Charm++ & MPI:
Combining the Best of
Both Worlds

IPDPS: May 27, 2015

Nikhil Jain, Abhinav Bhatele, Jae-Seung Yeom,
Mark F. Adams, Francesco Miniati, Chao Mei,
Laxmikant V. Kale

I

Motivation: additional capabilities and code reuse

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Motivation: additional capabilities and code reuse

* Multi-physics modeling and coupled simulations require
sophisticated techniques, but...

* Most applications developed in a single parallel language
» Limited features

 No code reuse across languages

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Motivation: additional capabilities and code reuse

* Multi-physics modeling and coupled simulations require
sophisticated techniques, but...

* Most applications developed in a single parallel language
» Limited features

 No code reuse across languages

» Interoperation ot languages in an application

« MPI + X, where MPI is across nodes and X 1s within
- MPI + Charm++ : MPI and Charm++ everywhere!

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

/ Parallel Address Space J

» Fundamental design attributes @ @ [EJ ©

= Overdecomposition

= Asynchronous message
driven execution

= Migratability

» C++ objects based

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

J ! Parallel Address Space
» Fundamental design attributes © © © o
. B © H LA
= Overdecomposition
- AsynChronouS message Processor 1 Processor 2
driven execution _— —
= Migratability —_ coz " S
l / Al2] l N A - - - Al2] Al1]
X Cn 4l k\‘
, 44 . C11,0 AlT] <
C++ objects based N, oy, \
Bio] |4~] n.2 . o .l
» Driven by an adaptive runtime N, e
SYS tem Processor 3 Processor 4

User View and System View

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Features: comp-comm overlap, load balancing, introspection...

Scalable Tools

Automatic overlap of
Communication and
Computation

Compositionality

Emulation for
Performance
Prediction

Fault
Tolerance

Shrink and Expand

Dynamic load balancing
(topology-aware, scalable)

Temperature/Power/Energy
Optimizations

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Features: comp-comm overlap, load balancing, introspection...

Scalable Tools

o

Automatic overlap of
Communication and

Computation

Compositionality

Emulation for
Performance
Prediction

N

Fault
Tolerance

Shrink and Expand

P

Applications: NAMD, ChaNGa,
(omolons e sealab9 OpenAtom, EpiSimdemics,
Temperature/Power/Energy C].O th81m) BRAMS) aﬂd maﬂy

Optimizations
more...

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Related Work

» Harper et al. : PVM 1n Legion environment

* MetaChaos : HPF + Chaos + pC++

- Kale et al. : MPI, PVM, and Charm++ on Converse
* OpenMP + MPI

* Dinan et al. : MPI + UPC

* Zhao et al. : Acttve messages in MPI

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Novelty: control tlow, code reuse, and performance studies

* The control flow styles for MPI and Charm++ are different

» MPI is user-driven, while Charm++ 1s system-driven
- Minimal (re)implementation of languages
» TFocus on reuse of existing code with minor changes!

* In contrast to interoperation via reimplementing MPI on
Converse, this scheme works with any MPI

- Demonstration via performance studies at scale

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Control tlow management in MPI vs Charm++

—
Network
Progress
USﬁr cvlsl Charm++ RTS
m?l esh' N selects the user
le Isw LC code that will
rives the execute next
network
Y Y

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Flow management solution I: concurrent threads

Concurrent Threads: execute each
module/language in its own homze

thread
—>
Pros: Easy to understand and
” Network
1mplement Progress
User code
Charm++ RTS

COHS: makes N.IPI selects the user

. cdal_ls wr;;‘ch code that will
* Thread scheduling overhead rives the execute next
* Sub-optimal scheduling \J \J

» Adaptive scheduling requires

significant code changes

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Flow management solution II: user controlled transfer

Exposing the Charm++
scheduler at a coarse granularity

— e o e e o e o o o e

Pros: | MPIModule ' - _______
1 . Y) '
 Eliminates the thread overheads ()&% | Charm I_/Ic_)(iu_le_:
. ° . l

* Reuse of existing code is easy ' MPI Module f//éi____@___\
S TJCharm Module:
' _MPI_Module _ S !

Cons: ol

 Switching decisions by user (o7 zs
it a disadvantage?)
 Inter-module overlap 1s absent

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

e Initialize: set up to create a module/language instance

= MPI Init/Comm_create, Charml.iblnit

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

e Initialize: set up to create a module/language instance

= MPI Init/Comm_create, Charml.iblnit

e Execute: make progress
= Implicit in MPI, StartCharmScheduler

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

e Initialize: set up to create a module/language instance

= MPI Init/Comm_create, Charml.iblnit

e Execute: make progress
= Implicit in MPI, StartCharmScheduler

e Transfer: stop execution
= Implicit in MPI, StopCharmScheduler/CkExit

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

e Initialize: set up to create a module/language instance

= MPI Init/Comm_create, Charml.iblnit

e Execute: make progress
= Implicit in MPI, StartCharmScheduler

e Transfer: stop execution
= Implicit in MPI, StopCharmScheduler/CkExit

@ Clean up: destroy the instance
= MPI Comm_free, CharmIlibExit

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

MPI code example: create language instances and execute

#include "mpi-interoperate.h"

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_spli1t(MPI_COMM_WORLD, myrank%Z2, myrank, &newComm);
1f(myrank % 2) {
// Create Charm++ instance on subset of processes
CharmLibInit(newComm, argc, argv);
StartCharm(16); // Call Charm++ library
CharmLibExit(); // Destroy Charm++ instance
} else {
// MPI work on rest of the processes

Iy
MPI_Finalize(Q);

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++ code example: interface function

#include "mpi-interoperate.h"

// invoked from MPI, marks the beginning of Charm++
vold StartCharm(int elems) {
1f(CkMyPe() == 0) {
workerProxy.StartWork(elems);

}
StartCharmScheduler();

¥

// Charm++ function that deactivates scheduler
void Worker: :StartWork(int elems) {
// Charm++ work on a subset of processes
CkEx1t();

¥

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

(a) Time Division

Bl Charm++

H B
o | f0 88

Time

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

(a) Time Division (b) Space Division

Bl Charm++

Time

]

L]

g B]

MPI I!.. I
(N

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

(a) Time Division (b) Space Division (c) Hybrid

Bl Charm++

Time

]

L]

g B]

MPI I!.. I
(N

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Data Sharing and Rank Mapping

» Data Sharing
= Shared memory pointer-based

= ata repository

- Rank Mapping - Dinan et al. for MPI + UPC
= (One to one
= Many to one

= (One to none

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Application Studies

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

CHARM: scaling bottleneck caused by global sorting

© CHARM is a cosmology code based on Chombo (MPI)

» Non-uniform particle distribution

» Load balancing and locality requires global sorting every step

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

CHARM: scaling bottleneck caused by global sorting

© CHARM is a cosmology code based on Chombo (MPI)

» Non-uniform particle distribution

» Load balancing and locality requires global sorting every step

Baseline performance of CHARM on Cray XE6

IOOf ... Amount Of time Spent in
o— —o— —o sorting increases, while time
" : Advance —@— Pt constant
E Multiway-Merge Sort - -4&-- Pt
I E_————A¢'
T e Scaling Bottleneck!
0.| A== | ' '

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

» What does efficient sorting need?

= Asynchrony and non-blocking communication

= Overlap ot local sorting with communication

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

» What does efficient sorting need?

= Asynchrony and non-blocking communication

= Overlap ot local sorting with communication

» Option 1: Implement a new MPI based code and optimize it!

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

» What does efficient sorting need?

= Asynchrony and non-blocking communication

= Overlap ot local sorting with communication

» Option 1: Implement a new MPI based code and optimize it!

» Option 2: Reuse an existing sorting library

= HistSort - Highly scalable sorting library in Charm++
(Solomonik et al.)

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Using HistSort in CHARM: time sharing MPI and Charm++

/* CHARM code that prepares the input */

@195 lines of Multi-way Merge sort in MPI@
/* Computation code in CHARM */

/* CHARM code that prepares the input */

// call to HistSort

HistSorting<key_type, std::pair<partType,
char[MAX_PART_SZ]>>(loc_s_len, dataln,
&loc_r_len, &datalut);

/* Computation code 1in CHARM */

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Interoperable HistSort library: minor changes lead to reuse

// 1interface function for HistSort
template <class key, class value>
vold HistSorting(int input_elems_, kv_pair<key, value>* dataln_, int *
output_elems_, kv_pair<key, value>** dataOut_) {
// store parameters to global locations
dataln = (void*)dataln_;
dataOut = (void**)dataOut_;
in_elems = input_elems_;
out_elems = output_elems_;
// 1nitiate message to main object
1f(CkMyPe() == 0) {
static CProxy_Main<key,value> mainProxy =

CProxy_Main<key,value>: : ckNew(CkNumPes());
mainProxy.DataReady();

}
StartCharmScheduler();

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Weak scaling: time spent in sorting increases slowly

Weak scaling on Cray XEé6
100

) P CR——
~~ IO SRR LT T L T TP L e PR P PR PEP PP RRP PP ERS
Y : Advance —@— Ca
SE) - Multiway-Merge Sort - -4A-- /'/
= " Charm++ HistSort - -

E---:-::-:-:;“J'—" °°°°°°°°°

0| LEFE et - | I
8 64 512 4096

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Strong scaling: 48x speed up on 16k cores of Hopper

100

Strong scaling on Cray XE6

Multiway-Merge Sort —@—
Charm++ HistSort @

— O T
S G
S S—"
- | _. ..
E ® oo B >
Ol _ | | | | |
512 1024 2048 4096 8192 | 6384

Number of cores

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: 1O leads to performance and productivity loss

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: 1O leads to performance and productivity loss

» Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: 1O leads to performance and productivity loss

» Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

* Requires reading many large input files: an hour long startup!

- Cause: sequential input

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: 1O leads to performance and productivity loss

» Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

* Requires reading many large input files: an hour long startup!

- Cause: sequential input

Many large output files, written periodically
- Writes to multiple files, aggregates later

» Limited number of allowed open file descriptors prevents
execution

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

MPI 10 with EpiSimdemics

+ MPI IO - portable, often vendor-implemented
» Use of MPI collectives to aggregate IO meta-data

* IO module executed in a hybrid manner with rest of the code

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Input performance: input time reduced to less than 10s

Time spent in input on Blue Gene/Q

10000 & o Sequential reading of Schedule file not
i done at scale to save CPU hours
Q00 [t T D L i P
@ @-remmenenenmenanennes S L @-oreememeneenanaanees 20
g '00F schedule/Serial —8— Schedule/MPI-IO —a--
o o L Person/Serial -----@--- Person/MPI-IO —F+—

o W
£ _ -:‘: ------------ | | . TR -8
| b PP e =
01 L | | | |

| 6k 32k 64k | 28k 256k

Number of cores

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Output performance: write to single file even on large #cores

Time spent in simulation + output on Blue Gene/Q

FO0 e
D ool | With Custom Parallel-|O N
g With MPI-IO =3
e} 500 """"""""""""""""""""""""""""""""""""
S 400 SN BN g
3 300 ~Custom I/O failed
iqf 00 - | [| | at large core counts
(4]
o 100 | e | m e
|_

0

8k | 6k 32k 64k 128k 256k

Number of cores

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Application Library Productivity Performance

CHARM HistSort 195 lines removed 48x speed up in sorting
EpiSimdemics MPI IO Writes to a single file 256x faster input
NAMD FETW 280 lines reduction Similar performance
Lofad balancli{ng ParMetis Parall.el. stap h Faster applications
ramewor paratitioning

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Conclusion

- Interoperating Charm++ and MPI is easy
- Leads to several benetits

- Available in production version of Charm++ along with any
MPI implementation:

» http://charmplusplus.org
» http://charm.cs.illinois.edu/manuals/html/charm++/25.html

Questions

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

