
Massively Parallel Simulations of Spread of
Infectious Diseases over Realistic Social Networks

Abhinav Bhatele†, Jae-Seung Yeom†, Nikhil Jain†, Chris J. Kuhlman∗, Yarden Livnat‡, Keith R. Bisset∗,
Laxmikant V. Kale§, Madhav V. Marathe∗

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
∗Biocomplexity Institute & Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 USA

‡Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112 USA
§Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA

E-mail: †{bhatele, yeom2, nikhil}@llnl.gov, ∗{ckuhlman, kbisset, mmarathe}@vbi.vt.edu

Abstract—Controlling the spread of infectious diseases in large
populations is an important societal challenge. Mathematically,
the problem is best captured as a certain class of reaction-
diffusion processes (referred to as contagion processes) over ap-
propriate synthesized interaction networks. Agent-based models
have been successfully used in the recent past to study such con-
tagion processes. We describe EpiSimdemics, a highly scalable,
parallel code written in Charm++ that uses agent-based modeling
to simulate disease spreads over large, realistic, co-evolving
interaction networks. We present a new parallel implementation
of EpiSimdemics that achieves unprecedented strong and weak
scaling on different architectures — Blue Waters, Cori and Mira.
EpiSimdemics achieves five times greater speedup than the second
fastest parallel code in this field. This unprecedented scaling
is an important step to support the long term vision of real-
time epidemic science. Finally, we demonstrate the capabilities
of EpiSimdemics by simulating the spread of influenza over a
realistic synthetic social contact network spanning the continental
United States (∼280 million nodes and 5.8 billion social contacts).

I. OVERVIEW OF THE PROBLEM

An epidemic is an occurrence of cases of illness, specified

health behavior, or other health related events clearly in excess

of normal expectancy in a community or region. Epidemics

caused by infectious diseases continue to take their toll on

our society [8]. For example, malaria is said to be the primary

cause of between 650,000 and 1.4 million deaths just in 2010.

Traditionally, mathematical and computational modeling of

epidemic diffusion has focused on coupled rate equations —

differential equation models for completely mixing popula-

tions, in which large groups of people interact with each

other [6]. Over the years, these models have been successful

in providing analytical expressions for statistical epidemic

parameters, such as the number of people infected, deaths, etc.

But they fail to capture the complexity of human behavior and

interactions that serve as a mechanism for disease spread.

An alternative approach uses a combination of network

theory and discrete event simulations to study epidemics

in large urban areas — the main idea is that a better

understanding of the characteristics of the social contact

network can give better insights into disease dynamics and

vaccination/quarantining strategies, which can be used in the

epidemic simulation. In this submission, we present a highly

scalable, parallel implementation of this alternative approach

called EpiSimdemics [11]. In EpiSimdemics, individuals in

the population, and each interaction between pairs of them are

modeled individually to simulate epidemic diffusion in social

contact networks. This is referred to as agent-based modeling.

EpiSimdemics leverages Charm++’s over-decomposition

and asynchronous execution to orchestrate a data-dependent

message-driven interaction of individuals [7]. High perfor-

mance is obtained by adaptive overlap of computation and

communication, automatic aggregation of fine-grained mes-

sages, and use of load balancing. We demonstrate strong and

weak scaling of EpiSimdemics using a year 2000 census-

based population dataset of continental United States (280

million people, >1 trillion person-to-person interactions over

180 days) to full-scale systems and achieve a simulation rate

of 57.8 ms per simulated day on 655,360 cores of Blue Waters.

At the highest scale, EpiSimdemics processes more than 100

billion interactions or edges per second.

II. APPLICATION SCENARIO AND CHALLENGES

Simulating epidemic diffusion over realistic social networks

in parallel is challenging for various reasons. First, the size

and scale of these systems is extremely large (e.g., pandemic

planning at a global scale requires models with 6 billion

agents). Second, the networks are highly unstructured and the

computations involve complicated dependencies, leading to

high communication cost and making standard techniques of

load balancing and synchronization ineffective. Third, individ-

uals are not identical — this implies that models of individual

behavioral representation cannot be identical. And most impor-

tantly, epidemics, the underlying interaction network, public

policies and individual agent behaviors co-evolve, making it

nearly impossible to apply standard model reduction tech-

niques that are successfully used to study physical systems.

In the EpiSimdemics model, a person interacts with another

person when they both visit a location at the same time.

The longer the interaction period, the higher the chance of

transmitting a disease if one person is infectious and the

other person is susceptible. This representation of interactions
between people as visits to locations avoids explicit messages

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.141

689

����

���

�

��

���

��� �� �� �� 	� �
� ���
�� ��	� ��
� �
	�

��
�
��
��
�	

���

�
�

��
��
�

����� �� �����

������ ������� ����������� � �! �	� �������"

#���
$���%�����

&���

����

���

�

��

��� �� �� �� 	� �
� ���
�� ��	� ��
� ����

��
�
��
��
�	

���

�
�

��
��
�

������ �	
����

�
���� �
����� ���	�����
� �����! �� ��������

����
���� ��
���

'���

Fig. 1. Strong scaling performance of EpiSimdemics on three platforms using two datasets. High efficiency is obtained on all machines to large core counts.

between every pair of interacting persons. We rely on a

bipartite graph between people and locations to represent the

social contact network and explicitly represent each individual

person and location in the input dataset. The main computation

involves processing visits, which is not expensive. As a result,

a large fraction of the time is spent in communication, unlike

physical simulation codes that are heavy on floating point

operations. Hence, EpiSimdemics is closer to parallel graph

analytics codes that spend most of their time in memory

accesses, integer operations and branching. All of these make

the problem extremely challenging to parallelize and scale out.

III. PERFORMANCE METRICS AND RESULTS

We use two metrics to evaluate and compare the scalability

of the code: time required to simulate one day (s/day) and

number of people-people interactions processed per second

(interactions/s). The first metric is calculated based on the total

time, T reported by the timer, as

Time per day, Td = T/d,

In this study, we use d=180 days for all the simulations.

The second metric, RI , the rate of processing interactions

is calculated by obtaining the total number of person-person

social contacts, NI (also referred to as interactions or edges)

reported by the code (summed over 180 days) and dividing it

by the total time T ,

RI = NI/T

This metric is similar to the performance metric used by the

Graph500 community — traversed edges per second (TEPS).

It should be noted that it would be unfair to compare the TEPS

reported for EpiSimdemics simulating real-world problems

with those of Graph500 benchmarks.

A. Experimental Setup

We use a realistic social contact network spanning the con-

tinental United States, synthesized using census and relevant

data [1]. This network has 280.4 million agents or humans

and 5.8 billion person-person social interactions or edges. We

construct a second dataset (US/4) which is one-fourth the size

of the full US dataset. The US/4 dataset includes 70.8 million

people of the states in the West Census region (Mountain and

Pacific divisions) plus Oklahoma, Kansas and Nebraska. All

runs simulate 180 days or 6 months of disease spread.

We conducted our experiments on three Cray and IBM

supercomputers: Blue Waters, a Cray XE6/XK7 at the National

Center for Supercomputing Applications (NCSA); Cori, a Cray

XC30 at The National Energy Research Scientific Computing

Center (NERSC); and Mira, an IBM Blue Gene/Q at the

Argonne Leadership Computing Facility (ALCF). We used

Charm++ version 6.7.0 for building EpiSimdemics.

B. Performance Results

Figure 1 presents scaling results of EpiSimdemics simulat-

ing the US and US/4 datasets on the three systems described

earlier. On each system, the simulation is performed on the

smallest core count on which the dataset fits in memory and

up to the largest number of cores available on the system. The

x-axis in these plots shows the number of cores and the y-axis

shows the time spent in simulating one day. On all machines

and for both datasets, high efficiency is obtained up to very

large core counts.

On Cori, for the US dataset, a speed up of 67.5× is obtained

with a 64× increase in core count from 512 to 32,768 cores,

i.e., we obtain super-linear speed up as we scale to two-

thirds of the full system. This perfect scaling is a result of

highly accurate load balancing and increased availability of

network bandwidth as we run on more nodes. Scaling to the

full Cori system (49,152 cores) further reduces the execution

time and provides the best performance of 11.5 seconds to

simulate 180 days (64.15 ms/day). This level of performance
is unprecedented for simulating the entire US population.

Even if we include the time for startup and file input/output,

we can complete the entire simulation in a few minutes.

Similar good performance is achieved for the US/4 dataset,

where perfect scaling is observed till 4,096 cores and the best

execution time of 8.29 seconds is observed on 49,152 cores

for simulating 180 days (46.06 ms/day).

On Mira and Blue Waters, which have lesser memory and

network bandwidth per core in comparison to Cori, execution

is comparatively slower on lower core counts. However, the

code scales with good parallel efficiency to hundreds of

690

���

�

��

���

����

��� �� �� �� 	� �
� ���
�� ��	� ��
� �
	��
��

�
!
"#

$%
��

��
��

��
	

��

�

�
�	

��
���

�	

�

�

����� �� �����

������ ������� ����������� � �! �	� �������"

����
$���%�����

����
���

�

��

���

����

��� �� �� �� 	� �
� ���
�� ��	� ��
� �����
��

��
�

��
�	

��
��

��
��

	

��

�
�

�	
��

���
�	

�

�

������ �	
����

�
���� �
����� ���	�����
� !�"�! #� ��������

$���
%��� ��
���

&���

Fig. 2. The processing of person-person edges or interactions, measured in terms of traversed edges per second (TEPS) is a key aspect of epidemic simulations.
On all systems, as the core count is increased, ∼100 billion interactions are processed per second (average over 180 simulated days).

thousands of cores. At 1,024 cores, EpiSimdemics takes

423.62 seconds on Cori, 898.44 seconds (2.1×) on Blue

Waters, and 2188.08 seconds (5.2×) on Mira to simulate 180

days of the US dataset. When using all cores of Blue Waters

(655,360 cores) and Mira (786,432 cores), the code takes only

10.4 and 12.3 seconds respectively to simulate 180 days of the

US dataset.

For the US/4 dataset, the time to simulate 180 days is 8.84

and 8.38 seconds on Blue Waters and Mira respectively, at the

largest core counts where we ran this dataset. It is to be noted

that strong scaling on very large counts of Blue Waters and

Mira is limited by the heavy-tailed degree and load distribution

of these datasets (Figure 3).

The processing of person-person edges or interactions is

a key aspect of epidemic simulations. Figure 2 shows that

EpiSimdemics provides good scalability when executed on

different systems. On 1,024 cores of Cori, EpiSimdemics

processes 2.4 billion interactions per second, which implies

processing the interaction of every person with ∼9 other people

per second. In contrast, at the largest core counts, it processes
∼100 billion interactions per second (TEPS). This implies that,

on an average, EpiSimdemics can simulate the interaction of

every person in the United States with ∼350 other people in a

second when the simulation is done on the full system (Cori,

Blue Waters, or Mira). This is a remarkable achievement to

support real-time epidemic science studies.

IV. THE SOLUTION AND INNOVATIONS

We now describe the parallel implementation of agent-based

modeling in EpiSimdemics to simulate epidemic diffusion, and

the optimizations to improve scaling and efficiency.

A. Overview of the Algorithm

EpiSimdemics uses a hybrid time-stepped and discrete-event

simulation approach. The time step is typically one simulated

day and within each time step, a discrete event simulation is

performed. There are two major computation phases in each

time step (while loop over number of simulated days) as

shown in Algorithm 1. In the first phase (lines 2–8), each

person, p, identifies locations to visit depending on the visit

schedule and the person’s health state, hp. Then, for each such

visit, it sends a message m to the destination location l. In the

second phase (lines 9–29), each location l processes received

visit messages by first converting them into events, i.e., arrival

and departure on a particular sublocation, ls (lines 10-14),

and then by executing a sequential discrete event simulation

(lines 15–28) to identify interactions and to compute disease

transmission (lines 21–26).

Algorithm 1: Simulating Epidemic Diffusion

1 while d ≤ dmax do
2 for p ∈ P do
3 Evaluate scenario trigger conditions;
4 Update health state hp, if necessary, and reevaluate triggers;
5 foreach v ∈ Vp (visit schedule of p) do
6 Send visit message m to location l;
7 end
8 end
9 for l ∈ L do

10 foreach m destined for l do
11 Determine the sublocation ls to visit;
12 Create an arrival and departure event for each visit;
13 Put the events into the event queue qe of l;
14 end
15 Reorder qe by the time of event in ascending order;
16 foreach e ∈ qe do
17 if e is arrival then
18 Put p into sublocation ls;
19 else
20 Remove p from sublocation ls;
21 foreach p′ currently in ls do
22 Compute disease transmission probability q

between p′ and p;
23 if q > threshold then
24 Send infection message to the infected

person (p or p′);
25 end
26 end
27 end
28 end
29 end
30 d++;
31 end

In the parallel implementation of Algorithm 1, all the

people and locations in the input population data are dis-

tributed among all processes. Each phase generates fine-

grained communication during the time step and results in

691

�����
�����
�����
�����
�����
�����
����

�����
����	

� ���
��

� ��	� �
��

�
��

��
��
��

	

�
��

�
��

���
��

��

�

��
	�
��

��
� ������� ������ ��
����� �� ������ ��� ��� ���
"

� " !� �"#� ���� ������ �����������

�����
�����
�����
�����
�����
�����
����

�����
����	

� 	� �
� ��� ���

�
��

��
��
��

	

�
��

�
��

���
��

��

�

��
	�
��

���� ����	
�������
 �����

��� ���������
��
��� �������
���� �����
���������

�����

�����

�����

�����

�����

�����

����

�����

� ���
�� �
� ���� �
��

�
��

��
��

�	

�

�
�

�
��

���
��

��
��

��

�
��

��
� �����������
�� �����

��� ������������ ���� ���� �!����
 �
�
�"��� �������
��

Fig. 3. Histograms showing the heavy-tailed distribution of the input data w.r.t. (a) vertex degree (number of visits per location), (b) estimated computational
cost of home locations, (c) estimated computational cost of non-home locations (such as schools, shops etc.)

visit and infection messages being sent to remote locations and

people respectively. Since the number of visit and infection

messages is not known apriori, we use quiescence detection

provided by Charm++ to ensure that all messages have indeed

been received. Computation in each phase can be performed

in parallel on all processes and is scheduled adaptively by

Charm++ on message arrival.

B. Performance Optimizations

The initial distribution of people and locations to processes

should aim to optimize data locality and balance the amount

of computation and communication among all processes. Op-

timizing data locality requires the placement of interacting

people and locations on the same or “nearby” processes (on the

same compute node). Balancing the computational and com-

munication load among processes requires estimating the work

and communication associated with each person and location.

Both of these tasks are challenging due to the heavy-tailed

distribution of the population data w.r.t the location vertex

degree (number of people visiting each location, Figure 3(a))

and w.r.t. the computational cost of the locations (Figures 3(b)

and (c)). Some locations are visited by a significantly large

number of people, increasing their computational and com-

munication cost. Their large cost also introduces challenges

for load balancing due to a large minimum grain size.

Locality-aware Data Distribution: The default data distri-

bution in EpiSimdemics uses a round-robin scheme, which

is good for load balancing without requiring any information

about the data or the platform. This scheme has data locality

issues because interacting people and locations might end up

on different processes. In order to optimize data locality, we

have used graph partitioning to partition the bi-partite graph

of people and locations in the past [11]. However, due to time

constraints, this partitioning was done offline and required

partitioning the input data for each node count that we wish

to run on. In order to eliminate these restrictions, we have

developed a fast online scheme that exploits the ZIP code of

locations to co-locate geographically nearby locations on the

same or nearby processes.

This ZIP code based data distribution is performed at

runtime after the input data is read and does not require any

offline data processing. The idea is simple — all locations are

sorted by their ZIP code with the assumption that nearby ZIP

codes represent areas that are close on the map. This is akin

to using space filling curves for linearizing and distributing

data in three-dimensional physical simulation codes while

maintaining data locality. After the initial sorting by ZIP

codes, locations are divided among the processes based on an

estimated cost to achieve computational load balance. Figure 4

compares the performance improvements from using the new

ZIP code based data distribution and the default round-robin

scheme. On Blue Waters, the new scheme leads to performance

improvements between 35 and 44% at different core counts.

���

�

��

���

��� �� �� �� 	� �
� ���
�� ��	�

��
�
�
�!
�	

"
!��

�
�

��
��
�

������ �	 �����

����#������ ������ ��$ ��#� ����# #����������� �%#�� $�����%

����#������
��$ ��#� ����#

Fig. 4. Performance impact of using different data distribution schemes

Cost Model for Load Balancing: The number of locations

assigned to each process depends on an estimated cost of the

computation and communication associated with each loca-

tion. In [11], we used an architecture-specific cost model that

is a function of the number of visits and interactions to each

location. When we started running on multiple architectures,

we realized that the number of visits is a good indicator of the

architecture-independent cost of the work or load associated

with each location. Further analysis showed that the cost

of home locations is better correlated with the number of

people attached to each home location than the number of

visits. Home locations refer to the locations that are homes

as opposed to non-home locations such as schools, shops, etc.

Hence, in this work, we use a hybrid cost model in which the

estimated cost of a home location is the number of associated

people and that of a non-home location is the number of visits.

Figure 5 presents the performance impact of using different

cost estimates for balancing load. At 262,144 cores on Mira

692

(Blue Gene/Q), the performance based on the hybrid cost is

better than that from the visit cost by nearly 2.5×.

����

���

�

��

���

�� �� �� �� ��� ��� ��� ���� ����

�	

��
�!
		

"
!	

�
�

��
��
�

�
���� �� �����

���� ��������
��� ��� ������������
���� ������

���� !����
���� "#����

Fig. 5. Performance impact of cost estimate used for load balancing

Communication Optimizations: The first phase of the simu-

lation sends many small visit messages. In order to minimize

the overhead of sending small messages and to utilize the

network better, we use the general purpose TRAM library in

Charm++ to aggregate messages. TRAM combines small mes-

sages and routes the aggregated messages on a virtual mesh

topology. This optimization leads to significant performance

improvements at high core counts. Another optimization to

facilitate overlap of communication and computation involves

alternating the creation and sending of batches of visit mes-

sages on each process. This ensures that we do not saturate

the network with messages in bursts.

V. IMPACT OF THE SOLUTION

The excellent efficiency and extreme scaling of EpiSim-

demics has significant implications for the epidemic studies

that can be performed using it. Real time planning and

response by governments during an epidemic outbreak often

require simulation turn around times of less than 24 hours. We

have provided this type of support to federal agencies during

H1N1 and Ebola outbreaks. It is critical to not only have the

capabilities to assess the effects of different interventions on

national and international populations, but it is also impor-

tant to perform these computations quickly, so that multiple

scenarios can be evaluated. Rapid response also enables the

team to incorporate new information in to the simulation as it

becomes available, which sometimes happens on a daily basis.

Here we present a representative study of the impact of vac-

cination on controlling an epidemic outbreak. All simulations

are seeded stochastically, but all use the following process. In

each of the first four days of a simulation, agents in two or

three U.S. cities are exogenously infected with a probability

of 5 × 10−6. These cities were chosen because they host

the busiest airports in the country and thus represent a wide

range of initiation sites that might arise from incipient virus

spreading from air travel. From day 5 onward, all infections

result only from susceptible agents contracting the virus from

infectious ones while they are co-located.

Interventions are implemented as follows. When 1% of

the population (about 2.8 million people) is infected, the

intervention is triggered. Each person still in the susceptible

state is vaccinated with probability, p. We use p = 0.10, 0.25,

and 0.50, in addition to the base case of no intervention (p =
0.0). Each person that is vaccinated has full immunity, i.e., he

or she cannot contract the virus and hence also cannot transmit

it to others.

Figure 6 provides the simulation results — the number

of currently infectious people as a function of time, with

error bars denoting ±1 standard deviation over 20 repetitions

of each scenario. Vaccinating 10% (i.e., p = 0.10) of the

remaining susceptible population reduces the peak number of

currently infectious people by about 23% at day 63. Vaccinat-

ing 50% of the remaining susceptible population reduces the

peak number of currently infectious people by about 80%. In

the latter case, there is a sufficient number of vaccinations to

decelerate the epidemic almost immediately. Figure 7 shows

the disease spread for p = 0.10 on simulated day 56, which

is the day when the rate of infection peaks for the base case

of no intervention.

�
�����
�����
�����
�����
�����
�������
�������
�������
�������
�����

� �� �� �� �� ��� ��� ��� ��� ����
�

��
�
�	

�
��
��
�
�

��
	�

�
��

��
��
��

�

	
��
���� ���

������ �� ����
���
��� �� ������ ��
�������

� � ���
� � ���

� � ���
� � ��

Fig. 6. Simulation results of a vaccination study performed using EpiSim-
demics. The plot shows the number of infectious people per day as the
simulation progresses for different vaccination scenarios.

Fig. 7. Simulation results of a vaccination study performed using EpiSim-
demics. The visualization shows the geographical spread of the infection on
day 56 for p = 0.10.

Being able to run one repetition of an intervention scenario

described above in about 6 minutes on 16,384 cores of Blue

Waters is a key element of this process. In the study described

693

TABLE I
REPORTED PERFORMANCE OF STATE-OF-THE-ART SIMULATORS AND COMPARISON WITH THIS WORK

Code No. of agents Simulated period Machine No. of cores Simulation time

FRED [5] 289 million Unknown Blacklight @ PSC 16 threads 4 hours
GSAM [9] 262.9 million Unknown 2.4 GHz Opteron 8216 4 cores 72 minutes
SPaSM [4] 281 million 180 days 2.4 GHz Intel Xeon 256 cores 8–12 hours
EpiSimdemics [11] 280.4 million 120 days Blue Waters @ NCSA 16,384 cores 134.89 s
This work 280.4 million 180 days Blue Waters @ NCSA 655,360 cores 10.41 s

here, we performed 20 repetitions of each vaccination scenario

(p = 0.0, 0.10, 0.25, and 0.50), resulting in 80 simulations

in total. If we use all 655,360 cores of Blue Waters, we

can set up an ensemble run which simulates 40 simulations

in parallel on 16,384 cores each. This would allow us to

complete this entire study in 12 minutes using most of the

Blue Waters cores. This suggests that we can simulate, for

instance, 20 different intervention scenarios in an hour and

240 scenarios with 5 parameters (each of which can take 3

distinct values) in half a day. This kind of epidemic simulation

capability is unprecedented and can be extremely valuable
to epidemiologists and governments in preventing epidemic

outbreaks. To the best of our knowledge, no other simulation

tool has this level of performance and turn around times.

VI. COMPARISON TO RELATED APPROACHES

It is difficult to compare the performance of large, agent-

based, epidemic simulation systems because most publica-

tions in the field do not include detailed high performance

computing data (Table I). The Framework for Replication

of Epidemiological Dynamics (FRED) [5] uses OpenMP for

shared memory concurrency. On the supercomputer Blacklight

(an SGI Altix UV 1000) at the Pittsburgh Supercomputer

Center, a simulated pandemic over the entire U.S. population

takes approximately four hours using 16 threads.

A Java-based, distributed agent-based epidemic simulator

called the Global-Scale Agent Model (GSAM) is described

in [9]. It is designed to simulate a world-wide epidemic with

some 6 billion agents. A simulation of 262.9 million agents,

using two dual-core 2.4 GHz Opterons completes in 4321

seconds and achieves 0.734 million bps. Germann et al. [4]

performed agent-based simulations on a 281 million synthetic

population of the U.S. They used the Scalable Parallel Short-

range Molecular dynamics code (SPaSM), which is a C and

MPI-based simulator. They quote a typical production run as

a single simulation on 256 2.4 GHz compute cores of an

Intel Xeon-Myrinet cluster. On this system, a representative

run took 8 to 12 hours to simulate 180 days.

Perumalla and Seal [10] have performed distributed epi-

demic simulations on multiple supercomputers. Their epidemic

model is based directly on prior EpiSimdemics work [2].

Their simulation engine employs an optimistic discrete-event

approach that includes reverse computations. On an 8,192-

core Blue Gene/P system, they achieved a speedup of 5,500

on 8,192 cores. With a Cray XT5 system, using 65,536 cores,

they attained a speedup of over 10,000.

Prior works on EpiSimdemics [2], [11] in addition to

EpiSim, which simulated epidemics in Portland, Oregon [3],

are most closely related to the current work. Marked improve-

ments in performance and scalability of EpiSimdemics were

achieved with a re-implementation that uses the Charm++

runtime system [7]. This version surpassed the speedup at-

tained in Perumalla and Seal [10] by >5× by achieving a

speedup of 58,649 on 360,448 cores (16% efficiency) on a

Cray XE6 [11]. The current version obtains a speedup of

182,073 (23% efficiency) on 786,432 cores of Blue Gene/Q.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. DOE by LLNL

under Contract DE-AC52-07NA27344 (LLNL-CONF-690723), and was sup-

ported in part by DTRA (CNIMS HDTRA1-11-D-0016-0001, HDTRA1-

11-1-0016), and NSF (NetSE CNS-1011769, SDCI OCI-1032677, MIDAS

5U01GM070694-11, DIBBs ACI-1443054, Big Data IIS-1633028). The au-

thors thank Bill Kramer, Greg Bauer, Sharif Islam, Richard Gerber, Woo-Sun

Yang, Christopher Knight, Scott Futral and Greg Tomaschke. This research

used Blue Waters, supported by NSF (OCI-0725070 & ACI-1238993) and

the state of Illinois; and resources of the NERSC Center and ALCF, DOE

Office of Science User Facilities supported by the U.S. DOE under Contracts

DE-AC02-05CH11231 and DE-AC02-06CH11357 respectively.

REFERENCES

[1] C. Barrett, R. Beckman, M. Khan, V. A. Kumar, et al. Generation and
analysis of large synthetic social contact networks. In WSC, 2009.

[2] C. Barrett, K. Bisset, S. Eubank, X. Feng, and M. Marathe. EpiSim-
demics: an Efficient Algorithm for Simulating the Spread of Infectious
Disease over Large Realistic Social Networks. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[3] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang. Modelling disease outbreaks in realistic
urban social networks. Nature, 429:180–184, 2004.

[4] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken. Mitigation
strategies for pandemic influenza in the united states. Proc. of the
National Academy of Sciences, 103(15):5935–5940, 2006.

[5] J. J. Grefenstette et al. Fred (a framework for reconstructing epidemic
dynamics): an open-source software system for modeling infectious
diseases and control strategies using census-based populations. BMC
Public Health, 13(1):1–14, 2013.

[6] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42:599–653, 2000.

[7] L. V. Kale and A. Bhatele, editors. Parallel Science and Engineering
Applications: The Charm++ Approach. CRC Press, Oct. 2013.

[8] N. M. Molinari, I. R. Ortega-Sanchez, M. L. Messonnier, W. W.
Thompson, P. M. Wortley, E. Weintraub, and C. B. Bridges. The annual
impact of seasonal influenza in the US: Measuring disease burden and
costs. Vaccine, 25(27):5086–5096, 2007.

[9] J. Parker and J. M. Epstein. A distributed platform for global-scale agent-
based models of disease transmission. ACM Trans. Model. Comput.
Simul., 22(1):2:1–2:25, Dec. 2011.

[10] K. S. Perumalla and S. K. Seal. Discrete event modeling and mas-
sively parallel execution of epidemic outbreak phenomena. Simulation,
88(7):768–783, July 2012.

[11] J. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V. Kale,
M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski.
Overcoming the scalability challenges of epidemic simulations on Blue
Waters. In 28th IEEE International Parallel & Distributed Processing
Symposium (IPDPS), 2014.

694

