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ABSTRACT
To minimize data movement, state-of-the-art parallel sorting al-

gorithms use techniques based on sampling and histogramming

to partition keys prior to redistribution. Sampling enables parti-

tioning to be done using a representative subset of the keys, while

histogramming enables evaluation and iterative improvement of a

given partition. We introduce Histogram sort with sampling (HSS),

which combines sampling and iterative histogramming to find high-

quality partitions with minimal data movement and high practical

performance. Compared to the best known (recently introduced)

algorithm for finding these partitions, our algorithm requires a fac-

tor of Θ(log(p)/ log log(p)) less communication, and substantially

less when compared to standard variants of Sample sort and His-

togram sort. We provide a distributed-memory implementation of

the proposed algorithm, compare its performance to two existing

implementations, and provide a brief application study showing

benefit of the new algorithm.
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1 INTRODUCTION
Finding a global partition of the data is the key challenge that

separates parallel sorting from sequential sorting. Partition-based

sorting algorithms, that partition the data prior to redistributing it

(in contrast to merge-based sorting algorithms), are advantageous

on modern architectures due to their low communication cost. Sam-

pling data either uniformly or selectively and histogramming the

split produced by the partition are the two most common tech-

niques for determining a good partition. By quantifying the parallel
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execution cost in terms of computation and communication, we

demonstrate that a simple but careful combination of these two

techniques leads to an algorithm that provides both theoretical and

practical improvements over the best previously known algorithm.

A parallel sorting algorithm needs to redistribute N keys across

p processors such that they are in a globally sorted order. In such an

order, keys on processork are no greater than keys on processork+1
and keys are sortedwithin each processor. An exact splitting (we use

the terms partitioning and splitting interchangeably) is achieved if

all processors own the same number of keys, while an approximate

splitting guarantees that every processor owns no more than N (1+
ϵ )/p keys for some ϵ ; we call this an ϵ−balanced partition. Given

sorted keys with an approximate splitting for ϵ = O (1), an exact

splitting can be achieved at no cost in asymptotic running time.

However, it increases the running time in practice and is often not

required by applications. Algorithms that guarantee a balanced

partition for a given ϵ are favorable since a large ϵ increases the

memory footprint and can hurt application performance.

The most natural way to cheaply determine a global partition

is to collect a sample of keys, and infer a global partition from

the ideal partition of the sorted sample. Sample sort [15] and its

variants are basic realizations of this approach, which are widely

used in practice [25], and also serve as building blocks for our

algorithm. Selecting a random sample of the data and partitioning

the input key space using the random sample suffices to achieve

the desired load balance w.h.p.
1
so long as Θ(p logN /ϵ2) keys are

collected in the sample [19]. A deterministic balanced splitting is

also possible via sampling, for example, using sample sort with

regular sampling [24, 28]. With regular sampling, the algorithm

collects p/ϵ keys from each processor, that partition the local input

data on each processor evenly, requiring a total sample size of

Θ(p2/ϵ ) from all processors for a balanced split. However, these

classical results leave substantial room for improvement. We show

that it suffices to collect a number of samples that scales near-

linearly with p and logarithmically with 1/ϵ .
Histogram sort [22, 29], which embodies the histogramming

technique, iteratively refines a partition (set of splitters), by repeat-

edly collecting histograms of the total number of input keys in

each interval induced by the latest set of splitters. The number of

histogramming rounds required to determine all splitters within

the allowed threshold is bounded by O (logZ), where Z is the

size of the input domain. For skewed distributions, the number of

rounds could be large and the use of the input domain implies that

Histogram sort is not a pure comparison-based sorting algorithm.

Recently, Axtmann et al. [5] proposed a scheme based on the

histogram of the partition induced by a random sample. They show

that using Θ(p (log(p) + 1/ϵ )) samples results in an ϵ-balanced

1
with high probability. In our context, ≥ (1 − O (p−c )) for some fixed c > 0
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partition w.h.p.. Our main contribution is demonstrating that

by using log(log(p)/ϵ ) steps of refinement with histogramming,

Θ(p log(log(p)/ϵ )) samples in total suffice for an ϵ-balanced par-

tition. Our algorithm improves the communication cost for the

partitioning step (proportionally to the reduction in sample size),

at the cost of a small increase in the number of parallel steps (BSP

supersteps / synchronizations). This factor of improvement also

holds if the partitioning schemes are used in a multi-stage fashion,

for example by first splitting the data into

√
p parts, then sorting

each part recursively with

√
p processors.

The improvement in cost warrants the introduction of an algo-

rithm that combines sampling and histogramming, which we call

Histogram sort with sampling (HSS). HSS carefully weaves together

standard techniques in such a way that the resulting algorithm is

provably better than the state of the art. The analysis of the algo-

rithm is nontrivial; the main challenge resolved in this paper is in

identifying and proving an invariant that shows global quadratic

convergence of the partitioning algorithm. The main intuition be-

hind the algorithm and proof comes from consideration of splitter
intervals, which are subranges around ideal splitter keys in the

globally sorted order of input keys. In each round, HSS uniformly

samples keys in the union of all splitter intervals, then tightens

each splitter interval using a histogram of the collected sample. Our

main analytical result is that the size of the union of the splitter

intervals decreases geometrically with the number of rounds.

By characterizing HSS, we establish the theoretical soundness

of iterative histogramming as a technique, that is known to be

effective [21, 29] in practice. Our algorithm is simple, provably ro-

bust to arbitrary distributions with repeated keys, and effective

in practical scenarios where the input is already partially sorted.

We provide a parallel Charm++ implementation of the HSS al-

gorithm and demonstrate improvements over one of the fastest

publicly-available distributed-memory parallel sorting algorithms,

HykSort [30] in both single-staged and multi-staged settings. Addi-

tionally, we show that our algorithm improves performance with

respect to Histogram sort within the ChaNGa N -body code [20],

which uses sorting every time-step to distribute moving cosmo-

logical bodies along a space-filling curve. Our theoretical analysis

of parallel execution cost, comparative performance evaluation,

and application case study unanimously identify HSS as the pre-

ferred parallel sorting algorithm. We have made our code available

online [2].

2 PROBLEM STATEMENT
Let A(0), . . . ,A(N − 1) be an input sequence distributed across p
processing elements, such that each processor has N /p keys. We

assume that there are no duplicates in the input. In Section 6.1 we

discuss how to reduce a sorting problem with duplicate keys to a

sorting problem with no duplicates, with very little overhead. Our

proofs and algorithm also translate to scenarios where input keys

are not evenly distributed across each processor. Parallel sorting

corresponds to redistributing and reordering the elements so that

the ith processor owns the ith subsequence of keys in the sequence

I (0), . . . , I (N − 1), where {I (0), . . . , I (N − 1)} = {A(0), ...,A(N −
1)} and I (i ) ≤ I (i + 1). We say that key A(j ) = I (r ) has rank r .
In practice, keys are typically associated with values, but in the

context of the algorithms we study, handling values of a given size

is straightforward.

It is common to additionally require that the resulting distribu-

tion of sorted keys is load balanced among processors. We com-

pare algorithms with the standard assumption that the distribu-

tion is locally balanced, i.e. each processor owns no more than

(1 + ϵ )N /p keys. However, our algorithm achieves a stronger guar-

antee, namely that the distribution is globally balanced, i.e. processor
i owns all keys greater than or equal to S (i ) and less than S (i + 1),
where each S (i ) is a splitter that satisfies S (i ) = I (χ (i )), with

χ (i ) ∈ Ti ,

where target range: Ti =
[Ni

p
−
Nϵ

2p
,
Ni

p
+
Nϵ

2p

]

One practical advantage of a globally balanced distribution in the

context of iterative applications, is that if the initial distribution

is nearly sorted and globally balanced, the data exchange step is

guaranteed to require little data movement.

We note that, given either type of load-balanced splitting, post-

processing may be done to obtain an exact splitting [12]. For a

locally balanced distribution, this might require some processors to

potentially communicate all of their data to one or two other pro-

cessors. However, given a globally balanced distribution, achieving

an exact splitting would require communicating only at most Nϵ/p
keys per processor. Therefore, a more fundamental distinction is

in whether a parallel sorting algorithm maintains load balance at

all times, i.e. no processor is ever assigned more than (1 + ϵ )N /p
keys. Satisfying this condition permits bounded memory footprint,

which is desirable for a parallel sorting library implementation.

The focus of this paper is on the data-partition step of partition-

based sorting algorithms. Sample sort by regular sampling [24, 28],

histogram sort [22, 29], sample sort by random sampling [11, 15],

parallel sorting by over partitioning [23], AMS sort [5], HyK-

Sort [30] fall into this category. Partition-based sorting algorithms

determine a set of splitters that achieve either a locally or globally

balanced splitting, then redistribute keys. The algorithm can run in

multiple stages by splitting up data among subsets of processors and

sorting recursively within each subset. In section 5, we evaluate the

time complexity of HSS and a multi stage variant of HSS using the

standard Bulk Synchronous Parallel (BSP) model by Valiant [32].

3 RELATEDWORK
Sample sort [15] and histogram sort [22] are closely related to our

algorithm, we review these and other sorting algorithms before

proceeding to our main result.

3.1 Sample sort
Sample sort [10, 15, 18, 24, 28] is a standard well studied parallel

sorting algorithm. Sample sort samples s keys from each processor,

and sends them to a central processor to form an overall sample

of sizeM = ps keys. Let Λ = {λ0, λ1..., λps−1} denote the combined

sorted sample. Sample sorting algorithms choose p − 1 keys from
Λ as the final splitters. Generally, sample sort algorithms consist of

the following three-phase skeletal structure.



(1) Sampling Phase: Every processor samples s keys and sends it

to a central processor. s is often referred to as the oversampling

ratio. See Section 3.2 for sampling methods.

(2) Splitter Determination: The central processor receives sam-

ples of size s (from Step 1) from every processor resulting in

a combined sample Λ of size (ps ). The central processor then
selects splitter keys:S = {S (1), S (2)..., S (p − 1)} fromΛ by pick-

ing evenly spaced keys from Λ. The splitters partition the key

range into p ranges, each range assigned to one processor. Once

chosen, the splitters are broadcast to all processors.

(3) Data Exchange: Once a processor receives the splitter keys,
it sends each of its keys to their destination processor. As dis-

cussed earlier, a key in range [S (i ), S (i + 1)) goes to processor i .
This step is akin to one round of all-to-all communication and

places all input data onto their assigned destination processors.

Once a processor receives all data that is assigned to it, it merges

them using a sequential algorithm, like merge sort.

3.2 Sample sort: Sampling methods
We discuss two sampling methods- random sampling and regular

sampling, for the sampling phase (step 1) of sample sort.

3.2.1 Random sampling. With random sampling as described

by Blelloch et al. [11], each processor divides its local sorted input

into s blocks of size (N /ps ) and samples a random key in each

block, where s is the oversampling ratio. The splitters are chosen

by picking evenly spaced keys from the overall sample of size ps ,
collected from all processors. Of particular reference to our work is

the following theorem, (Lemma B.4 in [11]).

Theorem 3.1. With O
( p logN

ϵ 2
)
samples overall, sample sort with

random sampling achieves (1 + ϵ ) load balance w.h.p..

3.2.2 Regular sampling. With regular sampling [24, 28], every

processor deterministically picks s evenly spaced keys from its local

sorted data. The central processor collects these samples and selects

splitters from this sample, just like random sampling. We reproduce

the following theorem from [24, 28].

Theorem 3.2. If s = p
ϵ is the oversampling ratio, then sample sort

with regular sampling achieves (1 + ϵ ) load balance.

Because of the large number of samples required, the sampling

phase is unscalable for regular sampling. Sample sort with random

sampling is more efficient, but scalability is still hindered in practice

because of the large sample size required to achieve a load-balanced

splitting.

3.3 Histogram Sort
Histogram sort [22, 29] addresses load imbalance by determining

the splitters more reliably. Instead of determining all splitters using

one large sample, it maintains a set of candidate splitter keys and

performsmultiple rounds of histogramming, refining the candidates

in every round. Computing the histogram of a set of candidate keys

gives the global rank of each candidate key. This information is

used by the algorithm to finalize splitters or to refine the candidate

splitter keys. Once all the splitters are within the given threshold,

it finalizes the splitter keys from the set of candidate keys. The data

exchange phase of Histogram sort is identical to the third phase of

sample sort. We give an overview of the splitter determination step

in histogram sort.

(1) The central processor broadcasts a probe consisting ofM sorted

keys to all processors. Usually, the initial probe is spread out

evenly across the key range (unless additional distribution in-

formation is available).

(2) Every processor counts the number of keys in each range de-

fined by the probe keys, thus, computing a local histogram of

sizeM .

(3) Local histograms are summed to obtain a global histogram at a

central processor using anM-item reduction.

(4) The central processor finalizes and broadcasts the splitters if a

probe key within the desired range has been found for each of

thep−1 unknown splitters. Otherwise, it refines its probes using
the histogram obtained and broadcasts a new set of probes for

the next round of histogramming, in which case the algorithm

loops back to Step 2.

Candidate keys are refined by splitting the input key range be-

tween successive candidate keys according to their ranks [29]. His-

togram sort is guaranteed to achieve any arbitrary specified level of

load balance. It is also scalable in practice for many input distribu-

tions, since the size of the histogram every round is typically kept

small - of the order O (p). The number of histogramming rounds

required to determine all splitters within the allowed threshold is

at most log
2
(Z), whereZ is the range of the input i.e. maximum

key minus the minimum key (treating ϵ as a constant here). The

number of rounds can be large, especially for skewed input distribu-

tions. Histogram sort has been successfully employed in real world,

highly parallel scientific applications, for instance ChaNGa [20].

3.4 Other Sorting Algorithms
In parallel sorting by over partitioning [23], proposed for shared

memory multiprocessors, every processor picks a random sample

of size pks from its local input and sends it to a central processor.

The central processor sorts the overall collected sample and choses

pk −1 splitters by selecting the sth , 2sth , ..., (pk −1)sth keys. These

splitters partition the input into pk buckets, more than required.

The splitters are made available to all processors and the local input

is partitioned into sublists based on the splitters. These sublists

form a task queue and each processor picks one task at a time

and processes it by copying the data to the appropriate position

in the memory, determined using the splitters. The idea of over

partitioning is closely related to histogramming. Recent work on

sorting algorithms for asymmetric read and write costs [8] and low

cache complexity [9] are complimentary to our work and can be

used in combination with HSS.

3.4.1 Merge based parallel sorting algorithms. In this paper, we

primarily focus on partition-based algorithms. Merge-based algo-

rithms are another class of sorting algorithms that merge data

in parallel using sorting networks. An early result was due to

Batcher [6] which uses time (or equivalently depth in a sorting

network) O (log2 N ) with N processors. The AKS network [4] was

the first sorting circuit of depth O (logN ), but had large constants

because of the use of expander graphs [13, 26]. Later, Cole [14] pro-

posed a circuit that also ran in O (logN ) time using N processors,



but had smaller constants. A communication optimal algorithm in

the BSP model was proposed by Goodrich [16]. Cole’s merge sort

and its adaptation to BSP by Goodrich follow a merge-tree, but

employ sampling to determine a partition that accelerates merging.

Overall, unless data-partitioning schemes are also employed, merge-

based algorithms tend to be less performant due to their need for

more BSP supersteps for the expensive data-exchange step and in

some cases more communication than partition-based alternatives.

3.5 Large scale parallel sorting algorithms
Several recent works have focused on large scale sorting. Hyk-

Sort [30], a state of the art practical algorithm, employsmulti-staged

splitting and communication to achieve better scalability. HykSort

is a hybrid of sample sort and hypercube quick sort. Even though

Hyksort’s algorithm for splitter selection also uses sampling and

histogramming, there is a key difference in the sampling method

between HSS and HykSort (see Section 4.2.2). As we show in Ap-

pendix A, this is critical for the running time as HykSort requires

at least Ω
(
log(p)

/
log

2
log(p)

)
times more samples than HSS in

the worst case. Our experiments confirm faster convergence in

HSS and benefits of HSS over Hyksort in both single-staged and

multi-staged settings (see section 6).

AMS-sort [5] employs overpartitioning for splitting. AMS-sort’s

scanning algorithm (Lemma 2 of [5]), used to select splitters, is

better than HSS with one round of histogramming by a factor

of Θ(min(logp, 1/ϵ )). However, HSS with multiple rounds of his-

togramming is more efficient than AMS-sort. The scanning algo-

rithm does not easily generalize to multiple rounds of histogram-

ming. Further, HSS achieves a globally balanced partition, while

AMS-sort achieves only a locally-balanced splitting, providing less

robustness in preservation of existing distributions. AMS-sort can

be performed in a multi-stage fashion, with successive steps of

splitting and data exchange across a decreasing set of processors.

HSS can run in the same multi-stage fashion, but with each data

partitioning step done with multiple rounds of histogramming. We

compare the asymptotic running times of AMS-sort and HSS with

multiple stages in Table 3.

3.6 Single stage AMS sort
The single stage AMS-sort [5] collects a single set of samples, per-

forms one round of histogramming, then picks a locally balanced

splitting based on the histogram. The splitters obtained after the

first histogramming round achieve the specified level of load bal-

ance w.h.p. with an oversampling parameter that is much less than

sample sort with random sampling. In Section 5, we show that

the cost of histogramming is asymptotically same as the cost of

sampling an equal number of keys, so AMS sort achieves a clear

theoretical improvement over sample sort. We review the AMS

algorithm in some detail, due to its close relation to our approach.

3.6.1 Scanning algorithm. AMS sort uses a scanning technique

to decide the splitters once the histogram is obtained. The algorithm

scans through the histogram and assigns a maximal number of

consecutive buckets (all keys between two consecutive keys in the

total sorted sample) to each processor. Specifically, after assigning

i buckets to the first j processors, it assigns buckets i + 1, . . . , i + k
to processor j + 1, where k ≥ 0 is picked maximally so that the

total load on processor j + 1 does not exceed N (1 + ϵ )/p. The last
processor gets all the remainder elements. If the sample size is

sufficiently large, the average load on the first p − 1 processors is
greater than N /p w.h.p..

In particular, a sample of size Θ(p (logp + 1/ϵ )) is necessary to

achieve a locally balanced partitioning w.h.p.. Demonstrating this

formally is difficult due to the conditional dependence of loads

assigned to consecutive processors. We formalize the proof of a key

lemma in the analysis of scanning algorithm in [5] (Appendix A

in [17]). In Table 2 we compare the cost of AMS sort to versions

of sample sort and HSS. AMS sort achieves a lower asymptotic

complexity than HSS with a single round of histogramming. How-

ever, HSS can achieve an asymptotically lower complexity in O (1)
BSP supersteps and even lower complexity with O (log logp/ϵ )
supersteps while at the same time providing a globally balanced

distribution.

4 HISTOGRAM SORTWITH SAMPLING
The basic skeleton of HSS is similar to that of Histogram Sort. In

addition, HSS employs sampling to determine the candidate probes

for histogramming. Every histogramming round is preceded by

a sampling phase where each processor samples local keys and

the overall sample collected from all processors is used for the his-

togramming round. By histogramming on the sample, HSS requires

significantly fewer samples compared to sample sort.

4.1 HSS with one histogram round
We first describe HSS with one round of histogramming, whose

data-partitioning step is slightly less efficient than AMS sort, by

a factor of Θ(min(logp, 1/ϵ )). However, HSS achieves a globally-

balanced splitting because of which HSS with one round is easily

generalizable to multiple rounds of histogramming, which we dis-

cuss in subsequent sections and is the main contribution of this

paper. Extending the single round scanning algorithm of AMS sort

to multiple rounds for improved complexity is non-trivial. With

multiple rounds of histogramming, HSS is more efficient than the

scanning algorithm of AMS-sort, in fact, O (1) rounds of histogram-

ming suffice for an asymptotic improvement.

Recall that in HSS, a satisfactory ith splitter (in terms of global

load balance) is found when a candidate key is found that is known

to have rank in target range Ti = [Ni/p − Nϵ/2p,Ni/p + Nϵ/2p].
If for each target range Ti , the sample contains at least one key

with rank in Ti , then after histogramming on the sample, all such

splitters will be found. Intuitively, the algorithm should sample

adequate number of keys so that at least one key is picked from

each Ti w.h.p..

Lemma 4.1. If every key is independently picked in the sample with
probability, psN =

2p lnp
ϵN , where s , the oversampling ratio is chosen

to be 2 lnp
ϵ , then at least one key is chosen with rank in Ti for each i ,

w.h.p..

Proof. Recall that the input set is denoted by A. The size of

Ti = Nϵ/p. The probability that no key is chosen with rank in Ti



Figure 1: Figure illustrating HSS with multiple rounds. After first round, samples are picked only from the splitter
intervals, in proportional to the interval length. Notice how the splitter intervals shrink as the algorithm progresses.
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N number of keys to sort in total
p number of processors sorting keys
A(i ) the ith input key
I (r ) key with rank r in the overall global order
Ti [Ni/p−Nϵ/p, Ni/p+Nϵ/p] is the target range for the ith splitter

al
go
ri
th
m

sj the sampling ratio for the jth round, in particular
each key in γj is in the jth sample with probability sjp/N

Lj (i ) rank of largest sample key below rank Ni/p after j rounds
Uj (i ) rank of smallest sample key above rank Ni/p after j rounds
Ij (i ) = [I (Lj (i )), I (Uj (i ))] is the ith splitter interval after j rounds
γj the union of all splitter intervals after j rounds

Table 1: Notation used in paper, index j refers to Histogram-
ming round, while i is the processor index.

in the overall sample for a given i is given by,(
1 −

ps

N

) |Ti |
=

(
1 −

2p lnp

ϵN

) Nϵ
p
⩽ e−2 lnp =

1

p2

Since there are p − 1 splitters, the probability that no key is chosen

from some Ti , is at most (p − 1) × p−2 < 1/p. □

Lemma 4.1 leads us to the following theorem, showing global

load balance of HSS with one round. The theoremwill also be useful

in the analysis of multiple rounds of histogramming, each round

of which effectively increases the oversampling ratio by collecting

the same number of samples from a smaller subset of the complete

set of keys.

Theorem 4.2. With one round of histogramming and sample size
O (p log(p)/ϵ ), HSS achieves (1+ϵ ) load balance w.h.p..

4.2 HSS with multiple rounds
We show that HSS can be made more efficient by repeated rounds

of sampling followed by histogramming. We build upon the key

observation that after the first round of histogramming, samples

for subsequent histogramming rounds can be intelligently chosen

using results from previous rounds.

4.2.1 Sampling method. For the sampling phases, our algorithm

chooses a sample from a subset γ of the input. Initially, γ represents

the entire input. As the algorithm progresses, γ gets smaller. HSS

uses the following sampling method.

Sampling Method: Every key in γ is independently chosen to

be a part of the sample with probability ps/N , where we refer s
as the sampling ratio. The above sampling method simplifies the

analysis, since sampling from disjoint intervals are independent.

Note that the notion of sampling ratio is different from the over-

sampling ratio of sample sort and one round HSS since the size

of the overall sample collected from all processors with the above

method is (ps |γ |/N ) in expectation.

4.2.2 HSS with k histogramming rounds: Algorithm.

(1) In the sampling phase before the first histogramming round,

each input key is picked in the sample with probability (ps1/N ),
where s1 is the sampling ratio for the first round. Samples are

collected at a central processor and broadcast as probes for the

first histogramming round.

(2) Every processor counts the number of keys in each range de-

fined by the probe keys (the overall sample for the current

round), thus, computing a local histogram. All local histograms

are summed up using a global reduction and sent to the central

processor.

(3) For each splitter i , the central processor maintains Lj (i ): the

lower bound for the ith splitter rank after j histogramming

rounds, i.e. rank of largest key seen so far, which is ranked

less than Ni/p. Likewise it maintains Uj (i ), rank of small-

est key ranked greater than Ni/p. Once the histogram reduc-

tion results of the jth round are received, the central proces-

sor updates Lj (i ) and Uj (i ) and broadcasts the sample keys

I (Lj (i )), I (Uj (i )) bounding each splitter by the splitter interval
Ij (i ) = [I (Lj (i )), I (Rj (i ))].

(4) Once every processor is aware of the new splitter intervals, it

begins its sampling phase for the (j + 1)th round. Every key

which falls in one of the splitter intervals is picked in the sample

with probability (psj+1/N ), where sj denotes the sampling ratio

for the jth round. If j < k , samples from all processors are

collected at a central processor and broadcast for the next round

of histogramming, in which case the algorithm loops back to

step 2. If j = k , the histogramming phase is complete and the

algorithm continues to step 5. Step 2, 3 and 4 can be executed

efficiently if the local data is already sorted.

(5) Once the histogramming phase finishes, the key ranked closest

to Ni/p among the keys seen so far is set as the ith splitter.

Later, we discuss how to choose k and the sampling ratios sj ’s
so that the splitters determined this way result in a globally

balanced partition.

The critical difference between HykSort and HSS is in the sam-

pling method. HykSort samples equally from all splitter inter-

vals whereas HSS samples in proportion to the interval length.

By sampling more from larger intervals, HSS is able to narrow

down the intervals quicker. We show that HykSort requires at least

Ω
(
log(p)

/
log

2
log(p)

)
times more samples than HSS in the worst

case (see Appendix A).

A crucial observation is that the splitter intervals shrink as the

algorithm progresses and hence the sampling step is executed with

a subset of the input that gets smaller every round. Letγj denote the



set of keys in the input that belong to one of the splitter intervals

after j rounds. |γj | represents the size of the input that the algorithm

samples from, for the jth round. We have, |γj | ⩽
∑
i Uj (i ) − Lj (i ),

whereUj (i ) −Lj (i ) is the number of keys in the ith splitter interval.

Some splitter intervals can overlap, hence the inequality . In fact, it

is easy to see that there is no partial overlap between two splitter

intervals, that is, either two splitter intervals: Ij (i1) and Ij (i2) are
disjoint or they are identical.

Our proof outline is as follows. First we show in Lemma 4.3 that

the algorithm will achieve a good splitting w.h.p. if the sampling ra-

tio for the final round (the kth round) is chosen to be large enough.

Having shown that the algorithm terminates after k rounds, achiev-

ing a globally load balanced partition, we bound the sample sizes

in each round by first bounding |γj | in terms of the sampling ratio

sj necessary to obtain all splitters w.h.p.. Finally, we appropriately

set the sampling ratios such that the size of the union of splitter

intervals, that is, |γj | decreases by a constant factor. Intuitively,

sampling ratio sj in round j (where samples are chosen only from

the splitter intervals in round j) can be thought of as choosing

samples from the entire input range with an oversampling ratio of

sj and discarding unnecessary samples.

Lemma 4.3. If sk =
2 lnp
ϵ be the sampling ratio for the kth round,

then at least one key is chosen from each Ti after k rounds w.h.p..

Given a sampling ratio of sj =
2p lnp
ϵN , all splitters are found

w.h.p, by Lemma 4.1. We next bound the expectation of the size of

the union of all splitter intervals.

Lemma 4.4. Let sj be the sampling ratio for the jth round, Ij (i )
be the splitter interval for the ith splitter after j rounds and γj denote
the set of input keys that lie in one of the Ij ’s, then, E ( |γj |) ⩽ 2N

sj .

Proof. Since Lj (i ) andUj (i ) are only improved every round,

Lj−1 (i ) ⩽ Lj (i ) ⩽
Ni

p
⩽ Uj (i ) ⩽ Uj−1 (i )

Further ∀x : 0 ⩽ x ⩽
(
Uj−1 (i ) −

Ni
p

)
,

P
[
Uj (i ) −

Ni

p
⩾ x

]
=
(
1 −

psj

N

)x
As a result, we can bound the size of the ith splitter interval,

E
[
Uj (i ) −

Ni

p

]
=

Uj−1 (i )− Ni
p∑

x=1
P
[
Uj (i ) −

Ni

p
⩾ x

]

=

Uj−1 (i )− Ni
p∑

x=1

(
1 −

psj

N

)x
⩽
∞∑
x=0

(
1 −

psj

N

)x
=

N

psj

By a similar argument we have that, E
[
Ni
p − Lj (i )

]
⩽ N

psj ,

Thus, E[|γj |] ⩽ E
[ p−1∑
i=1
|Ij (i ) ∩A|

]
=
∑
i
E
[
Uj (i ) − Lj (i )

]

=
∑
i
E
[Ni

p
− Lj (i )

]
+ E

[
Uj (i ) −

Ni

p

]

⩽
∑
i

2N

psj
=

2N

sj □

Lemma 4.4 suggests that γj will be small in expectation. The next

lemma shows that it is also small w.h.p..

Lemma 4.5. If sj <
√

2p
lnp , then, |γj | ⩽

4N
sj w.h.p.

Proof. The main challenge in proving the above theorem is in

handling the dependency in splitter intervals, for e.g. when they

overlap. We first modify the definition of splitter intervals in the

following way, so that the union of the splitter intervals remains

unchanged.

U ′j (i ) = min

(N (i + 1)

p
,Uj (i )

)
, L′j (i ) = max

(N (i − 1)

p
,Lj (i )

)
The above definition effectively strips the splitter interval

[I (Lj (i )), I (Uj (i ))] to [I (L′j (i )), I (U
′
j (i ))]. To see that stripping

doesn’t change the union of all splitter intervals, consider aUj (i )
which is greater than N (i + 1)/p. Then by definition, we have

Uj (i ) = Uj (i + 1). Thus, the portion of Ij (i ) that extends beyond
N (i + 1)/p is included in Ij (i + 1). Hence, restricting Uj (i ) to
Ni/p + N /p doesn’t change γj - the union of Ij ’s. An inductive

argument (by considering splitter intervals from left to right) shows

that restricting all Uj ’s doesn’t change γj . A similar argument can

be used for Lj ’s.
Observe that, U ′j (i )’s are independent random variables. This

is because the possible values of U ′j (i1) and U
′
j (i2) for i1 , i2 are

completely disjoint. The value of U ′j (i ) is determined completely

by sampling in the interval [Ni/p,N (i + 1)/p) and since sampling

in disjoint intervals are independent,U ′j (i )’s are independent.

We have, E[U ′j (i ) − Ni/p] ≤ E[Uj (i ) − Ni/p] ≤ N /psj .

Thus, P
[∑

i
U ′j (i ) −

Ni

p
>

2N

sj

]

= P
[∑

i
U ′j (i ) −

Ni

p
−

N

psj
>

N

sj

]

≤ P
[∑

i
U ′j (i ) −

Ni

p
− E

[
U ′j (i ) −

Ni

p

]
>

N

sj

]

≤ e
− 2N 2

s2j

/∑
i (N /p )2

= e
−

2p
s2i ≤ e−2 lnp

≤
1

p2
(using Hoeffding’s inequality)

Note that U ′j (i ) − Ni/p lies strictly in the interval [0,N /p], this

fact is used in the application of the Hoeffding’s inequality. On

similar lines we have,

∑
i (Ni/p − L′j (i )) ⩽

2N
sj , w .h.p.. We then



conclude,

|γj | ⩽
∑
i

(
U ′j (i ) −

Ni

p

)
+

(Ni

p
− L′j (i )

)
⩽

4N

sj
w .h.p. □

The next lemma bounds the sample size for each round in terms

of the sampling ratios.

Lemma 4.6. Let Z j be the sample size for the jth round and sj ⩾
sj−1, then Z j ⩽ (5psj/sj−1) w.h.p.

Proof. We have, E[Z j ] = |γj−1 |psj/N . We also have, |γj−1 | ⩽
4N /sj−1 w .h.p., using Lemma 4.5.

Given that |γj−1 | ⩽ 4N /sj−1, using Chernoff bounds,

P[Z j ⩾ (5psj/sj−1)] ⩽ P[Z j ⩾ E[Z j ] + psj/sj−1]

⩽ e
−

(psj /sj−1 )
2

3E[Zj ] = e
−

(psj /sj−1 )
2N

3|γj−1 |psj

⩽ e
−

(psj /sj−1 )
2Nsj−1

12Npsj ⩽ e−
p
12

□

With Lemmas 4.6 and 4.3 in hand, we are now prepared to

discuss how to appropriately choose the sampling ratios so that

our algorithm achieves the desired load balance.

For HSS with k rounds, if we set the sampling ratio for the jth

round as sj = (2 lnp/ϵ ) j/k , then after k rounds all splitters are

found w.h.p., using Lemma 4.3. The size of the union of splitter

intervals, that is, |γj | is less than 4N /sj = 4N (ϵ/2 lnp)1/k using

Lemma 4.5. The sample size for the jth histogramming round is at

most 5psj/sj−1 = 5p (2 lnp/ϵ )1/k using Lemma 4.6. This gives us

our main theorem.

Theorem 4.7. With k rounds of histogramming and a sample size

of O
(
p

k
√

logp
ϵ

)
per round , HSS achieves (1 + ϵ ) load balance w.h.p.

for large enough p2.

Observe from theorem 4.7 that there is a trade off between the

sample size per round (O (p k
√
logp/ϵ )) of histogramming and the

number of histogramming rounds. To minimize the number of

samples across all rounds, we take derivative of (kp k
√
logp/ϵ ) w.r.t.

k and set it to 0,

d (kp k
√
logp/ϵ )

dk
= p k
√
logp/ϵ

(
1 −

log
logp
ϵ

k

)
= 0

⇒ k = log

logp

ϵ

The overall sample size O (kp k
√
logp/ϵ ) attains global minimum for

k = log(logp/ϵ ) histogramming rounds and |γj | ≤ 4N /(e ) j at the
minima using Lemma 4.5. Across all rounds, the overall sample

size from all processors is O (p log(logp/ϵ )). This leads us to the

following main theorem.

Theorem 4.8. With k = O (log(logp/ϵ )) rounds of histogram-
ming and O (p) samples per round (O (1) from each processor), HSS
achieves (1 + ϵ ) load balance w.h.p., for large enough p.

Setting ϵ = p/N results in exact splitting and hence we get the

following result for exact splitting.

2
Specifically, so long as sj =

2 lnp
ϵ ≤

√
2p
lnp for Lemma 4.5

Theorem 4.9. HSS with O (p) samples per round overall can
achieve exact splitting in O (logN /p + log logp) rounds.

5 RUNNING TIMES
We model an algorithm’s parallel execution as a sequence of BSP

supersteps, during each of which, processors perform computa-

tion locally, then send and receive messages. An algorithm’s BSP

complexity consists of three components:

(1) the number of supersteps (synchronization cost),

(2) the sum over all supersteps of the maximum amount of compu-

tation done by any processor during the superstep (computation

cost),

(3) the sum over all supersteps of the maximum amount of data

sent or received by any processor during the superstep (com-

munication cost).

We permit processors to send and receive p messages every super-

step, which simplifies the analysis of the all-to-all data exchanges.

The model captures the performance trade-offs for our purpose,

more histogramming rounds increase number of supersteps but

lower communication cost.

We analyse the computation and communication cost for sample

sort and HSS. Both algorithms have the same cost for initial local

sorting, broadcasting splitters and data exchange. The computation

cost of local sorting is O ((N /p) log N
p ). No communication is in-

volved in local sorting. The cost of broadcasting splitters once they

are determined is O (p). The final data movement requires all data

to be sent to their destination processors, hence the communication

cost involved is O (N /p). Once a processor receives all data pieces,
it merges them, which takes O ((N /p) logp) computation time.

5.1 Cost of Sampling
Collecting a sample of overall size S onto one processor, requires a

single BSP superstep with a communication cost of O (S ). In prac-

tice, random sampling is usually performed with each processor

selecting S/p elements, and a gather collective communication pro-

tocol, which collects all samples onto one processor. Sorting the

overall sample on a central processor costs O (S logp) work locally

if each processor provides a sorted contribution to the sample.

5.2 Cost of Histogramming
A local histogram can be computed in O (S log(N /p)) time using S
binary searches on the local sorted input, where S denotes the size

of the histogram. A global histogram is computed by reducing all

local histograms. An S-item reduction requires 2 BSP supersteps

(one for a reduce-scatter and one for an all-gather) with O (S ) com-

munication and computation [27, 31]. The histogram probes and

the splitter intervals are broadcast to every processor for histogram-

ming. The communication cost of broadcasting a length S message

is O (S ). Thus, both the computation and communication costs of

histogramming are proportional to the overall sample size.

The BSP complexity of the data partitioning step of sample sort,

AMS sort, and HSS are shown in Table 2. AMS sort and HSS require

significantly fewer samples due to histogramming. We observe that

the best HSS configuration has strictly superior complexity to all

other considered algorithms.



Algorithm

Overall sample

size

Computation complexity

Communication

complexity

Supersteps

Regular sampling O (
p2
ϵ ) O

(
p2
ϵ logp logp

)
O

(
p2
ϵ

)
O (1)

Random sampling O (
p logN
ϵ 2 ) O

(
p logN logp

ϵ 2

)
O

(
p logN
ϵ 2

)
O (1)

Single stage AMS sort O (p (logp + 1

ϵ )) O

(
p (logp + 1

ϵ ) logN
)

O

(
p (logp + 1

ϵ )
)

O (1)

HSS with one round O (
p logp

ϵ ) O

(
p logp

ϵ logN
)

O

(
p logp

ϵ

)
O (1)

HSS with two rounds O (p

√
logp
ϵ ) O

(
p

√
logp
ϵ logN

)
O

(
p

√
logp
ϵ

)
O (1)

HSS with k rounds O (kp
k
√

logp
ϵ ) O

(
kp

k
√

logp
ϵ logN

)
O

(
kp

k
√

logp
ϵ

)
O (k )

HSS with O (1) samples per

processor per round
O (p log

logp
ϵ ) O

(
p log

logp
ϵ logN

)
O

(
p log

logp
ϵ

)
O (log

logp
ϵ )

Table 2: Cost complexity of data partitioning step of Sample sort, AMS sort, and HSS. Data exchange costs are excluded.

Algorithm

Sample size per

stage

Computation complexity Communication complexity Supersteps

AMS sort, l stages O (r (log r + 1

ϵ )) O

(
N
p logN + lr (log r + 1

ϵ ) logN
)

O

(
lr (log r + 1

ϵ ) +
lN
p

)
O (l )

HSS, l stages

O (log
log r
ϵ ) rounds

per stage

O (r log
log r
ϵ ) O

(
N
p logN + lr log(

log r
ϵ ) logN

)
O

(
lr log

log(r )
ϵ + lN

p

)
O (l log

logp
ϵ )

Table 3: Cost complexity of l-stage HSS and AMS sort; the size of processor group decreases by a factor of r = p1/l each round.

5.3 HSS with Multiple Stages
Like AMS-sort, HSS can be generalized to a multi-stage algorithm.

We refer readers to [5] for details on multi-stage AMS sort. We

simply consider the benefit of replacing the data-partitioning step

in multi-stage AMS-sort with multiple histogramming rounds of

HSS. The rest of the algorithm involving the data exchange steps is

unchanged. The running time complexities of l stage AMS-sort and

l stage HSS in the BSP model are shown in Table 3. In each step, a

processor group gets divided into r = p1/l processor groups.
The first local sorting takes O (N log(N /p)/p) time. At the end

of each stage, every processor receives O (r ) data pieces that it

needs to merge. So, the total computation cost of local sorting after

every stage excluding the first local sorting is O ((lN /p) log r ) =
O ((N /p) logp). This gives an overall computation cost of local

sorting as O ((N log(N /p))/p + (N logp)/p) = O ((N logN )/p).
The computation cost of sampling and histogramming for HSS

is O (r log((log r )/ϵ )) logN ) per stage. Each sampling, histogram-

ming and data exchange step takes O (1) BSP supersteps. The num-

ber and cost of all of these steps is uniform throughout stages, so

all of these costs are multiplied by a factor of l , the number of

stages. Consequently, we observe a trade-off between the cost of

data partitioning and the cost of data exchanges that depends on l .

6 IMPLEMENTATION
We implementedHSS in C++11 in the Charm++ [3, 7, 21] framework.

Charm++ allows an application to create any number of virtual pro-

cessors, called chares which are scheduled by the runtime system.

Additionally, chares can be tied to a specific core or a node (called

group and nodegroup chares in Charm++ terminoology).

Our implementation comprises of three phases; local sorting of

input data, splitter determination using histogramming, and final

data exchange. We use C++ sort for local sorting for the first phase.
Let t denote the total number of threads and p denote the number

of processors (processes or ranks).

• Histogramming Phase: The histogramming phase determines

p − 1 splitters for process level splitting. For the sampling phase

before every histogramming round, each thread samples probe

keys, from its input, which lie in the union of splitter intervals. If δ
denotes the fraction of input covered by the splitter intervals, then

every thread picks s/δ samples from its entire input and discards

samples that don’t lie in any of the splitter intervals. This way the

expected size of the overall sample is s × t , where s can be thought

of as the oversampling ratio. The overall sample is assembled at

the central processor and broadcast for histogramming. Every

thread computes a local histogram using binary searches on it’s

locally sorted input. The local histograms are summed up using a

reduction and sent to the central processor.

• Data Exchange: Once every processor receives the splitters, input
data from all threads within a processor are merged and parti-

tioned into p messages, one for each processor.

• Local Merging: Once a process receives all data that falls in its

bucket, it merges and redistributes data among its threads using

HSS with one round.

6.1 Handling duplicates via implicit tagging
We use the following standard technique to deal with duplicates in

the inputs. We enforce a strict ordering on keys by implicitly replac-

ing each key k with a triplet (k,processor , ind ), where processor
denotes the processor that k resides on and ind denotes the index

in the local data structure, where the key is stored.

6.2 Multi-staged sorting and comparisons with
other algorithms

To compare HSS to Hyksort in both single-staged and multi-staged

settings, we implemented the splitting algorithm of HSS in the

HykSort code [1], written in the MPI framework. This allows a

fair comparison without the side-effects of two different parallel

programming frameworks, namely Charm++ and MPI.
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Figure 2: Number of histogramming iterations for HSS vs
HykSort. We used 1 sample per processor per round for
this experiment. The worst case number of iterations in-
creases more gradually in HSS (O (log(logp/ϵ ))) than Hyksort
(Ω(log(p/ϵ )/ log logp)). Experiments were run on the Stampede
2 supercomputer.
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Figure 3: Single staged runs with 16 threads per processor, 1M
8-byte long keys per processor. Experiments were run on the
Stampede 2 supercomputer.

7 EXPERIMENTAL RESULTS
In this section, we describe our experimental results. The goal of our

experiments is to demonstrate the fast splitter determination of HSS

compared to other state of the art algorithms and to demonstrate

its benefits in both single-staged and multi-staged settings. We also

include a brief application study to supplement our results.

7.1 Fast convergence of splitters
HSS determines all splitters in O (log(logp)/ϵ ) rounds using O (1)
samples per round per processor. This results in faster convergence

compared to HykSort, which requires Ω(log(p/ϵ )/ log logp) rounds
with the same number of keys.We ran the splitting algorithm of HSS

and HykSort with 1 sample per processor per round and ϵ = 2% to

verify the same. As illustrated in Figure 2, the number of iterations

in HSS increases gradually compared to HykSort. Note that the

execution time of the splitting phase is directly proportional to the

number of iterations.

7.2 Weak scaling and comparison to HykSort
In this section we describe single-staged experiments and compar-

isons to HykSort. We implemented HSS’s splitting algorithm in

HykSort’s code for the fairest comparison. For this set of exper-

iments we used 1 million keys per processor and 16 threads per

processor. We used a probe size equal to 5p per histogramming

round for both HSS and Hyksort which we found to be a reasonable

sample size. We also found the default sample size of Hyksort, set

as per [30] to be suboptimal for this set of experiments. Figure 3

illustrates weak scaling experiments. Besides the splitting time for

the splitter determination step, the local sorting time and the data

exchange times are also shown (which are common to both Hyk-

sort and HSS). As can be observed from the figure, the difference

between HSS and Hyksort’s splitting phase becomes more appar-

ent with increasing number of processors. The improved splitting

of HSS results in a modest improvement of 10-15% in the overall

running time for higher number of processors.

Single-staged AMS sort requires about 2p max (1/ϵ, logp)) ≈
100p for p = 2048 samples to achieve the desired splitting. In con-

trast, HSS took 6 iterations to convergewith 5p samples per iteration

resulting in about 30p samples overall. The execution time of the

splitting phase is directly proportional to the number of samples,

hence one can expect single-staged AMS to take approximately 3x
time for the splitting phase.

7.3 Multi-staged experiments
In this section, we present multi-staged experiments (specifically

with 2 stages) where data is first distributed among k processor

groups consisting of p/k processors each for k −way sorting. Multi-

staged sorting is helpful when the number of message startups

(= p messages) per processor becomes a bottleneck. This happens

for a large number of processors or when the number of keys per

processor is small enough that very fine grainedmessages have to be

sent to other processes in the data exchange step which slows down

the sorting operation. Note that there is an overhead associated

with multi-staged sorting as data needs to be moved multiple times

in comparison to single-staged sorting where data is exchanged

just once between the source and the destination processors.

For this set of experiments, we used 10
5
keys per processor and

1 thread per processor. We used k = 128 as we found it to be a

reasonable threshold for using 2-staged sorting. It also happens to

be the recommended setting as per [30]. Note that ⌈
√
p ⌉ = 128 for

p = 16384. We used a tolerance threshold ϵ = 1% per stage so that

the overall imbalance is at most 2%. A single thread per process

was used to maximize the number of processors. Accordingly, we

also scaled down the number of keys/process when compared to

section 7.2. This also kept the number of keys/thread comparable

to section 7.2 (it is slightly higher in this case).

Figure 4 illustrates 2-staged runs for p = 8192 and p = 16384

processors. As can be seen from the figure, multiple stage sorting

alleviates the data exchange bottleneck and the splitter determina-

tion step becomes the major bottleneck. Figure 4 demonstrates the

benefit of using HSS in a multi-staged setting. HSS improves the

overall running time by 15 − 20% for both p = 8192 and p = 16384.

We verified that this improvement comes from improving the num-

ber of iterations for convergence in each stage: HSS converged in 6

iterations while Hyksort took 9 iterations.
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Figure 4: 2-staged runs with 1 thread per processor, 105 8-byte
long keys per processor. Experiments were run on the Stam-
pede 2 supercomputer.
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Figure 6: HSS performance with different input distribu-
tions for 2M keys/processor and 32K processors. We used 1
thread per processor to accentuate the splitter selection (his-
togramming) time. Experiments were run on the Bluegene
Mira supercomputer.
7.4 Strong scaling in ChaNGa
We implemented HSS in ChaNGa [20], a popular astronomical

application that often runs on several thousands of processors.

Sorting in ChaNGa poses unique challenges for two reasons- (i) it

employs virtual processors and hence the number of buckets (virtual

processors) are far more than the actual number of processors. In

our experiments, the number of virtual buckets were typically 10x
the number of cores and (ii) the virtual processors can be arbitrarily

placed across physical nodes and buckets on a single node need not

be contiguous. Hence, most of our sharedmemory optimizations are

not useful. The reason ChaNGa uses more virtual processors than

cores is to accelerate other stages of computation, made possible

by efficient parallel data overpartitioning.

Figure 5 compares sorting performance of ChaNGa with HSS

and the existing Histogram sort implementation for two datasets:

Dwarf and Lambb (see [20] for details). The datasets have a constant

number of keys, so Figure 5 represents strong scaling results. HSS

results in up to 25% improvement over Histogram sort. Note that

Histogram sort is muchmore sensitive to the input distribution than

HSS as it does not employ sampling (see section 7.5). The parallel

sorting execution increases for the same dataset as we increase the

number of processors. This may appear odd at first. The majority

of sorting time is spent in data splitting, and since the number of

buckets increase multiplicatively with the number of processors,

we see an increase in the execution time. The performance results

suggest it would be possible to improve strong scaling of the split-

ting algorithm within ChaNGa by using a multi-staged version of

HSS. We leave this for future work.

7.5 Effect of input distribution
We ran HSS with the following input distributions to verify that its

running time is independent of the distribution:

(1) UNIF: Uniformly at random from the entire range

(2) SKEW1: Half of the keys are picked uniformly at random from

the entire range, the other half, uniformly at random from a

small range of size 1000

(3) SKEW2: Uniformly at random from the range [0, 100]

(4) SKEW3: Each key is bitwise and of two uniformly at random

chosen keys

(5) GAUSS: Gaussian distributed

(6) AllZeros: All keys are set to 0

As figure 6 illustrates, HSS is impervious to the input distribution

as expected from the analysis. To underscore the histogramming

cost, we used 1 thread per process since the number of splitters for

process level splitting is equal to the number of processes.

8 CONCLUSION
We presented Histogram sort with sampling (HSS), which combines

sampling and histogramming to accomplish fast splitter determi-

nation. We showed that for approximate-splitting (ϵ = O (1)), our
algorithm requires Θ(log logp) histogramming rounds and an over-

all sample of size Θ(p log logp), improving the communication cost

by a factor of Θ(logp/ log logp) with respect to the best known

partitioning algorithm. HSS is theoretically more efficient for both

approximate and exact (memory-efficient) splitting, while minimiz-

ing the number of data exchanges for both small and large degrees

of parallelism. Our work provides theoretical groundwork for the

benefits of iterative histogramming in splitter selection, a tech-

nique that is known to work well in practice. The reduced sample

size makes HSS extremely practical for massively parallel applica-

tions, scaling to tens of thousands of processors. We demonstrated

speed-ups with HSS over two other state-of-the-art parallel sorting

implementations for both single-staged and multi-staged settings.

The robustness of our results makes a compelling case for HSS as

the algorithm of choice for large scale parallel sorting.
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A HYKSORT SAMPLING ALGORITHM:
ANALYSIS

HykSort [30] selects O (β ) samples from every splitter interval in

every round, thus resulting in an overall sample size O (βp). In
contrast, HSS picks samples uniformly from the union of all splitter

intervals, also resulting in an overall sample size O (βp). Effectively,
sampling in HSS from a splitter interval is proportional to the size of

the interval. We prove that HykSort requires at least Ω
(

log(p )
log log(p )

)
rounds, so that all splitters are within a distance of Nϵ/p from the

ideal splitters.

Our proof strategy is the following. First of all we reduce the

problem by using β = 1. Sampling β samples per round can bring

down the number of rounds by at most a factor of β . Since we’re
only interested in the dependence of p on the number of rounds, it

suffices to show that HykSort requires at least Ω
(

log(p )
log log(p )

)
rounds

with β = 1.

Secondly, we assume a better starting point for the splitter inter-

vals. More specifically, we assume that the initial ith splitter interval

is given to be [Ni/p−N /2p,Ni/p+N /2p], instead of the entire range
[0,N ]. Starting with a narrowed splitter interval will only decrease

the number of rounds. This eases the analysis since effectively each

splitter interval is being independently sampled and the number of

rounds should be enough so that for all i , at least one key is sampled

that is within the target range Ti = [Ni/p − Nϵ/p,Ni/p + Nϵ/p].
From here on, we can work with just one interval and determine

the number of rounds required so that at least one key is chosen in

the target range Ti = [Ni/p −Nϵ/p,Ni/p +Nϵ/p] with probability

≥ 1 − 1/p. Note that probability ≥ 1 − 1/p is required to use the

union bound to bound the probability of not finding a sample in

the target range for any of the splitter intervals (there are p − 1

splitters to be determined).

HykSort’s sampling algorithm is as follows. In round r , it samples

one key k (recall that we assumed β = 1) in the splitter interval

[Lr (i ),Ur (i )] and then updating the splitter interval as

Ur+1 (i ) =min(Ur (i ),k )

Lr+1 (i ) =max (Lr (i ),k )

https://www.alcf.anl.gov/
http://www.tacc.utexas.edu
https://github.com/hsundar/usort
https://github.com/vipulharsh/hss
http://arxiv.org/abs/1803.01237


Figure 7: Line Algorithm : wi+1 is picked uniformly at ran-
dom from [0,wi ) .

As discussed earlier, the initial interval is

[L0 (i ),U0 (i )] =
[Ni

p
−

N

2p
,
Ni

p
+

N

2p

]

In the following section we prove that it takes r = Ω
(

log(p )
log log(p )

)
rounds such that P[Ur (i ) ≤ Ni/p+Nϵ/p] with probability ≥ 1−1/p.

By basically the same argument it can be shown that it takes,

r = Ω
(

log(p )
log log(p )

)
rounds such that P[Lr (i ) ≥ Ni/p − Nϵ/p] with

probability ≥ 1 − 1/p.

A.1 The line algorithm
Consider the following algorithm.

Line Algorithm: Pick a point w0 uniformly at random in the

real interval [0, 1). In the next round pick a point w1 uniformly

at random in the real interval [0,w0). Similarily, in the i
th
round

pick a random pointwi in the interval [0,wi−1) and so on. The line
algorithm captures the sampling algorithm of HykSort.

Given a pointw∗ ∈ [0, 1) and probability bound p∗, we wish to

bound the number of rounds r so that P[wr > w∗] < p∗. For the

analysis of HykSort, we’ll set w∗ =
Nϵ/p
N /p = ϵ and p∗ = 1/p. We

prove the following lemma.

Lemma A.1. For a givenw∗ ∈ [0, 1), the number of rounds r after

which P[wr > w∗] < p∗ is Ω
(

log(1/p∗ )
log log(1/p∗ )

)
.

Proof. By definition of the line algorithm,

0 ≤ wi+1 ≤ wi

Let f i (x ) be the probability density function ofwi . We have the

following recurrence for f i (x ),

f i (x ) =

∫
1

x

f i−1 (y)

y
dy ∀i ≥ 1

The expression inside the integral represents the probability

P
[
wi ∈ [x ,x + dx]

��� wi−1 ∈ [y,y + dy]
]
P
[
wi−1 ∈ [y,y + dy]

]
. We

have f 0 (x ) = 1. Using induction on i , it can be easily seen that

f i (x ) =
log

i ( 1x )

i!

We can also obtain the corresponding cumulative density func-

tions F i (x ),

F i (x ) = P[wi ≤ x]

=

∫ x

0

f i (y)dy

= x
i∑

k=0

log
k
(
1

x

)
k!

It can be verified that limi→∞ F i (x ) = xe log(
1

x ) = 1, using Tay-

lor’s expansion for the exponential function. We have

P[wr > w∗] = 1 − F r (w∗)

= 1 −w∗
r∑

k=0

log
k
(

1

w∗
)

k!

=

(
1 − et

r∑
k=0

tk

k!

)
, where t = log

1

w∗

= e−t
(
et −

r∑
k=0

tk

k!

)
= e−t

( eξ tr+1
(r + 1)!

)
for some ξ ∈ [0, t]

The last deduction is based on the error term in the Taylor ex-

pansion. We want the error term to be smaller than p∗. Hence we
have,

e−t
( eξ tr+1
(r + 1)!

)
≤ p∗

⇒
(r + 1)!

tr+1
≥

1

p∗et−ξ

⇒ log(r + 1)! − (r + 1) log t ≥ log

1

p∗
− (t − ξ )

⇒ (r + 1) log(r + 1) − (r + 1) + O (r ) ≥ log

1

p∗
− (t − ξ )

The last deduction is using Stirling’s formula:

logn! = n logn − n + O (logn)

Note that the dominating term in LHS is (r + 1) log(r + 1) as t is a
constant. Thus we obtain

r = Ω
(

log(1/p∗)

log log(1/p∗)

)
□
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