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Motivation: additional capabilities and code reuse 

• Multi-physics modeling and coupled simulations require 
sophisticated techniques, but…

• Most applications developed in a single parallel language
• Limited features
• No code reuse across languages

• Interoperation of  languages in an application
• MPI + X, where MPI is across nodes and X is within
• MPI + Charm++ : MPI and Charm++ everywhere! 

2



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

3



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

‣ Fundamental design attributes 
➡ Overdecomposition 
➡ Asynchronous message 

driven execution 
➡ Migratability

‣ C++ objects based

3



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

‣ Fundamental design attributes 
➡ Overdecomposition 
➡ Asynchronous message 

driven execution 
➡ Migratability

‣ C++ objects based

‣ Driven by an adaptive runtime 
system
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Features: comp-comm overlap, load balancing, introspection…

4

Message-driven 
execution 

Migratability 

Introspective and 
adaptive runtime 

system 

Scalable Tools 

Automatic overlap of 
Communication and 

Computation  

Emulation for 
Performance 
Prediction 

Fault 
Tolerance 

Dynamic load balancing 
(topology-aware, scalable) 

Temperature/Power/Energy 
Optimizations 

Compositionality 

Over-decomposition 

Shrink and Expand 



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Features: comp-comm overlap, load balancing, introspection…

4

Message-driven 
execution 

Migratability 

Introspective and 
adaptive runtime 

system 

Scalable Tools 

Automatic overlap of 
Communication and 

Computation  

Emulation for 
Performance 
Prediction 

Fault 
Tolerance 

Dynamic load balancing 
(topology-aware, scalable) 

Temperature/Power/Energy 
Optimizations 

Compositionality 

Over-decomposition 

Shrink and Expand Applications: NAMD, ChaNGa, 
OpenAtom, EpiSimdemics, 
ClothSim, BRAMS, and many 
more…



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Related Work
• Harper et al. : PVM in Legion environment 

• MetaChaos : HPF + Chaos + pC++ 

• Kale et al. : MPI, PVM, and Charm++ on Converse 

• OpenMP + MPI 

• Dinan et al. : MPI + UPC 

• Zhao et al. : Active messages in MPI
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Novelty: control flow, code reuse, and performance studies

• The control flow styles for MPI and Charm++ are different 
• MPI is user-driven, while Charm++ is system-driven 

• Minimal (re)implementation of  languages 

• Focus on reuse of  existing code with minor changes! 

• In contrast to interoperation via reimplementing MPI on 
Converse, this scheme works with any MPI  

• Demonstration via performance studies at scale
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Control flow management in MPI vs Charm++

Concurrent Threads: execute each 
module/language in its own home 
thread 

Pros: Easy to understand and 
implement 

Cons:  
• Thread scheduling overhead 
• Sub-optimal scheduling 
• Adaptive scheduling requires 

significant code changes
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Flow management solution II: user controlled transfer 

Exposing the Charm++ 
scheduler at a coarse granularity 

Pros:  
• Eliminates the thread overheads 
• Reuse of  existing code is easy 

Cons:  
• Switching decisions by user (or is 

it a disadvantage?) 
• Inter-module overlap is absent
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Language APIs: additions to enable interoperation

๏ Initialize: set up to create a module/language instance 
➡ MPI_Init/Comm_create, CharmLibInit

๏ Execute: make progress 
➡ Implicit in MPI, StartCharmScheduler

๏ Transfer: stop execution 
➡ Implicit in MPI, StopCharmScheduler/CkExit

๏ Clean up: destroy the instance 
➡ MPI_Comm_free, CharmLibExit
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MPI code example: create language instances and execute

#include "mpi-interoperate.h"

int main(int argc, char **argv) {
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
  MPI_Comm_split(MPI_COMM_WORLD, myrank%2, myrank, &newComm);
  if(myrank % 2) {
    // Create Charm++ instance on subset of processes
    CharmLibInit(newComm, argc, argv);
    StartCharm(16); // Call Charm++ library
    CharmLibExit(); // Destroy Charm++ instance
  } else {
    // MPI work on rest of the processes
  }
  MPI_Finalize();
}
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Charm++ code example: interface function

#include "mpi-interoperate.h"

// invoked from MPI, marks the beginning of Charm++
void StartCharm(int elems) {
  if(CkMyPe() == 0) {
    workerProxy.StartWork(elems);
  }
  StartCharmScheduler();
}

// Charm++ function that deactivates scheduler
void Worker::StartWork(int elems) {
  // Charm++ work on a subset of processes
  CkExit();
}

11



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division
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Data Sharing and Rank Mapping            

• Data Sharing 

➡ Shared memory pointer-based 

➡ Data repository 

• Rank Mapping - Dinan et al. for MPI + UPC 

➡ One to one 

➡ Many to one 

➡ One to none
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Charm++ & MPI: Combining the Best of Both Worlds

Application Studies
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CHARM: scaling bottleneck caused by global sorting

๏ CHARM is a cosmology code based on Chombo (MPI) 
‣ Non-uniform particle distribution  
‣ Load balancing and locality requires global sorting every step
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CHARM: scaling bottleneck caused by global sorting

๏ CHARM is a cosmology code based on Chombo (MPI) 
‣ Non-uniform particle distribution  
‣ Load balancing and locality requires global sorting every step
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Eliminating bottleneck via a high performance sorting library
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Eliminating bottleneck via a high performance sorting library

‣ What does efficient sorting need? 
➡ Asynchrony and non-blocking communication 
➡ Overlap of  local sorting with communication

‣ Option 1: Implement a new MPI based code and optimize it!

‣ Option 2: Reuse an existing sorting library 
➡ HistSort - Highly scalable sorting library in Charm++ 

(Solomonik et al.)
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Using HistSort in CHARM: time sharing MPI and Charm++

/* CHARM code that prepares the input */
...
@195 lines of Multi-way Merge sort in MPI@
/* Computation code in CHARM */
...

---------------------------------------------------

/* CHARM code that prepares the input */
...
// call to HistSort
HistSorting<key_type, std::pair<partType,
 char[MAX_PART_SZ]>>(loc_s_len, dataIn,     
 &loc_r_len, &dataOut);     
/* Computation code in CHARM */
...
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Interoperable HistSort library: minor changes lead to reuse

// interface function for HistSort
template <class key, class value>
void HistSorting(int input_elems_, kv_pair<key, value>* dataIn_, int * 
output_elems_, kv_pair<key, value>** dataOut_) {
  // store parameters to global locations
  dataIn = (void*)dataIn_;
  dataOut = (void**)dataOut_;
  in_elems = input_elems_;
  out_elems = output_elems_;
  // initiate message to main object
  if(CkMyPe() == 0) {
    static CProxy_Main<key,value> mainProxy = 
                              CProxy_Main<key,value>::ckNew(CkNumPes());
    mainProxy.DataReady();
  }
  StartCharmScheduler();
}
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Weak scaling: time spent in sorting increases slowly
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Strong scaling: 48x speed up on 16k cores of  Hopper
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EpiSimdemics: IO leads to performance and productivity loss

• Agent-based simulator used to study spread of  contagious 
diseases over social networks, implemented in Charm++

• Requires reading many large input files: an hour long startup! 
• Cause: sequential input

• Many large output files, written periodically 
• Writes to multiple files, aggregates later 
• Limited number of  allowed open file descriptors prevents 

execution
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MPI IO with EpiSimdemics

• MPI IO - portable, often vendor-implemented 

• Use of  MPI collectives to aggregate IO meta-data 

• IO module executed in a hybrid manner with rest of  the code

22



Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Input performance: input time reduced to less than 10s
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Output performance: write to single file even on large #cores
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Application Library Productivity Performance

CHARM HistSort 195 lines removed 48x speed up in sorting

EpiSimdemics MPI IO Writes to a single file 256x faster input

NAMD FFTW 280 lines reduction Similar performance

Load balancing 
framework ParMetis Parallel graph 

paratitioning Faster applications
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Conclusion
• Interoperating Charm++ and MPI is easy 

• Leads to several benefits 

• Available in production version of  Charm++ along with any 
MPI implementation:  

• http://charmplusplus.org 

• http://charm.cs.illinois.edu/manuals/html/charm++/25.html 

Questions
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