Supporting Machine Independent Parallel
Programming on Diverse Architectures

W. Fenton B. Ramkumar V. A. Saletore* A. B. Sinha
L. V. Kalé

Department of Computer Science,
University Of Illinois at Urbana—Champaign,
Urbana, Illinois 61801

Abstract

The Chare kernel is a run time support system that permits users to write machine inde-
pendent parallel programs on MIMD multiprocessors without losing efficiency. It supports an
explicitly parallel language which helps control the complexity of parallel program design by
imposing a separation of concerns between the user program and the system. The programmer
is responsible for the dynamic creation of processes and exchanging messages between processes.
The kernel assumes responsibility for when and where to execute the processes, dynamic load
balancing, and other “low” level features. The language also provides machine-independent
abstractions for information sharing which are implemented differently on different types of
machines.

The language has been implemented on both shared and nonshared memory machines includ-
ing Sequent Balance and Symmetry, Encore Multimax, Alliant FX/8, Intel iPSC/2, iPSC/860
and NCUBE/2, and is being ported to NUMA (Non Uniform Memory Access) machines like the
BBN TC2000. It is also being ported to a network of Sun workstations. We discuss the salient
features of the implementation of the kernel on the three different types of architectures.

1 Introduction

The Chare kernel is a runtime system that supports an explicitly parallel language. It was designed
with two major objectives. First, it should allow machine independent parallel programming over
the class of MIMD machines, without losing efficiency. Second, it should help control the complexity
of parallel programming. The language is suitable for programming both shared and nonshared
memory machines. The Chare kernel creates a division of labor between the programmer and the
system, wherein the programmer is responsible for the creation of parallel sub-computations, while

*Currently at Oregon State University

the system decides when and where to execute them. In addition, the language provides machine-
independent abstractions and features (particularly those for “specific information sharing modes”)
that are implemented differently but efficiently on different types of machines.

Care has been taken to ensure that the abstractions are not overly specialized or narrow. In this
sense, the Chare kernel represents the lowest level at which it is possible to abstract over resource
management and machine-dependent expression. In addition to serving as a direct application
programming language, the Chare kernel can serve as a “back-end” for other explictly or implicitly
parallel higher-level languages, parallelizing compilers, and domain-specific application packages.

The language has been implemented on many shared memory machines (Sequent balance,
Symmetry, Encore Multimax, Alliant FX/8), and nonshared memory machines (Intel’s iPSC/2,
iPSC/860 and NCUBE/2), and is being implemented on NUMA (Non Uniform Memory Access)
machines like BBN TC2000 and a network of SUN workstations.

In this paper we describe how this machine independent language is supported efliciently on
these different architectures. We first give a brief description of the important language features.
The implementation techniques and algorithms used for supporting each one these features on
different classes of architectures constitute the rest of the paper.

2 Language Features

The basic entity in a Chare kernel program is a chare (old English for chore or a small task). It is a
medium- grained process that can dynamically create other chares, send messages to other chares,
and share information with other chares using specific information sharing primitives (described
below). The kernel is free to schedule the chares on any processor it chooses to use. The language
provides for another type of chare, called a branch office chare (BOC for brevity). This is discussed
below in Section 2.2. A Chare kernel program consists of chare definitions, BOC definitions,
declarations of specifically shared objects, function definitions (in the language C), and associated
type definitions.

2.1 Chares and Messages

A chare definition (such as the one shown in Figure 1) consists of the name of the chare type, its
local variables, followed by a sequence of entry point definitions. Each entry point definition begins
with a unique label, an associated message declaration, and a block of C-code that deals with this
message. This code may access the local variables of the chare. The code may contain the following
system calls.

The call CreateChare(chare Name,entryPoint, message) is used for creating an instance of a
chare named chare Name, and directs the system to begin its execution with the given message at
the given entryPoint. This call returns immediately; sometime in the future the system will actually
create and schedule the new chare. The call MyCharelD returns the chare-ID of the calling chare;
this id can be sent in messages. The call SendMsg(charelD, entryPoint, message) deposits the
message to be sent to the given entry point of the chare with the given charelD. In addition, the

BranchOffice Examplel {
manager {
/* Local Variables */
entry EPM1 : (message MESSAGE TYPE1l #*msg)
C-code-block

entry EPMX : (message MESSAGE_TYPEx *msg)
C-code-block

FunctionM1(..)
C-code-block

FunctionMZ(..)
C-code-block
}
branch {
/* Local Variables */
entry EPB1 : (message MESSAGE_TYPE1l *msg)
C-code-block

entry EPBY : (message MESSAGE_TYPEy *msg)
C-code-block

FunctionB1(..)
C-code-block

FunctionBZ(..)
C-code-block

Figure 1: Syntax of a Branch Office Chare

kernel provides functions to allocate and free messages and storage, to terminate the execution of
the calling chare, and for signaling termination of the whole parallel program.

Every Chare kernel program must have a main chare definition. The main chare definition
is like any other chare definition except that it must contain an Init entry point, in addition to
other application specific entry points. Program execution begins at the Init entry point. BOC
initialization (see Section 3.1) and the creation of specifically shared objects (see Section 2.3) is
performed here.

2.2 Branch Office Chares

Every BOC consists of a manager chare and a branch chare on every processor (see Figure 2 for
a sample definition). A branch chare’s definition is similar to the regular chare definition, except
that the functions defined in a branch can be called by other chares running on the same processor.
These functions as well as the code at the entry points may use the SendMsgBranch(entry, msg,
pe) call to send a message to the instance of the calling BOC on the given processor (numbered pe).

BranchOffice Examplel {
manager {
/* Local Variables */
entry EPM1 : (message MESSAGE TYPE1l #*msg)
C-code-block

entry EPMX : (message MESSAGE_TYPEx *msg)
C-code-block

FunctionM1(..)
C-code-block

FunctionMZ(..)
C-code-block
}
branch {
/* Local Variables */
entry EPB1 : (message MESSAGE_TYPE1l *msg)
C-code-block

entry EPBY : (message MESSAGE_TYPEy *msg)
C-code-block

FunctionB1(..)
C-code-block

FunctionBZ(..)
C-code-block

Figure 2: Syntax of a Branch Office Chare

The main chare interacts with the different manager chares via their respective access functions.

All the branch chares of a BOC have the same ID. This ID is assigned when a BOC instance
is created, and may be passed in messages by other chares. Thus, a BOC instance may be created
in the main chare with the call:

bocID = Create Boc(bocName).
Now, the bocID can be passed in messages to different chares and two chares running on two
different processors, may use the same bocID to access the (functions of the) local representative of
the BOC instance. The BOC representatives on different processors may coordinate information
among themselves using messages (via SendMsgBranch call).

2.3 Specific Information Sharing Abstractions

In addition to messages and BOCs, chares may share information with each other using the following
abstract data types, each designed for a specific mode of information sharing.

A read-only variable is initialized at the In:it entry point and can only be accessed via the call
ReadValue from any other chare. This call simply returns the (fixed) value of the variable. A read
only variable may be a scalar (e.g. integer) , array or a structure.

A write-once variable is created and initialized any time (and from any chare) during the paral-
lel computation. Once created, its value can only be read. The creation is done via a non-blocking
call WriteOnce(dataptr, datasize, entryPoint, CharelD) which immediately returns without any
value. Eventually, the variable is “installed”, and a message containing a unique name assigned
to the new variable is sent to the designated entryPoint of the designated chare. This ID can be
passed to other chares, which can access the variable by calling DerefWriteOnce.

A monotonic variable is global variable that “increases” monotonically in some metric by the
application of an idempotent function. It is used typically in branch-and-bound computations. Its
(approximate) current value can be read by any chare at any time using the call Mono Value, and a
potential new value for it can also be provided by any chare using the call NewValue. The supplied
value replaces the old value if it is “better” than the old value, using a user-supplied comparison
function. It is only guaranteed that the value read from any other chare will be eventually better
or equal to the new value supplied.

Accumulator variables are counters, with one difference. The initial value of an accumulator
must be zero. Accumulator variables have associated with them two functions - an accumulating
function that adds to the counter, and a combining function that combines two counter vari-
ables. An accumulator variable is initialized during initialization of the main chare, and can be
read only once, destructively. It can be modified only via a function Accumulate, which adds a
given value to the accumulator. The destructive read is performed via the (non-blocking) call :
Collect Value(accumulator-name, entryPoint, CharelD) which results in eventual transmission of a
message containing the final value of the accumulator to the named chare. It is easy to think of
the accumulator as an integer to which we want to add other integers from time to time, although
the language allows it to be any type, with any user-defined commutative associative operation.

A dynamic table consists of a set of entries, each with a key part and a data part. Various
asynchronous access and update operations on entries in the table are provided. For example, one
may call Find(key, entryPoint, charelD); The call immediately returns, and eventually a message
containing the data associated with the given key is sent to the specified chare at the specified
entryPoint.

The language description above is necessarily sketchy. See [11, 12] for a complete description of
the language. For the purpose of this paper, we have identified some key features of the language,
so we can elaborate on how they are supported on different architectures.

3 The System Core

Conceptually, the kernel can be viewed as a work pool “manager”. It manages a pool of messages
representing seeds for new chares or messages to existing chares. Each message is destined for
a specified entry point in the program code (see Figure 1), and processing a message involves
executing the code associated with the entry point sequentially without interruption. Once a

message is processed, control returns to the kernel. Thus, the kernel is in a “pick-n-process” loop,
constantly picking messages from the underlying work pool and processing them one by one. The
kernel exits from this loop only when global termination is detected.

In this section, we discuss some of vital functions of the kernel and how their implementation
differs from architecture to architecture. Many of the system functions have been implemented as
branch office chares. So, one of the first tasks of the kernel upon start-up is the initialization of the
system and user-defined BOCs, which is discussed in Section 3.1. In Section 3.2 we describe the
“pick-n-process” loop for each different machine type. The processing of these picked messages is
discussed in Section 3.3. On nonshared memory and NUMA type architectures, it is necessary to
“pack” messages into a contiguous format before transmission. We discuss packing in Section 3.4.

3.1 Branch Office Initialization

The initialization of the BOCs is carried out by making Boclnit calls during the execution of the
code in the Init entry point in the main chare. The processing of these messages is different for
shared memory and nonshared memory architectures, as is shown in Figure 3. On shared memory
machines a separate list of the BOC creation messages is maintained in the work pool to ensure that
the Boclnit messages are processed first. All BocInit messages are created during system start-up
and inserted into this list, and are therefore processed first.

On NUMA type architectures like the BBN, the initialization will be done slightly differently.
During start-up, for each processor, one local copy of the BoclInilt message is created and inserted
in a processor-private BoclInil message list. Fach processor then simply picks messages off its own
private list and processes them. It differs from shared memory machines only in that on NUMA
machines an explicit remote to local copy of the message is carried out during start-up.

On nonshared memory machines, the main node (processor 0), after executing the Init code,
sends one message containing the values of all ReadOnly variables and one message each for every
BOC instance initialized. It then sends any other messages (e.g. a CreateChare message). On the
other nodes in the system these messages may be received out of sequence. Yet all the BOCs and
the readonlys must be installed before any other messages are processed. To accomplish this node
0 sends a message containing the count of the number of initialization messages it sent. When
BoclInil, ReadVar, or InitCount messages arrive at a node, they are processed immediately. Other
messages are buffered at this point to be processed during the pick-n-process loop. The initialization
phase is complete when the InitCount message has been received and the number of initialization
messages remaining to be received is zero.

3.2 The Pick-n-Process Loop

Once initialization is complete, the system enters the the “pick-n-process” loop (see Figure 4). On
shared memory machines, the work pool is implemented using a shared queue. The loop is thus
quite simple; it simply picks up the next available message in the work pool and processes it.

On nonshared memory machines, once again the protocol is a little more complicated. Unlike

Initialization() /* for nonshared memory */
countMsgArrived = FALSE; msgs_left = 0;
while (countMsgArrived == FALSE || msgs_left != 0)
foundMessage = FALSE;
while (not foundMessage)
if (McProbe())
msg-size = ArrivedMsgLength();
message = Allocate(msg-size);
McSyncReceive(msg-size, message);
foundMessage = TRUE;
switch (message->type)
case Boclnit:
Create-and-Initialize-Boc(message->BocNum);
msgs_left-—;
case InitCount:
countMsgArrived = TRUE;
msgs_left + — message->expectedmessages;
case ReadVar:
Initialize-Read-Only-Data(message);
msgs_left-—;
default:
QSEnqueuelMsg(&message) ;

Initialization() /* for shared and NUMA machines */

while (not QSBocQueueEmpty()) /* Boc fn call */
QSDequeueBocMsg(&message); /* Boc fn call */
CreateBranch(message->BocNum) ;

Figure 3: The Initialization procedure for nonshared and shared memory machines.

shared memory machines, it is necessary to explicitly send and receive messages between processors.
Incoming messages need to be periodically received by every node and then inserted into the local
work pool. This is done once every iteration of the loop by the PumpMessages function. The next
available message is picked up for processing. If the work pool is empty, the node tries to ‘pump’
messages repeatedly until a message in the work pool is available. When the work pool is not
empty, the next message in the pool is picked up and processed.

NUMA type architectures are interesting in that it turns out to be more efficient to implement
the pick-n-process loop as a nonshared memory machine. We choose to pretend that explicit sends
and receives are necessary as with nonshared memory machines, but implement the “sends” and
“receives” differently. Each processor will have several arrival queues, typically partitioning all the
processors into sets and mapping each set to one arrival queue. This bounds the overhead of mutual
exclusion and also reduces the number of arrival queues necessary. These queues are “pumped” as
on nonshared memory machines by the local processor. Also, sends and receives are implemented
via “intelligent” block copying, as is explained in Section 3.4. But for these differences, the NUMA

Pick-n-Process() Initialize-System-Bocs();
Initialization();
while (not System-Domne)
message = NULL;
while (message == NULL)
TimerChecks(); /* Boc fn call */
PeriodicChecks() /# Boc fn call */
if (NONSHARED || NUMA)
PumpMessages();
PickNextMessage(&message); /* Boc fn call */
if (NONSHARED || NUMA)
ConditionallyUnpack(&message);
ProcessMessage(message);

ConditionallyUnpack(message) /* for nonshared */
if (message->packid != NULL_PACK_ID)
(UnpackTable[message->packid]) (&message);

ConditionallyUnpack(message) /* for NUMA machines*/
if (message->packid != NULL_PACK_ID)
if (message->type == NewChare)
(PackTable[message->packid]) (&message) ;
(UnpackTable [message->packid]) (&message) ;
else /* message is either ForBoc or ForChare */
(UnpackTable [message->packid]) (&message) ;

Figure 4: The “pick-n-process” loop of the Chare kernel for shared, NUMA type and nonshared
memory machines.

ProcessMessage(msg)
switch (msg->type)
caseNewChare:
DataArea = Alloc-Chare-Data-Area(msg->datasize);
(EntryPointTable[mse->InitEP]) (msg, Dataldrea);
case ForChare:
DataArea = Get-Chare-Data-Area(msg);
(EntryPointTable[msg->ForEP]) (msg, DataArea);
case [ForBoc:
DataArea = BocDataTable[msg->BocNum];
(BocEPTable[msg->ForEP]) (msg, Datalrea);
case Terminate:
CkSendStatistics();
System-Done = TRUE;

Figure 5: The ProcessMessage function of the Chare kernel.

type architecture is more or less viewed as a nonshared memory architecture.

Inside the “pick-n-process” loop, shown in Figure 4, there are two BOC function calls, namely,
PeriodicChecks and TimerChecks. These functions are implemented as BOCs on all three types of
machines. They execute specified functions at periodic time intervals and specific times, respec-
tively.

3.3 Processing Messages

A message picked from the work pool is either a NewChare message, i.e. a message created by a
CreateChare call, a ForChare message, i.e. a message created by a SendMsg call, a ForBoc message,
i.e. a message created by a SendMsgBranch call, or a Terminate message which initiates the global
termination protocol. With the exception of Terminate messages, all messages have an entry point
associated with them.

A translator translates the language described in Section 2 into C. Every entry point and the
code associated with it is translated into a C function. Moreover, the translator generates code
to create two tables of function pointers called EntryPointTable and BocEPTable for chare entry
points and BOC entry points respectively. These tables are indexed by a unique entry point ID
and the function corresponding to that table entry is invoked (see Figure 5).

Upon encountering a NewChare message, the kernel creates the data area associated with the
newly created chare and jumps to the entry point specified in the message. A chare once created
is anchored to the processor it is created on (i.e. all messages for this chare are executed on the
same processor from then on). The ID for any chare is the pair <proclD, data-area-ptr>. ForChare
messages are always sent to entry points of chares with a specified charelD as described in Section
2.1. ForBoc messages are similar to ForChare messages except that the system maintains a table
of branch office data areas indexed by the branch office number.

On shared memory architectures, anchoring of chares provides mutual exclusion on chare and
branch data areas, as multiple messages for the same chare instance cannot execute concurrently.
On nonshared memory machines, the anchoring makes it possible for the kernel to direct the
ForChare messages efficiently to the appropriate processors.

3.4 Conditional Packing

One of the problems that needs addressing when programming nonshared memory machines is that
messages that are transmitted from one processor to another need to be packed in a contiguous
format for transmission, since pointers are generally not valid across processors. This can be costly
when the data structures are complex, for example, large graphs or trees. For efficiency reasons,
it is only necessary to “pack” messages into this format when messages are transmitted, and not
when they are kept in the same address space. Thus, for shared memory no packing is necessary,
and in clustered memory architectures, no packing is necessary when messages remain in the same
cluster.

The Chare kernel, based on load balancing needs, dynamically determines which messages are
kept local and which are transmitted. However, it does not know the structure of user data and
hence how it must be packed. This problem is overcome by requiring the user to provide “pack”
and “unpack” routines for each message type used by the program. These routines are invoked by
the kernel as and when necessary. If a decision is made to send a message out to another processor,
the appropriate “pack” routine is called (and correspondingly the “unpack” routine is called by
the receiving processor). This permits the kernel to avoid this packing overhead for messages
considerably, since on nonshared memory machines, messages are not packed if they are eventually
serviced on the sender’s processor.

Packing and unpacking can be optimized considerably on NUMA type machines. On such
machines, to reduce the overhead of accessing non-local memory, sends and receives are implemented
using explicit copying across memory clusters. For example, certain messages (like ForChare and
ForBoc messages) are fixed destination messages. If they need to be sent off to a processor in
another cluster, the system packs them locally, and then enqueues the message in the destination
processor’s arrival queue. When this message is “received” from the arrival queue, it is block
copied into the local memory and then inserted into the local work pool. NewChare messages may
be serviced locally, or be relocated several times by the load balancing module before they are
eventually picked up for execution. If it is finally processed on the same processor that created it
(or on the same cluster), packing would be an unnecessary overhead. Therefore such messages are
not packed but simply inserted in the destination (chosen by the load balancing module) processor’s
arrival queue. When such a message is picked up for execution by a different processor, the processor
will first pack it into its local memory (effectively copying it from remote to local memory in the
process), then unpack the message to restore any pointers if any, and process it (see Figure 4).
We plan to use the scheme for machines like the BBN Butterfly (and TC2000). If the machine
has a hierarchically clustered memory architecture (like CEDAR), then no packing is done unless
a message crosses a cluster boundary.

4 Load Balancing As A Branch Office Chare

The dynamic load balancing (LDB) module of the Chare kernel is implemented as a BOC. The
LDB-BOC provides entry points and function calls and interacts with other Chare kernel system
BOCs to dynamically balance load. At the Branchlnit entry point the number of neighbors and the
list of neighbors are recorded and stored in the data area of the BOC. This information depends on
the interconnection network amongst the processors and is later used by the LDB-BOC to balance

load.

Figure 6 shows the Adaptive Contracting Within Neighborhood (ACWN) [10] load balanc-
ing scheme implemented in the nonshared memory version of the Chare kernel as a BOC. In
the ACWN scheme when a NewChare message is generated, the LDB-BOC function Schedule-
NewChare() is called. The function determines the least loaded neighbor in the processor’s neigh-
borhood and requests the Communication-BOC (BOC responsible for communicating with BOC’s
on other processors) to send the message to that neighbor. The processor may also want to send
its own load status to this neighbor with the message. If the local processor is itself the least
loaded, the message is enqueued in its local queue. Processors also exchange explicit load status
messages periodically to keep their status information updated on their neighbors. An entry point
is provided for this purpose.

For a different load balancing scheme such as gradient model [13] the load balancing process
may be awakened periodically to balance loads whenever the pressure gradient falls or rises above
a certain threshold. Additional entry points may be added as desired for implementing different
schemes. Thus, the BOC offers the versatility and ease in implementing different load balancing
schemes in the Chare kernel.

The LDB-BOC on shared memory machines deposit all NewChare messages into a shared
pool of work employing a stack or a priority queue. Since processors pick messages from a shared
pool, the load balancing is trivial.

On NUMA machines, as well as on large shared memory machines, we use multiple stacks or
queues to store messages. Each processor has its own queue. Dense graphs are used to ‘interconnect’
the processors [16]. During Branchlnit the LDB-BOC initializes its list of neighbors using some
software interconnection scheme. When a new chare is created the LDB-BOC may deposit it in
the processor’s local queue or that of a neighbouring processor based on the size of the queue.
When a processor needs work, the LDB-BOC first checks its own queue and if it is empty then the
processor scans the queues of its neighbors in a round-robin fashion. Work is accessed from the
first processor with a non-empty queue.

5 Supporting Information Sharing Abstractions

In addition to messages, chares can share data with the five information sharing abstractions
described briefly in Section 2. Their implementations on the various machines are briefly described
in this section.

On shared memory machines with a small number of processors, each shared variable,

except the dynamic table, is implemented as a shared entity, with an associated lock. Operations
are performed in a mutually exclusive manner using locks. Dynamic tables are managed as arrays
of chains of entries. A hashed chaining scheme is used. The key of an entry is used to map into
an index in the array, which is a chain of entries whose keys map to the same index. A lock is
associated with each index in the array to provide mutually exclusive access to chains. The same
scheme is used for both small and large shared memory machines, but the size of the arrays become
larger for larger machines.

On nonshared memory machines Read Only, monotonic, WriteOnce and accumulator vari-
ables have a local copy of the variable on each node, while a dynamic table is split across nodes.
Initialization, update and access are the three generic operations that can be carried out on these
variables. A BOC is used to implement these operations for monotonic, accumulator, WriteOnce
and dynamic tables. Since a Read Only variable is never updated it does not need a branch office
chare to manage its updates.

In the execution of a Chare kernel program initializations are carried out in two phases. In the
first phase, system variables and system BOCs are initialized. In the second phase user initializa-
tions, as specified in the Init entry point of the main chare are carried out. This consists of sending
out initial values of read only, monotonic and accumulator variables, and initializing user defined

BOCs.

Write Once variables are initialized by the Create WriteOnce call. A copy of the variable is
first sent to the manager of the corresponding BOC. The manager assigns it a unique index, which
serves as the WriteOnce ID. It then broadcasts the value and ID of the variable to each of the
branch nodes. Each node, after creating a copy of the write once variable, sends a message to the
manager (along a spanning tree rooted at the manager to avoid bottlenecks) that it has created the
variable. When it has received an acknowledgement message from all the nodes, the manager sends
the ID of the write once variable to the supplied address. A write once variable can be read by
means of the DerefWriteOnce call. This call returns the pointer to the local copy of the variable.
The pointers to all the WriteOnce variables are stored in an array indexed by the WriteOnce ID.

An update on a monotonic variable is done by the MonoValue call. The call results in the
branch chare updating its local value, and sending a copy of the new value up to its parent branch
chare in the spanning tree created on the nodes. Every branch combines values it receives from
its children with its own by waiting for some fixed interval of time before sending its local value
up to its parent branch chare. The root of the tree sends its update to the manager chare, which
broadcasts the value to all the branch chares. The value of every update may not be simultaneously
available to every branch, but shall be eventually available. A monotonic variable can be accessed
using the Mono Value system call. This call simply returns the value of the local copy of the variable
on that node.

The Accumulate system call results in the application of the adding function on the local value
on the branch chare. The CollectValue system call is used to read the value of an accumulator
variable. This call results in the branch chares sending up their local values of the accumulator
variable to the manager chare up a spanning tree on the nodes. Branches use the combining
function to combine values they receive from their children nodes. The manager communicates the
final value to the supplied chare.

Updates on entries in a dynamic table can be carried out by calling the system calls Insert
and Delete. Again as in the case of shared memory systems a hashed chaining hashing scheme is
used. The key of an entry is hashed to obtain the processor number of the branch which stores
the portion of the table to which this entry belongs, and the index in the table on that branch.
An update message is sent to the required branch, which carries out the update operation and
back-communication of update, if specified in the call options. The Find call is used to read entries
in dynamic tables. The key provided is used (as described above) to determine the branch and
index. A message is sent to the corresponding branch chare to find the entry and reply back to the
supplied address.

We are still in the process of designing the implementation details of the information sharing
abstractions for the NUMA machines.

6 Discussion

The Chare kernel runs as an application program on top of the vendor-supplied operating system
on the different machines we have talked of in this paper. We also plan to port it to the CEDAR
machine at CSRD (University of Illinois), IBM’s RP3 and a transputer based machine. We faced
only one serious problem while implementing the Chare Kernel. On the NCUBE the host and
the nodes follow different byte-orderings. Our initial nonshared memory implementation (on Intel
ipsc/2) used to place the main chare on the host and all other chares on the nodes. But, because
we could not convert the byte-orderings of arbitrary user messages between the host and the nodes
to conform to the NCUBE requirements, we had to move the main chare from the host to node 0
for the NCUBE. Thus only system level messages (with definite formats) were exchanged between
the host and the nodes. Subsequently we carried over the change to the other nonshared machines.
Now on all nonshared machines the host starts up the nodes, and then waits till it gets a termination
signal from the nodes.

The performance data obtained on benchmarks has been very encouraging. A parallel program
loses less than 5 percent of its speed compared to a sequential C program based on the same
algorithm; Moreover, speedups with increasing number of processors are excellent. Performance
evaluation of the Chare kernel is beyond the scope of this paper. Sample speedups are shown
Table 1 for one shared and one nonshared memory multiprocessor for an instance of the 15-puzzle
problem using parallel 7D A* that explores 1.4 million nodes in its search space. The execution
times (in seconds) of the Sequential C program and the Chare Kernel program (1 processor) occur
in parentheses.

Additional performance data can be found in [11]. A parallel Prolog compiler which exploits
both AND and OR parallelism has been written using the Chare kernel system [15], and is one of
the first such systems to run efficiently on both shared and non-shared memory system. A state-
space search package was also developed using the Chare kernel. Many other parallel applications
are being developed using this system.

H Machine H C H 1 ‘ 2 ‘ 4 ‘ 8 ‘ 16 H

Symmetry 0.99 1.97 | 3.92 | 7.78 | 13.92
(367.4) || (371.8)

iPSC/2 0.99 | 193] 3.72 | 6.77 | 12.60
(379.3) || (385.0)

Table 1: Performance of parallel IDA* algorithm on a 15 puzzle problem that explores 1.4 million
nodes.

7 Related Work

One of the early attempts at machine independence was the development of the “Argonne macros”
[3] aimed at porting compilers for parallel Prolog across shared memory machines. This attempt,
although significant in the direction it chose to take, did not go far enough, restricting its attention
to a single type of architecture.

A project with similar objectives as ours is the recently published VMMP project [9]. Like
the Chare kernel, it too is designed for developing portable and efficient software on both shared
and nonshared memory machines. One of the primary differences appears in the implementation
of different information sharing abstractions in the two systems. VMMP too supports different
information sharing abstractions, but as “shared objects”. On VMMP, shared objects are located
at one “central” site and access involves blocking and an RPC type protocol, unlike the Chare
kernel information sharing abstractions discussed in Sections 2.3 and 5. We believe that our choice
will make it possible to implement each of the abstractions more efficiently, especially on distributed
memory machines. Another significant difference is in the programmer’s view of the system, and
the programming paradigm. In the Chare kernel, the programmer is only concerned with creating
new chares and sending messages to existing chares. Execution is completely message driven. The
execution model of VMMP differs substantially from the Chare kernel in this respect in that it
is a blocked workers model. Also important is that there is no context switching between explicit
processes in our model and hence no associated overheads are incurred.

There are other efforts aimed at machine independence. Strand [8] is a language based on
asynchronous processes and streams, and is portable across many parallel machines. Linda [4] is
another language based on the notion of a shared tuple-space. Actors [1] and concurrent object-
based languages are comprised of processes which communicate by depositing and/or removing
tuples with specific patterns. The language described by us differs from these mainly in its rich set
of diverse information sharing modes, and on its reliance on implicit dynamic load balancing for
scheduling work.

The language we described is different from the distributed system kernels such as the V kernel
[5], or the Amoeba system [14] which essentially provide support for communicating processes.
The Reactive Kernel/Cosmic Environment [2] also supports machine independent programming
by providing communication mechanisms. The recently proposed Concurrent Aggregates (CA)
language [6] bears some similarities with the branch-office chares in our language, although CA is

aimed at a fine-grained machine (The J-machine) [7] being built at MIT.

Implicitly parallel higher level languages such as Functional or Logic languages constitute an-
other approach to machine independence. We believe that such languages should be built on
top a system such as the Chare kernel to simplify the task of building them, and to render the
implementation machine independent.

8 Summary

Architecture independence may seem an elusive property. However, we have shown that with an
appropriate selection of primitives, and an implementation of these primitives tuned to each specific
machine, it can be attained. The chare kernel recognizes locality of reference as the key principle
that unifies MIMD machines, with or without shared memory. The chares with their local variables,
and the message-driven execution enhance locality. Implementation of messages is tuned to, and
an appropriate form of dynamic load balancing is used for each target architecture. The common
modes of sharing are encapsulated in data abstractions, so that they are implemented efficiently
on each target machine. Conditional packing ensures that programs written using this system can
compete with even those written specifically for shared memory machines, as long as the grain size
required is not too fine. Scalable techniques used in its design and implementation ensure that the
system runs efficiently on machines with thousands of processors.

References

[1] Agha G.A. Actors: A Model of Concurrent Computation in Distributed Systems. MIT press,
1986.

[2] Athas W.C., Seitz C.L. Multicomputers: Message-Passing Concurrent Computers. Computer,
9-24, August 1988.

[3] Boyce J., Butler R. et al. Portable Programs for Parallel Processors. Holt, Rinehart & Winston,
New York, 1987.

[4] Carriero N., Gelernter D. How to Write Parallel Programs: A Guide to the Perplexed. ACM
Computing Surveys, 323-357, September 1989.

[5] Cheriton D.R. The V Distributed System. Communications of the ACM, 314-333, March
1988.

[6] Chien A., Dally W.J. Concurrent Aggregates (CA). In ACM SIGPLAN Principles and Practice
of Parallel Programming, Seattle, Washington, March 1990.

[7] Dally W.J. Fine-Grain Message-Passing Concurrent Computers. In The Third Conference on
Hypercube Concurrent Computers and Applications, Pasadena, California, January 1988.

[8] Foster 1., Taylor S. Strand: New Concepts in Parallel Programming. Prentice Hall, 1990.

[9] Gabber E. VMMP: A Practical Tool for the Development for Portable and Efficient Programs
for Multiprocessors. IEFE Transactions on Parallel and Distribuled Systems, 304-317, July
1990.

[10] Kale L.V. Comparing the Performance of Two Dynamic Load Distribution Methods. In
International Conference on Parallel Processing, August 1988.

[11] Kale L.V. The Chare Kernel Parallel Programming System Programming System. In Inter-
national Conference on Parallel Processing, August 1990.

[12] Kale L.V., et. al. The Chare Kernel Programming Language Manual. internal report.

[13] Lin F.C.H, Keller R. Gradient Model: A Demand Driven Load Balancing Scheme. In Inter-
national Conference on Distributed Systems, pages 329-336, 1986.

[14] Mullender S.J., Tanenbaum A. The Design of a Capability-Based Operating System. Com-
puter, 289-300, March 1986.

[15] Ramkumar B., Kale L.V. A Chare Kernel Implementation of a Parallel Prolog Compiler. In
Proceedings of the ACM SIGPLAN Conference on Principles and Practice of Parallel Pro-
gramming, March 1990.

[16] Saletore V. A. Machine Independent Parallel Fzecution of Speculative Computations. PhD the-
sis, Dept. of Electrical and Computer Engineering, University of lllinois at Urbana-Champaign,
1991.

BranchOffice LoadBalance {

manager {

Init() {
msg = (InitMsg) Allocate(InitMsg-size);
CreateBranch(BranchInit,msg); }

}

branch {
int NumNeighbors;
int NeighborsList[MaxNeighbors];

entry BranchlInit: (message InitMsg *msg) {
NumNeighbors = GetNumNeighbors(MyNodeID);
GetListOfNeighbors(MyNodeID, NeighborsList); }

entry NeighborStatus: (message StatusMsg *msg) {
ReceiveUpdateLoadStatus(msg); }

}

ScheduleChare(message) {
Neighbor = LeastLoadedNeighbor (MyNodeID);
SendUpdateLoadStatus(message);
SendMsgBranch(message, Neighbor); /* BOC send */
!
PeriodicStatus()
if (NeedToSendStatus)
for each neighbor in NeighborsList
message = Allocate(StatusMsg-size);
SendUpdateLoadStatus(message);
/* send neighbour my status */
SendMsgBranch(NeighborStatus,message);
/* call to to periodically check status */
CallBocAfter(PeriodicStatus,LdbBocNum, INTERVAL);

Figure 6: Load Balancing As a Branch Office Chare

