
Charm++ & MPI:
Combining the Best of

Both Worlds
IPDPS: May 27, 2015

Nikhil Jain, Abhinav Bhatele, Jae-Seung Yeom,
Mark F. Adams, Francesco Miniati, Chao Mei,

Laxmikant V. Kale

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Motivation: additional capabilities and code reuse

2

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Motivation: additional capabilities and code reuse

• Multi-physics modeling and coupled simulations require
sophisticated techniques, but…

• Most applications developed in a single parallel language
• Limited features
• No code reuse across languages

2

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Motivation: additional capabilities and code reuse

• Multi-physics modeling and coupled simulations require
sophisticated techniques, but…

• Most applications developed in a single parallel language
• Limited features
• No code reuse across languages

• Interoperation of languages in an application
• MPI + X, where MPI is across nodes and X is within
• MPI + Charm++ : MPI and Charm++ everywhere!

2

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

3

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

‣ Fundamental design attributes
➡ Overdecomposition
➡ Asynchronous message

driven execution
➡ Migratability

‣ C++ objects based

3

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++: object-based message-driven parallel programming

‣ Fundamental design attributes
➡ Overdecomposition
➡ Asynchronous message

driven execution
➡ Migratability

‣ C++ objects based

‣ Driven by an adaptive runtime
system

3

A[1]

A[0]

A[2]

B[3]

B[0]

C[1,0]

C[1,2]

C[0,0]

C[0,2]

C[1,4]

Processor 1 Processor 2

B[3]C[0,0]

C[1,4]

Processor 3 Processor 4

A[1]A[2]

C[0,2]

C[1,0]
C[1,2]

A[0]

B[0]

Location ManagerSchedulerLocation ManagerScheduler

User View and System View

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Features: comp-comm overlap, load balancing, introspection…

4

Message-driven
execution

Migratability

Introspective and
adaptive runtime

system

Scalable Tools

Automatic overlap of
Communication and

Computation

Emulation for
Performance
Prediction

Fault
Tolerance

Dynamic load balancing
(topology-aware, scalable)

Temperature/Power/Energy
Optimizations

Compositionality

Over-decomposition

Shrink and Expand

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Features: comp-comm overlap, load balancing, introspection…

4

Message-driven
execution

Migratability

Introspective and
adaptive runtime

system

Scalable Tools

Automatic overlap of
Communication and

Computation

Emulation for
Performance
Prediction

Fault
Tolerance

Dynamic load balancing
(topology-aware, scalable)

Temperature/Power/Energy
Optimizations

Compositionality

Over-decomposition

Shrink and Expand Applications: NAMD, ChaNGa,
OpenAtom, EpiSimdemics,
ClothSim, BRAMS, and many
more…

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Related Work
• Harper et al. : PVM in Legion environment

• MetaChaos : HPF + Chaos + pC++

• Kale et al. : MPI, PVM, and Charm++ on Converse

• OpenMP + MPI

• Dinan et al. : MPI + UPC

• Zhao et al. : Active messages in MPI

5

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Novelty: control flow, code reuse, and performance studies

• The control flow styles for MPI and Charm++ are different
• MPI is user-driven, while Charm++ is system-driven

• Minimal (re)implementation of languages

• Focus on reuse of existing code with minor changes!

• In contrast to interoperation via reimplementing MPI on
Converse, this scheme works with any MPI

• Demonstration via performance studies at scale

6

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Control flow management in MPI vs Charm++

7

User MPI Charm++

Charm++ RTS
selects the user

code that will
execute next

Network
Progress

User code
makes MPI
calls which
drives the
network

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Control flow management in MPI vs Charm++

Concurrent Threads: execute each
module/language in its own home
thread

Pros: Easy to understand and
implement

Cons:
• Thread scheduling overhead
• Sub-optimal scheduling
• Adaptive scheduling requires

significant code changes

7

User MPI Charm++

Charm++ RTS
selects the user

code that will
execute next

Network
Progress

User code
makes MPI
calls which
drives the
network

Flow management solution I: concurrent threads

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Flow management solution II: user controlled transfer

Exposing the Charm++
scheduler at a coarse granularity

Pros:
• Eliminates the thread overheads
• Reuse of existing code is easy

Cons:
• Switching decisions by user (or is

it a disadvantage?)
• Inter-module overlap is absent

8

MPI Module

MPI Module

Charm Module

Charm Module

1

2 3

4
5

MPI Module

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

9

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

๏ Initialize: set up to create a module/language instance
➡ MPI_Init/Comm_create, CharmLibInit

9

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

๏ Initialize: set up to create a module/language instance
➡ MPI_Init/Comm_create, CharmLibInit

๏ Execute: make progress
➡ Implicit in MPI, StartCharmScheduler

9

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

๏ Initialize: set up to create a module/language instance
➡ MPI_Init/Comm_create, CharmLibInit

๏ Execute: make progress
➡ Implicit in MPI, StartCharmScheduler

๏ Transfer: stop execution
➡ Implicit in MPI, StopCharmScheduler/CkExit

9

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Language APIs: additions to enable interoperation

๏ Initialize: set up to create a module/language instance
➡ MPI_Init/Comm_create, CharmLibInit

๏ Execute: make progress
➡ Implicit in MPI, StartCharmScheduler

๏ Transfer: stop execution
➡ Implicit in MPI, StopCharmScheduler/CkExit

๏ Clean up: destroy the instance
➡ MPI_Comm_free, CharmLibExit

9

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

MPI code example: create language instances and execute

#include "mpi-interoperate.h"

int main(int argc, char **argv) {
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_split(MPI_COMM_WORLD, myrank%2, myrank, &newComm);
 if(myrank % 2) {
 // Create Charm++ instance on subset of processes
 CharmLibInit(newComm, argc, argv);
 StartCharm(16); // Call Charm++ library
 CharmLibExit(); // Destroy Charm++ instance
 } else {
 // MPI work on rest of the processes
 }
 MPI_Finalize();
}

10

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Charm++ code example: interface function

#include "mpi-interoperate.h"

// invoked from MPI, marks the beginning of Charm++
void StartCharm(int elems) {
 if(CkMyPe() == 0) {
 workerProxy.StartWork(elems);
 }
 StartCharmScheduler();
}

// Charm++ function that deactivates scheduler
void Worker::StartWork(int elems) {
 // Charm++ work on a subset of processes
 CkExit();
}

11

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

12

MPI
Charm++

Time

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

(a) Time Division (b) Space Division (c) Hybrid

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

12

MPI
Charm++

Time

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

(a) Time Division (b) Space Division (c) Hybrid

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Resource sharing: time, space, and hybrid division

12

MPI
Charm++

Time

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

(a) Time Division (b) Space Division (c) Hybrid

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Data Sharing and Rank Mapping

• Data Sharing

➡ Shared memory pointer-based

➡ Data repository

• Rank Mapping - Dinan et al. for MPI + UPC

➡ One to one

➡ Many to one

➡ One to none

13

Nikhil Jain, Parallel Programming Laboratory

Charm++ & MPI: Combining the Best of Both Worlds

Application Studies

14

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

CHARM: scaling bottleneck caused by global sorting

๏ CHARM is a cosmology code based on Chombo (MPI)
‣ Non-uniform particle distribution
‣ Load balancing and locality requires global sorting every step

15

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

CHARM: scaling bottleneck caused by global sorting

๏ CHARM is a cosmology code based on Chombo (MPI)
‣ Non-uniform particle distribution
‣ Load balancing and locality requires global sorting every step

15

 0.1

 1

 10

 100

8 64 512 4096

T
im

e
(s

)

Number of cores

Baseline performance of CHARM on Cray XE6

Advance
Multiway-Merge Sort

Amount of time spent in
sorting increases, while time
spent in computation is
constant

Scaling Bottleneck!

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

16

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

‣ What does efficient sorting need?
➡ Asynchrony and non-blocking communication
➡ Overlap of local sorting with communication

16

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

‣ What does efficient sorting need?
➡ Asynchrony and non-blocking communication
➡ Overlap of local sorting with communication

‣ Option 1: Implement a new MPI based code and optimize it!

16

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Eliminating bottleneck via a high performance sorting library

‣ What does efficient sorting need?
➡ Asynchrony and non-blocking communication
➡ Overlap of local sorting with communication

‣ Option 1: Implement a new MPI based code and optimize it!

‣ Option 2: Reuse an existing sorting library
➡ HistSort - Highly scalable sorting library in Charm++

(Solomonik et al.)

16

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Using HistSort in CHARM: time sharing MPI and Charm++

/* CHARM code that prepares the input */
...
@195 lines of Multi-way Merge sort in MPI@
/* Computation code in CHARM */
...

/* CHARM code that prepares the input */
...
// call to HistSort
HistSorting<key_type, std::pair<partType,
 char[MAX_PART_SZ]>>(loc_s_len, dataIn,
 &loc_r_len, &dataOut);
/* Computation code in CHARM */
...

17

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Interoperable HistSort library: minor changes lead to reuse

// interface function for HistSort
template <class key, class value>
void HistSorting(int input_elems_, kv_pair<key, value>* dataIn_, int *
output_elems_, kv_pair<key, value>** dataOut_) {
 // store parameters to global locations
 dataIn = (void*)dataIn_;
 dataOut = (void**)dataOut_;
 in_elems = input_elems_;
 out_elems = output_elems_;
 // initiate message to main object
 if(CkMyPe() == 0) {
 static CProxy_Main<key,value> mainProxy =
 CProxy_Main<key,value>::ckNew(CkNumPes());
 mainProxy.DataReady();
 }
 StartCharmScheduler();
}

18

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Weak scaling: time spent in sorting increases slowly

19

 0.1

 1

 10

 100

8 64 512 4096

T
im

e
(s

)

Number of cores

Weak scaling on Cray XE6

Advance
Multiway-Merge Sort

Charm++ HistSort

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Strong scaling: 48x speed up on 16k cores of Hopper

20

 0.1

 1

 10

 100

512 1024 2048 4096 8192 16384

T
im

e
(s

)

Number of cores

Strong scaling on Cray XE6

Multiway-Merge Sort
Charm++ HistSort

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: IO leads to performance and productivity loss

21

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: IO leads to performance and productivity loss

• Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

21

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: IO leads to performance and productivity loss

• Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

• Requires reading many large input files: an hour long startup!
• Cause: sequential input

21

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

EpiSimdemics: IO leads to performance and productivity loss

• Agent-based simulator used to study spread of contagious
diseases over social networks, implemented in Charm++

• Requires reading many large input files: an hour long startup!
• Cause: sequential input

• Many large output files, written periodically
• Writes to multiple files, aggregates later
• Limited number of allowed open file descriptors prevents

execution

21

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

MPI IO with EpiSimdemics

• MPI IO - portable, often vendor-implemented

• Use of MPI collectives to aggregate IO meta-data

• IO module executed in a hybrid manner with rest of the code

22

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Input performance: input time reduced to less than 10s

23

 0.1

 1

 10

 100

 1000

 10000

16k 32k 64k 128k 256k

In
pu

t
tim

e
(s

)

Number of cores

Time spent in input on Blue Gene/Q

Sequential reading of Schedule file not
done at scale to save CPU hours

Schedule/Serial
Person/Serial

Schedule/MPI-IO
Person/MPI-IO

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Output performance: write to single file even on large #cores

24

 0

 100

 200

 300

 400

 500

 600

 700

8k 16k 32k 64k 128k 256k

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
)

Number of cores

Time spent in simulation + output on Blue Gene/Q

Custom I/O failed
at large core counts

With Custom Parallel-IO
With MPI-IO

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory
25

Application Library Productivity Performance

CHARM HistSort 195 lines removed 48x speed up in sorting

EpiSimdemics MPI IO Writes to a single file 256x faster input

NAMD FFTW 280 lines reduction Similar performance

Load balancing
framework ParMetis Parallel graph

paratitioning Faster applications

Charm++ & MPI: Combining the Best of Both Worlds

Nikhil Jain, Parallel Programming Laboratory

Conclusion
• Interoperating Charm++ and MPI is easy

• Leads to several benefits

• Available in production version of Charm++ along with any
MPI implementation:

• http://charmplusplus.org

• http://charm.cs.illinois.edu/manuals/html/charm++/25.html

Questions

26

