Table 1

Performance of non-adaptive scheme on shared memory machines
Sequence Symmetry

#PE Domain Subdomain time(sec) Mflops
1 32x32x33 32x32x33 732 0.11
4 32x32x33 16x16x33 205 0.42
8 32x32x33 8x16x33 108 0.80
16 32x32x33 8x8x33 57 1.53
Table 2
Performance of non-adaptive scheme on nonshared memory machines
#PE Domain Subdomain dt time(msec) Mflops
NCUBE/2
4 16x16x33 8x8x33 0.006 36058 3.05
16 32x32x33 8x8x33 0.005 47487 9.46
64 64x64x33 8x8x33 0.002 58106 31.21
256 128x128x33 8x8x33 0.0012 73342 96.98
iPSC/860
4 16x16x33 8x8x33 0.006 10611 10.35
16 32x32x33 8x8x33 0.005 16709 26.89
64 64x64x33 8x8x33 0.003 21481 84.44
Table 3
Performance of sequential algorithm on nonshared memory machines
Machine Domain dt time(msec) Mflops
NCUBE 16x16x33 0.005 105380 0.96
1860 16x16x33 0.005 25498 3.96

4.2. Improved algorithm

Some further improvements in the performance can be obtained by restructuring some
communication strategies. Remember that there are two patterns of communication in
the algorithm: nearest neighbor, and the tree communication for checking convergence. In
hypercubes the cost of nearest neighbor communication is O(1), whereas the cost spanning
tree reduction is O(logn) where n is the number of processors. Therefore treewise reduc-
tion might be causing the performance degradation significantly. We inspected execution
times of different phases of the algorithm, and we observed that there is considerable idle
time in the reduction phase. Note that, the convergence test is performed after each iter-
ation. To reduce cost of this phase, the number of convergence tests should be reduced.
A close inspection of the iteration counts versus timesteps, Figure 4-a, shows that the
number of iterations for a xy-plane changes only gradually from one step to the next one.
Therefore an adaptive convergence test scheme is applied for consecutive time steps, as
described below.

Let n; denote the number of iterations for xy-plane 7 recorded from the previous time

Figure 4: ITteration count, and Mflops

Table 4
Performance of adaptive scheme on nonshared memory machines
#PE Domain Subdomain dt time(msec) Mflops
NCUBE/2
4 16x16x33 8x8x33 0.006 35993 3.04
16 32x32x33 8x8x33 0.005 44732 9.82
64 64x64x33 8x8x33 0.002 48564 36.18
256 128x128x33 8x8x33 0.0012 48594 144.02
iPSC/860
4 16x16x33 8x8x33 0.006 10436 10.48
16 32x32x33 8x8x33 0.005 14890 29.49
64 64x64x33 8x8x33 0.003 16676 105.37

step. Based on the correlation in Figure 4-a, we can predict the number of iterations
in this time step to be close to n;. To make sure that the algorithm adapts downwards
(as well as upwards), that is even when the number of iterations required decreases in
succeeding time steps, we choose max(n; — 1,1) as the predicted number of iterations
for xy-plane i. The new algorithm performs n,,,, — 1 iterations without any convergence
check, where 7,4, is the largest among m;. At the end of j** iteration of this phase,
computation and communication is stopped for any xy-plane for which max(n; — 1,1) is
equal to j. After m,,., — 1 iterations, convergence tests for all xy-planes are performed
in a single reduction operation. Iterations for xy-planes that are not converged yet are
continued with the convergence test as in the base algorithm above.

In Table 4, performance results of the improved version on nonshared memory ma-
chines are listed. It is seen that this algorithm performs better than the non-adaptive
case. For example, when the number of processors increases from 64 processors to 256 on
NCUBE/2, the Mflop rate is tripled in the non-adaptive version whereas it is quadrupled
in the adaptive version, which is optimal. The time increase from 4 to 16 to 64 proces-
sors 1s probably accounted for by the increase in the amount of neighbor communication.
With 4 processors, each one communicates with 2 neighbors. With 16, four processors
communicate with four neighbors, while others communicate with fewer. With 64, most
of them have four neighbors. Comparing Table 2 and Table 4, we notice that the impact
of the new scheme increases with the number of processors. This is as expected, because
the time complexity of reduction increases with the number of processors. In Figure 4-b,
performance difference between these two schemes is depicted.

4.3. Pipelining

A further improvement for this algorithm is the pipelined solution of the xy-planes. The
algorithm described above exchanges the boundary values of all non-converged xy-planes.
After the exchange is complete, it starts to solve those xy-planes. However, the time
spent in computation and communication can be overlapped by solving xy-planes in a
pipelined fashion (note that xy-planes can be solved independent of each other). The

Figure 5: Pipelined Execution

pipelined execution can be performed as follows: First, xy-planes are divided into groups.
As soon as a group of planes is solved, the boundary values from this group is sent while
simultaneously initiating computations for the next group of xy-planes (Figure 5-a). By
the time of next iteration, boundary values of the first group would have arrived, and the
processor can perform computations without waiting. The performance of this approach
depends on the work distribution (i.e., the amount of computation necessary to solve xy-
planes), and the choice of xy-planes in the concurrent groups. In our case, however, the
empirical result shows (Figure 5-b) that the work load of the first few planes is significant,
while the other planes converge rapidly. Therefore, for this particular problem, pipelined
execution does not provide significant performance gain. The distribution of workload for
this problem also implies that a 3D partitioning will suffer from load balancing.

5. CONCLUSION

In this paper, we have described the parallelization of a fractional step method for solving
unsteady Navier-Stokes equations in the context of a 3D grid that is uniformly spaced in
one dimension. A 2D decomposition scheme was used. In addition to rendering the FFT
a completely local operation, this decomposition also induces a uniform load distribution.
Although a 3D decomposition may reduce the communication cost somewhat, we believe
that the cost of load imbalance and the parallelization of the FFT far outweigh the
reductions in the communication cost.

It was found that parallel convergence tests during the Poisson solver constitute a
significant portion of the elapsed time. An adaptive technique for reducing the num-
ber of these expensive tests was developed and was shown to improve the performance
significantly for systems with a large number of processors.

The Charm parallel programming system facilitated development of this code by pro-
viding portability, so that we could focus on the algorithm expression without getting
involved in machine specific details. The program once developed ran on different parallel
machines without change. The full flexibility of this system was not used in the current
implementation. Because the system is message driven, it provides many opportunities for
overlapping computation and communication. This can be exploited by overlapping con-
vergence tests and iterative computations,for example. Other algorithmic improvements
in future may include replacing the block Jacobi with a red-black Gauss-seidel iterative
scheme.

6. REFERENCES

[1] M.E.Braaten, “Application of parallel computing in computational fluid dynamics:
A review”, GE Corporate R&D report 89CRD121, July 1989.

[2] W.Fenton, B.Ramkumar, V.A.Salatore, A.B.Sinha, L.V.Kale, “Supporting machine
independent programming on diverse parallel architectures”, Proceedings of the In-
ternational Conference on Parallel Processing, Vol. 11, Aug 1991, pp.193-201.

[3] F.H.Harlow, J.E.Welch, “Numerical calculation of time dependent viscous incom-
pressible flow of fluid with free surface”, Phys. of Fluids, Vol. 8, No. 112, 1965,
pp-2182-2189.

[4] J.Kim, P.Moin, “Application of a fractional step method to incompressible Navier-
Stokes equations”, J.Comp.Phys, Vol. 59, 1985, pp.308-323.

[6] H.L.Stone, “Iterative solution of implicit approximations of multidimensional partial
differential equations”, STAM J.Numer.Anal, Vol. 5, No. 3, September 1968, pp.530-
558.

[6] The CHARM(3.0) programming language manual, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL, 1992.

