Integrating OpenMP into the Charm++ Programming Model

Seonmyeong Bak Harshitha Menon Sam White
University of Illinois at Lawrence Livermore National University of Illinois at
Urbana-Champaign Laboratory Urbana-Champaign

sbak5@illinois.edu

Matthias Diener
University of Illinois at
Urbana-Champaign
mdiener@illinois.edu

ABSTRACT

The recent trend of rapid increase in the number of cores per chip
has resulted in vast amounts of on-node parallelism. These high
core counts result in hardware variability that introduces imbalance.
Applications are also becoming more complex themselves, result-
ing in dynamic load imbalance. Load imbalance of any kind can
result in loss of performance and decrease in system utilization. In
this paper, we propose a new integrated runtime system that adds
OpenMP shared-memory parallelism to the Charm++ distributed
programming model to improve load balancing on distributed sys-
tems. Our proposal utilizes an infrequent periodic assignment of
work to cores based on load measurement, in combination with
tasks created via OpenMP’s parallel loop construct from each core
to handle load imbalance. We demonstrate the benefits of using
this integrated runtime system on the LLNL ASC proxy application
Lassen, achieving speedups of 50% over runs without any load bal-
ancing and 10% over existing distributed-memory-only balancing
schemes in Charm++.

CCS CONCEPTS

« Computer systems organization — Multicore architectures;
Distributed architectures; « Software and its engineering —
Runtime environments;

KEYWORDS
Charm++, OpenMP, Load Balancing

ACM Reference Format:

Seonmyeong Bak, Harshitha Menon, Sam White, Matthias Diener, and Laxmikant

Kale. 2017. Integrating OpenMP into the Charm++ Programming Model.
In ESPM2°17: ESPM2°17: Third International Workshop on Extreme Scale Pro-
gramming Models and Middleware, November 12-17, 2017, Denver, CO, USA.
ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3152041.3152085

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ESPM2°17, November 12—17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5133-1/17/11...$15.00

https://doi.org/10.1145/3152041.3152085

gopalakrishn1@lInl.gov

white67@illinois.edu

Laxmikant Kale
University of Illinois at
Urbana-Champaign
kale@illinois.edu

1 INTRODUCTION

Several trends in high-performance computing are converging to
drive applications and systems software to rely on multi-threading
in each node’s shared memory, rather than running an independent
process on each CPU core. Increasing per-chip concurrency creates
pressure on system memory, system software, and application de-
sign. The number of cores and threads in each chip is increasing
rapidly. Within each node, increased hardware parallelism entails
reduced per-core/thread memory capacity and bandwidth. There-
fore, many applications have been refactored to use multithreading
to share the common resources within a process.

In addition to increased hardware variability, many parallel ap-
plications no longer operate in a regime where work and data can
be neatly divided into uniform chunks distributed to each pro-
cessor. This trend encompasses unstructured computations, data-
dependent iterative methods, variable resolution, multi-physics
simulations, and multi-phase execution. Load balancing in various
forms can be applied to aid these applications, which often coarsens
the problem to the node level to avoid considering an excessive
number of cores. Within-node balancing can smooth out imbalances
with lower overhead than is possible with global load balancing.
Additionally, light weight balancing strategies within a process
can supplement global load balancing across nodes, so long as the
within-node load balancing does not compromise data locality or
introduce large new bottlenecks or overheads. The MPI+X model
has been used to improve load imbalance within a node but both
programming models run in separate runtimes so there’s no com-
bined and adaptive scheduling of the fine-grained tasks considering
locality and low overhead.

In this paper, we present a combination of an asynchronous many
task distributed programming model with OpenMP that addresses
many of these challenging trends with a low-overhead and locality-
conscious design. We use Charm++ [1] as our distributed tasking
model for its built-in support for across-node load balancing.

Charm++ periodically performs coarse load balancing in terms of
objects that encapsulate associated work and data together, and as-
signs them to cores with good balance among nodes. These objects
then adaptively share work with other cores in the same process,
exposing fine-grained OpenMP tasks only to the extent that other-
wise idle cores are available to help execute them. Thus, our design
ensures locality as well as a low and proportionate scheduling
overhead.

The contributions of this paper are:

https://doi.org/10.1145/3152041.3152085
https://doi.org/10.1145/3152041.3152085

ESPM2’17, November 12-17, 2017, Denver, CO, USA

o Integration of OpenMP with Charm++’s runtime system to
enable fine-grained parallelism.

o Efficient implementation of dynamic scheduling of fine-grained
tasks which uses an adaptive schedule based on the state of
the system.

e An approach that combines infrequent distributed load bal-
ancing with shared-memory task parallelism to handle coarse-
grained and fine-grained load balancing together.

e Performance improvements by using the integrated runtime
system on the Lassen proxy application. We show a speedup
of 50% over runs without load balancing, and a 10% improve-
ment over those with existing global balancing strategies on
Lassen.

2 CHARM++ PROGRAMMING MODEL FOR
SHARED MEMORY

Charm++ is a parallel programming system which is based on
an asynchronous message driven execution model. Each applica-
tion’s data and computations are encapsulated in entities called
chares, which are C++ objects. The encapsulation of data and its
computation into a chare, each of which is mapped to a specific
core, inherently promotes data locality. An application written in
Charm++ is over-decomposed into these objects. Chares interact
via asynchronous method invocations and a method on a chare
is executed when a message is received for it. Chare objects are
assigned to a core by the runtime system.

In the message driven execution model of Charm++, the runtime
system actively probes for incoming messages. On receiving a mes-
sage, it identifies the corresponding chare which is targeted by the
incoming message and schedules it. In Charm++, a PE refers to a
processing element such as a core or a hardware thread, and we use
these terms interchangeably.

The SMP mode of Charm++ takes advantage of multi-core shared
memory processors. In this mode, a Charm++ OS process is launched
with multiple threads and each thread is called a PE. In a typical
configuration the number of threads launched by the Charm++
process is equal to the number of cores or hardware threads on
anode. A PE is mapped to a separate core or a hardware thread,
and PEs have CPU affinity. Each PE has a separate message queue
and the scheduler on the PE picks up messages from the queue
and handles it. Chares are mapped to PEs, and the PEs in a node
can have multiple chares that they schedule in a message-driven
manner. Running multiple threads in a single process enables work
sharing without explicit inter-process data transfer.

3 OVERVIEW OF OUR PROPOSAL

The challenge, as outlined in Section 1, is to balance load across
PEs while managing locality. A pure task model with randomized
work stealing, or a pure dynamic schedule in OpenMP, sacrifices
locality significantly to an extent that often nullifies the benefits of
dynamic load balancing [9, 12]. Dynamic load balancing strategies
are used to balance the load and redistribute the work at runtime.
These load balancing strategies can incur a significant overhead
due to the cost of computing a new assignment and the consequent
data movement. If done less frequently, the overhead is reduced and
locality is maintained, but dynamically emerging load imbalance

Bak et al.

may last longer before being corrected. With increasing number of
cores within a node, intra-node load balancing becomes an effective
way to reduce load imbalance.

The approach we propose is to utilize a relatively infrequent
periodic assignment of work to cores based on load measurement,
combined with user assisted creation of potential tasks from the
work assigned to each core that the runtime can choose to make
available to other cores. The periodic load balancing is based on
the principle of persistence. Many HPC applications runs in a se-
ries of time steps and iterations, and have a repeated pattern of
communication and computation which can be a good indicator
to predict the future. Charm++ supports various load balancing
strategies based on this principle. These strategies migrate chares
across nodes based on load measurements of each PE.

Since inter-node load balancing is too costly to be called fre-
quently, we utilize the idle cycles on other cores on a node with
fine-grained tasks, which can redistribute loads within the node.
We also need to make sure to not incur task creation overhead when
tasks are not needed.

We support this approach with a method for users to create
potential tasks. We use the term potential tasks to distinguish the
application’s OpenMP directives, which specify what can be par-
allelized, from our runtime implementation, which dynamically
decides what is parallelized. This method builds on top of a task ab-
straction in Charm++ that integrates OpenMP with Charm++, such
that each object can create potential tasks via OpenMP parallel loop
constructs. Using this method, application developers can create
potential tasks that can dynamically utilize all cores to restore load
balance. We also develop multiple runtime scheduling strategies
for managing these potential tasks.

4 OPENMP INTEROPERATION WITH
CHARM++

In this section, we discuss the OpenMP thread model and our inte-
gration and optimization of its runtime features in Charm++.

4.1 Integration of OpenMP in Charm++

Common OpenMP runtime systems spawn their own threads in-
dependent of Charm++ worker threads. Without proper coordina-
tion between the two runtime systems the OpenMP and Charm++
threads will contend for hardware resources and lead to oversub-
scription of cores. To enable OpenMP to efficiently work with
Charm++, we modified an OpenMP library to use Charm++ worker
threads, so that the two runtimes can share resources.

We used GNU OpenMP 4.0, which is forked from GCC 4.9.3 and
also implemented the same work using the LLVM OpenMP runtime
library, which can work with GCC, ICC, and Clang on various envi-
ronments. First, we modified the OpenMP runtime to use Charm++
threads to execute its tasks. Instead of spawning new threads for
the execution of OpenMP tasks, our OpenMP runtime puts task de-
scriptors into Charm++ messages. These messages are pushed onto
a thread-local task queue that can be accessed by other threads
on the same node. Idle threads steal tasks from this task queue.
Because OpenMP is predominantly a synchronous programming
model, all OpenMP programs have an implicit synchronization

Integrating OpenMP into the Charm++ Programming Model

ESPM2’17, November 12-17, 2017, Denver, CO, USA

PE O PE 1

#pragma omp parallel for
for(i=0;i<n;i++)
{.....}

1 |

(D |Push OpenMP tasks into local task Q

L task Q 1 taska
7

#pragma omp parallel for
for(i=0;i<n;i++)

Node (SMP mode)

PE 2 PE 3

#pragma omp parallel for #pragma omp parallel for
for(i=0;i<n;i++) for(i=0;i<n;i++)

(...} (.

l task Q

Qi

(2 Steal tasks from neighboring PE when it becomeidle

Figure 1: Implementation of OpenMP for Charm++ using the task APL

point in termination. Without removing these implicit synchroniza-
tion points, the OpenMP tasks would make all Charm++ threads
wait at a number of barriers.

As all threads in Charm++ are both worker as well as master
threads, removing these barriers is necessary because otherwise this
can lead to a hang. To solve this issue, we eliminate all barriers in
OpenMP and replace them with atomic counters for each OpenMP
task collection. When a chare generates OpenMP tasks, it records
the number of tasks in its own team structure. Then, when other
chares attempt to steal tasks from a busy thread, they decrement
the appropriate counter to notify the master thread that its task is
going to be executed. All OpenMP tasks pushed into the task queue
can now be considered normal Charm++ messages, which can be
executed and/or migrated within a node.

Figure 1 shows how OpenMP interoperates with Charm++ when
Charm++ runs on a node with 4 PEs and use static scheduling
to split each chare’s task into OpenMP tasks. For the purpose of
simplicity, we show how the static schedule of OpenMP works in
this integrated runtime system. First, each chare splits its task into
as many OpenMP tasks as there are PEs on a node. The OpenMP
runtime puts each OpenMP task in a Charm++ message and pushes
all of the messages into the thread local task queue. An idle thread
can potentially steal a task from one of the busy threads on the
same node, thereby distributing the work.

4.2 Task Queue

To support tasks, we created a task queue [13] on each PE, which
is distinct from the normal message queue. The messages in the
message queue are meant for that specific PE, whereas the tasks
in the task queue can be stolen by different cores on a node. The

scheduler on the PE polls the local task queue and the message
queue for messages. We chose not to have a centralized task queue
at the node level because then we lose locality information and
there could be potential contention for the centralized queue. We
have a separate task queue on each PE, which is a single producer
multiple consumer queue for the fine-grained tasks. Whenever a PE
becomes idle, it randomly chooses a PE and steals tasks from that
PE’s task queue. This is similar to Cilk’s workstealing [4], except
that our scheduler also polls other queues, including a PE-specific
message queue for messages to chares assigned to that PE by the
periodic load balancer.

The task queue is implemented using the Chase-Lev [7] non-
blocking algorithm. The task queue is a double-ended queue. A
push(t) call enqueues a task at the tail of the queue. A pop() call
dequeues a task from the tail of the queue. A steal() call dequeues
from the head of the queue. The queue is a cyclic array of task
pointers with non-wrapping head and tail indices. A worker does a
push(t) by adding the task at the tail of the queue and increments
T, the tail pointer. A worker does a pop() by decrementing T. If it
detects that there could be a conflict, then it uses compare and swap
(CAS) to handle the conflict. A thief reads H and T and uses CAS
to atomically increment H and obtains the task.

The task descriptor contains details about the task such as the
object pointer, function pointer, parameters and an atomic variable.
The message enqueued into the task queue contains range param-
eters and a pointer to the common task descriptor. To minimize
the overheads of creating messages and task descriptors, we keep a
pool of task messages and descriptors which are reused.

ESPM2’17, November 12-17, 2017, Denver, CO, USA

4.3 Scheduling schemes of OpenMP for
Charm++

4.3.1 Basic scheduling schemes for OpenMP. The number of
messages created for OpenMP tasks resulted in overheads in mes-
sage creation and queue contention. We identified various oppor-
tunities for performance improvement and implemented them as
different scheduling schemes. In the OpenMP standard, there are
four kinds of scheduling schemes for OpenMP tasks. The first and
default scheduling policy in many implementations is static sched-
uling. static scheduling assigns the iterations of a for-loop to cores
in blocks of size number of iterations divided by the number of
physical threads in a node. This incurs no overhead due to task
creation and contention because it is done by the compiler. In the
dynamic schedule, threads in a team pick and execute next available
iterations. Dynamic scheduling incurs some overhead due to task
creation, contention of shared resources as well loss of locality. In
the guided policy, each thread in the team is assigned a chunk of iter-
ations proportional to the number of unassigned iterations divided
by the number of threads in a team. Whenever each thread in a team
finishes its assigned task, the next assigned chunk is determined in
this way. User can specify the minimum size of chunk in the guided
policy. The auto policy is specific to each implementation.

4.3.2 Changing the portion of stealable OpenMP tasks. We first
consider static scheduling and show how we minimize the over-
heads of our task scheduler. Although static scheduling avoids the
runtime overhead of dynamic and guided policies, static scheduling
can still cause significant overhead by the creation of excessive
numbers of messages. To minimize overheads of accessing the local
task queue, we make all threads keep a history vector to record the
ratio of stolen tasks to locally executed tasks. Using the moving av-
erage of the previous ratios in the history vector helps each thread
decide how many of the generated tasks it should push into its local
task queue to expose for work stealing. This reduces the overhead
for each thread to push and pop its own OpenMP messages into its
local task queue.

4.3.3 Changing the number of OpenMP messages created. We
use an atomic counter for the number of idle threads in the Charm++
runtime to prevent each thread from creating more messages than
the number of idle threads. This can reduce overheads in creating
messages significantly and efficiently. When the OpenMP runtime
splits each thread task into OpenMP tasks, it first inspects the idle
counter maintained by the runtime system. In addition to this value,
the OpenMP runtime also looks at the local history record of pre-
vious ratios of work stolen. These ratios represents how many of
tasks have been stolen by other threads. Then, when each thread
needs to split their task into at least the number of messages pro-
portional to the average of these previous ratios. In our integration
of OpenMP for Charm++, we use a bigger value of average ratio
in the history vector and the number of idle threads in the atomic
counter to decide how many messages to create. Using only the
counter may restrict parallelism at times because each thread may
lose the opportunity to receive help from other threads becoming
idle while its tasks are being executed.

Bak et al.

4.4 Overhead of the OpenMP integration

To measure the overhead of the fine-grained parallelism by the
OpenMP integration, we run a simple stencil application with
Charm++, Charm++/OpenMP on Intel Xeon E5-1620 v3. This ma-
chine has four physical cores and two threads per core. We applied
best thread affinity configuration for each case. And the size of
the matrix for stencil application is 4096 x 4096. This application
decomposes the matrix into 16 submatrices, each of the matrices is
4096 x 256. Figure 2 shows the result of this experiment. There’s

1.678 1.672 1.677

=) =
) = N}

Time per iteration(ms)
o
By

0
Charm Charm/OpenMP OpenMP

Figure 2: Performance of stencil application on Intel Xeon
E5-1620 v3.

no improvement of the Charm++/OpenMP over Charm++ because
this stencil application has balanced loads across PEs. So, there’s no
room for performance enhancement by redistributing load imbal-
ance through the fine-grained parallelism of the integrated OpenMP.
However, this experiment shows that OpenMP integration doesn’t
incur a significant overhead over pure OpenMP and the techniques
we mentioned above help minimize the overhead efficiently by cre-
ating OpenMP tasks on Charm++ only when they are considered
to be needed.

5 APPLICATION STUDY - LASSEN

We study the performance benefits of our new integrated runtime
system that combines the Charm++ distributed memory model
with the task model on a proxy application developed at Lawrence
Livermore National Laboratory, called Lassen. We compare the
performance of Lassen with and without the integrated OpenMP
task model. We use the OpenMP integration implemented on GNU
OpenMP library. And, the history scheme for OpenMP in conjunc-
tion with the when idle strategy, which resulted in the best perfor-
mance. As explained in 4.3, the integrated OpenMP runtime uses
a bigger value of the average number of OpenMP tasks stolen in
the history vector and the number of idle threads through the idle
threads counter as the number of OpenMP tasks to create. The use
of these two values helps create OpenMP tasks only when needed
without significant overhead.

Integrating OpenMP into the Charm++ Programming Model

Table 1: Values of the load imbalance metric A of Lassen over
the whole execution, at the cluster node and processing el-
ement (PE) levels. Lower values indicate better balance. For
GreedyLB, a load balancing period of 50 iterations is used.

Level NoLB GreedyLB GreedyLB+OpenMP interop

Node 47.77 %
PE 227.60 %

16.51 %
110.43 %

13.73 %
42.59 %

Lassen is an LLNL ASC proxy application for simulation of deto-
nation shock dynamics. It models wave propagation by tracking the
wave front. This application has significant load imbalance where
the load is concentrated just before and after the wave front. As
the wave front moves, computation load also shifts. We used the
Charm++ version of Lassen as our baseline for the experiments.
The input to the application is a Cartesian mesh subdivided into
domains and assigned to PEs. The number of domains used is 16
times the number of PEs.

We modified the baseline version of Lassen by adding two lines
of #pragma omp parallel for to two ’for’ loops. The reason
why we chose only two loops is that these are compute intensive,
while others are relatively more memory intensive. The parallelized
loops calculate the distance between points or doing computations.
More specifically, the loops not parallelized are moving data from
one vector to another or just searching data over the vectors. For
those memory intensive operations, more fine-grained parallelism
can make them slower because of increased memory traffic and
working set.

5.1 Load Imbalance

To formalize the load balance improvements of our proposal, we
measure the load imbalance of Lassen with different load balancers
and calculate the percent imbalance A [15] with the following equa-
tion:

_ (max(L)
B (avg(L)
In the equation, L represents the load vector of nodes or PEs. This
equation indicates the amount of imbalance, with higher values of
A indicating a higher imbalance, while a value of 0 indicates perfect

- 1) X 100% (1)

balance.

The values of this metric are shown in Table 1 over the complete
execution of Lassen, at the cluster node and processing element (PE)
levels.

Without a load balancer (No LB), there is significant load im-
balance across nodes and the load shifts between iterations. This
inter-node imbalance can be handled by running a coarse-grained
load balancer, such as the GreedyLB load balancer that is part of
Charm-++.

However, while the load across nodes is relatively balanced when
running with GreedyLB, the load of PEs within each node is still
imbalanced as indicated by the values in the table. One possible way
to handle this would be to call the load balancer more frequently.
Table 2 shows the timing for Lassen with different load balancing
periods of GreedyLB. We break down the total execution time into
time per step and load balancing time. When the load balancer

ESPM2’17, November 12-17, 2017, Denver, CO, USA

is called frequently, it improves the time per step but results in a
significant overhead.

Our approach is very well suited to handle this load imbalance
problem. Instead of performing load balancing more frequently, we
use tasks generated via our OpenMP integration. Table 1 shows
that the load distribution across nodes and PEs using our integrated
run-time system is much better. We can see that excess load is
spread to other PEs within the node, resulting in a much higher
overall balance compared to running with No LB and GreedyLB
only.

5.2 Performance Improvements

Performance experiments were performed on Blue Waters, which
is a Cray XE machine located at the National Center for Super-
computing Applications (NCSA). Each node contains two AMD
Interlagos 6276 processors with 8 Bulldozer cores. Each Bulldozer
core compute unit has 16 integer cores and 8 floating point cores.
We show results from our modified version of the GNU OpenMP
runtime integration.

We run Lassen to show the benefit of our work on Blue Waters
with and without GreedyLB. Figure 3 shows how much Lassen
performance is improved. GreedyLB can distribute load imbalance
across nodes quite well, as discussed in the previous subsection.
However, as we noted before, coarse-grained load balancing alone
cannot redistribute all of the existing load imbalance because of its
more significant overhead.

Figure 3 shows how the OpenMP integration can help distribute
this load imbalance within each node. Even only with the OpenMP

No LB Greedy LB

Greedy LB+OpenMP interop
160

No LB+OpenMP interop

140

120

100

80

TIme per step (ms)

60

40
128 256 512 1024

Number of cores

Figure 3: Strong scaling performance results of Lassen on
Blue Waters, comparing the original Charm++ and OpenMP
integration with GreedyLB and without LB.

ESPM2’17, November 12-17, 2017, Denver, CO, USA

Bak et al.

Table 2: Timing results for Lassen, without load balancer (No LB), and with the coarse-grained GreedyLB balancer that is run

with different periodicities (measured in time steps).

Measurement NoLB GreedyLB, period 20 GreedyLB, period 50 GreedyLB, period 100
All application time steps 100 s 70 s 69 s 72s
Load balancing time 0s 19s 8s 5s
Total execution time 100 s 89s 77 s 77s

integration, without any inter-node load balancing, the load im-
balance in Lassen is quite well redistributed and the performance
is improved by about 21% for 1024 cores. When combining the
GreedyLB balancer with the OpenMP integration, performance
is improved by 50% on 1024 cores. Compared to using GreedyLB
only, performance gains are 10%. These results show that it is im-
portant to consider intra-node imbalance when running on large
distributed systems. With our version of Charm++ integrated with
OpenMP, users can easily resolve load imbalance in their applica-
tion by adding simple flags of OpenMP, while they can redistribute
load imbalance across nodes by using coarse-grained load balancing
manually.

6 RELATED WORK

There has been extensive work studying the interoperation of MPI
and OpenMP (e.g. [18, 19]). The MPI+X model on its own has been
shown to improve load balance within each node [8]. We combine
a periodic measurement-based inter-node load balancing scheme
to attain approximate uniformity, with dynamic shared-memory
execution to smooth out residual imbalances. Recent work has ex-
plored the hybrid model in more detail, mixing static and dynamic
scheduling of work among cores on a node to improve the trade-
offs among overhead, locality, and load imbalance [11, 12]. Our
work extends these ideas by adaptively tuning the level of dynamic
scheduling to match its potential utility, thus reducing overhead
further.

More recently, the hybrid model has been increasingly used
with other shared memory programming models to handle within
node parallelism. OmpSs [6] introduced concurrent tasks on top of
OpenMP, with data dependences satisfied by MPI communication
operations and coordinated by its runtime system. Recent versions
of MPC bind an implementation of MPI that supports multiple
ranks in each OS process [17] to multi-threading via POSIX threads,
OpenMP, and Intel TBB. This paper moves in a similar direction, by
directly scheduling execution of various shared-memory tasks to
run on normal Charm++ worker threads, overlaid on the work/data
mappings generated by Charm++’s distributed memory load bal-
ancing infrastructure.

The approach of work-stealing task scheduling has been used
in Cilk [4], Intel TBB [16], OpenMP 3.0 [14] and Habanero [3].
The randomized work-stealing used in Cilk can result in loss of
locality. TBB has a mechanism to bind each loop iteration to the
same worker thread that previously executed that iteration, thereby
favoring temporal cache-reuse. The Habanero runtime system has
an adaptive locality-aware work-stealing scheduler [10] to increase
temporal data reuse.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new integrated runtime system that
combines the OpenMP runtime with the Charm++ distributed pro-
gramming model, with a focus on handling load imbalance. Our
proposal utilizes a relatively infrequent periodic assignment of
work to cores based on load measurement, in combination with
user created tasks to handle coarse-grained and fine-grained load
balancing together.

We integrate OpenMP with Charm++ so as to enable objects to
create potential tasks via OpenMP’s parallel loop construct. We have
shown that OpenMP can be embedded successfully to handle fine-
grained load balancing. Our experiments show that a combination
of within-node and across-node load balancing can improve the
performance of the Lassen proxy application by 10% to 20% at 1,024
cores compared to when one of them is used alone. Overall, when
using our integrated OpenMP runtime with Charm++’s existing
global load balancing support, Lassen performs 50% better than
without any load balancing at all.

This work has many opportunities for further improvement.
First, the task generation scheme we used currently supports rela-
tively flat set of tasks generated by parallel loops. A possible future
extension is to add support for tasks with dependencies, similar to
OmpSs [6], StarPU [2], and PaRSEC [5]. In addition, this work uses
randomized work-stealing algorithm that Cilk [4] proposed. This
algorithm is good for multicore processors having a few number of
cores but not optimal for manycore processors consisting of tens
of cores in hierarchical topology due to increasing migration and
interconnection cost across cores. The randomized work-stealing
can be replaced by topology aware hierarchical stealing.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Dept. of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-CONF-728277).

REFERENCES

[1] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon,
Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz
Wesolowski, and Laxmikant Kale. 2014. Parallel Programming with Migratable
Objects: Charm++ in Practice. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’14). 647-658.
Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2010. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and Experience,
Euro-Par 2009 best papers issue (2010). Accepted for publication, to appear.
Rajkishore Barik, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Yi Guo, David
Peixotto, Raghavan Raman, Jun Shirako, Sagnak Tasirlar, Yonghong Yan, et al.
2009. The Habanero multicore software research project. In Proceedings of the
24th ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications. ACM, 735-736.

—_
o,

—_
A

Integrating OpenMP into the Charm++ Programming Model

(4]

=

[10]

[11]

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multithreaded
Runtime System. In Proc. 5th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP’95. Santa Barbara, California, 207-216. MIT.
George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack] Dongarra. 2013. PaRSEC: Exploiting heterogeneity to enhance
scalability. Computing in Science & Engineering 15, 6 (2013), 36-45.

Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier Martorell,
Rosa M Badia, Eduard Ayguade, and Jesus Labarta. 2011. Productive cluster
programming with ompss. In Euro-Par 2011 Parallel Processing. Springer, 555—
566.

David Chase and Yossi Lev. 2005. Dynamic circular work-stealing deque. In
Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures. ACM, 21-28.

Julita Corbalan, Alejandro Duran, and Jesus Labarta. 2004. Dynamic load bal-
ancing of MPI+OpenMP applications. In Parallel Processing, 2004. ICPP 2004.
International Conference on. IEEE, 195-202.

Simplice Donfack, Laura Grigori, William D Gropp, and Vivek Kale. 2012. Hybrid
static/dynamic scheduling for already optimized dense matrix factorization. In
Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International.
IEEE, 496-507.

Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010. SLAW: a scalable
locality-aware adaptive work-stealing scheduler for multi-core systems. In ACM
Sigplan Notices, Vol. 45. ACM, 341-342.

Vivek Kale, Simplice Donfack, Laura Grigori, and William D Gropp. 2014. Light-
weight Scheduling for Balancing the Tradeoff Between Load Balance and Locality.

[12

[13
[14

[15

(17

[18

[19

]

]

ESPM2’17, November 12-17, 2017, Denver, CO, USA

(2014). Poster presented at SC’14.

Vivek Kale, Amanda Randles, and William D Gropp. 2014. Locality-Optimized
Mixed Static/Dynamic Scheduling for Improving Load Balancing on SMPs. In
Proceedings of the 21st European MPI Users’ Group Meeting. ACM, 115.
Harshitha Menon. 2016. Adaptive Load Balancing for HPC Applications. Ph.D.
Dissertation. Dept. of Computer Science, University of Illinois.

OpenMP ARB. 2008. OpenMP application program interface version 3.0. In The
OpenMP Forum, Tech. Rep.

Olga Pearce, Todd Gamblin, Bronis R. de Supinski, Martin Schulz, and Nancy M.
Amato. 2012. Quantifying the effectiveness of load balance algorithms. In 26th
ACM international conference on Supercomputing (ICS °12). 185-194.

Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing
Sciences in Colleges 23, 4 (2008), 298-298.

Marc Pérache, Patrick Carribault, and Hervé Jourdren. 2009. MPC-MPI: An
MPI Implementation Reducing the Overall Memory Consumption. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Proceedings
of the 16th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI 2009), Matti
Ropo, Jan Westerholm, and Jack Dongarra (Eds.). Lecture Notes in Computer
Science, Vol. 5759. Springer Berlin Heidelberg, 94-103.

Rolf Rabenseifner, Georg Hager, and Gabriele Jost. 2009. Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-Core SMP Nodes. In Proceedings
of the 2009 17th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP "09). IEEE Computer Society, Washington, DC,
USA, 427-436.

Lorna Smith and Mark Bull. 2001. Development of Mixed Mode MPI / OpenMP
Applications. Scientific Programming 9, 2,3 (Aug. 2001), 83-98.

	Abstract
	1 Introduction
	2 Charm++ Programming Model for Shared Memory
	3 Overview of our Proposal
	4 OpenMP Interoperation with Charm++
	4.1 Integration of OpenMP in Charm++
	4.2 Task Queue
	4.3 Scheduling schemes of OpenMP for Charm++
	4.4 Overhead of the OpenMP integration

	5 Application Study – Lassen
	5.1 Load Imbalance
	5.2 Performance Improvements

	6 Related Work
	7 Conclusions and Future Work
	References

