
Noname manuscript No.
(will be inserted by the editor)

CAMEL: Collective-Aware Message Logging

Esteban Meneses · Laxmikant V. Kalé

The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-015-1402-3

Abstract The continuous progress in the performance of supercomputers has made possible
the understanding of many fundamental problems in science. Simulation, the third scientific
pillar, constantly demands more powerful machines to use algorithms that would otherwise
be unviable. That will inevitably lead to the deployment of an exascale machine during the
next decade. However, fault tolerance is a major challenge that has to be overcome to make
such a machine usable. With an unprecedented number of parts, machines at extreme scale
will have a small mean-time-between-failures. The popular checkpoint/restart mechanism
used in today’s machines may not be effective at that scale. One promising way to revamp
checkpoint/restart is to use message-logging techniques. By storing messages during execu-
tion and replaying them in case of a failure, message logging is able to shorten recovery time
and save a substantial amount of energy. The downside of message logging is that memory
footprint may grow to unsustainable levels. This paper presents a technique that decreases
the memory pressure in message-logging protocols by only storing the necessary messages
in collective-communication operations. We introduce CAMEL, a protocol that has a low
memory overhead for multicast and reduction operations. Our results show that CAMEL can
reduce memory footprint in a molecular dynamics benchmark for more than 95% on 16,384
cores.

Keywords fault tolerance · resilience · message logging · collective-communication
operations

Esteban Meneses
Center for Simulation and Modeling
University of Pittsburgh
Tel.:+412-648-3094, Fax: +412-648-1939
E-mail: esteban.meneses@acm.org

Laxmikant V. Kalé
Department of Computer Science
University of Illinois at Urbana-Champaign
E-mail: kale@illinois.edu

2 Esteban Meneses, Laxmikant V. Kalé

1 Introduction

The persistent advance in supercomputing has made possible the exploration of many fun-
damental problems in science. Methods that were once considered intractable are now prac-
tical thanks to the availability of well established petascale systems. The next step in the
evolution of supercomputers, fueled by many performance-hungry problems in computa-
tional science, will lead to the deployment of exascale machines in the next decade. The
computational power provided by extreme-scale systems is considered a fundamental tool
in extending the frontier of our knowledge of nature and the universe. However, a threat
glooms the future of supercomputing. The mere number of components assembled in an ex-
ascale computer will dramatically decrease the mean-time-between-failures (MTBF) of the
system. Projections at exascale estimate the MTBF will be measured in minutes [6, 19, 27].
Even today, large-scale systems face frequent failures [5] and it is estimated more than 20%
of the utilization of the machine is lost due to failures [9].

Fault tolerance will be an ineludible consideration for extreme-scale computing. The
traditional way to tolerate failures in high performance computing (HPC) systems is to
use rollback-recovery techniques [10]. Checkpoint/restart is the most popular strategy and
consist in periodically saving the state of the system (checkpoint) to rollback to the latest
checkpoint in case of a failure. Although checkpoint/restart has several available implemen-
tations [14,25,29], it is clear that this scheme alone will not provide an effective resilient so-
lution at exascale and beyond [12, 23]. A promising technique to revamp checkpoint/restart
is to add message logging. By storing the messages sent during an execution, it is possible to
avoid a global rollback and instead only rollback the crashed node. That way, the recovery
time can be shortened [7] and a substantial amount of energy can be saved [24].

Message-logging protocols require, in principle, to store every single message the ap-
plication sends. In case of a failure, the messages sent to the crashed node are replayed.
Storing messages create an additional memory overhead, something that may become crit-
ical in view of the shrinking memory size per node of future architectures [27]. Avoiding
excessive memory footprint in message-logging techniques is imperative to leverage all its
potential benefits. Past research has focused on general strategies that group nodes and avoid
logging messages internal to the groups [21, 26]. Those strategies create a tradeoff between
memory footprint and recovery cost. However, it is possible to design new message-logging
protocols that reduce memory pressure without increasing the recovery cost.

Collective communication operations, or simply collectives, are a fundamental build-
ing block of parallel applications. Not only are these operations helpful in providing a
more expressive construct for a program, but they are useful in improving the scalability
and performance of the code as well [28]. Collectives are commonplace in most scientific
computing codes. In some cases, they may carry most of the communication traffic. As an
example, Figure 1 shows the breakdown of the total communication volume into three op-
erations: multicast, reduction and point-to-point. Figure 1(a) presents the split for LeanMD
(a molecular dynamics benchmark), where almost all the communication volume is trans-
ferred through either multicast or reduction. Figure 1(b) shows the division for OpenAtom
(a quantum chemistry application), where multicast, reduction, and point-to-point receive
approximately a third of the communication volume each.

This paper aims to provide a general framework to decrease the memory footprint of
message logging protocols for collective-communication operations. We introduce CAMEL,
a mechanism that only stores the minimum amount of messages necessary to replay a col-
lective during recovery. It does not increase the recovery cost and minimally interferes with
a running message-logging protocol.

CAMEL: Collective-Aware Message Logging 3

Reduction
 (50.18%)

Multicast
(49.67%)

(a) LeanMD

Reduction
 (28.94%)

Multicast
(36.36%)

Point-to-point
 (34.70%)

(b) OpenAtom

Fig. 1 Distribution of communication volume among types of communication operations in two particle-
interaction applications.

This paper makes the following contributions:

– An algorithmic description of Simple Causal Message Logging (SCMEL), a traditional
fault tolerance protocol on which CAMEL is based (§ 2).

– A formalization of Collective-Aware Message Logging (CAMEL), a method that mini-
mizes the memory overhead of message-logging protocols (§ 3).

– The design principles of CAMEL and its implementation in a scalable parallel computing
library (§ 4).

– An experimental evaluation of CAMEL with two representative applications and on two
supercomputing platforms using up to 16,384 cores (§ 5).

2 Background

2.1 Related Work

Hursey and Graham presented a proposal to build fault-tolerant collective communication
operations on MPI [15]. Their mechanism supports algorithm-based fault tolerance (ABFT)
based on a resilient implementation of MPI collectives. The programmer of the fault-tolerant
algorithm can incorporate the optimized implementation of resilient collectives. A recent
proposal in the MPI Forum addressed the need for resilient MPI calls and, among other op-
erations, defined MPI Comm validate all that helps a rank to recognize all failures in
a communicator. Therefore, the application is aware of the failure in different ranks. Hursey
and Graham reviewed three different designs for tree-based collectives. In the first approach,
a rerouting technique would check for a failed process before interacting with it and route
around crashed processes in a recursive fashion. The second method consists in a lookup-
avoiding design that would remove the check for failures and calculate the relationships
parent/child at the end of MPI Comm validate all. Finally, the third method uses re-
balancing to remove the check for failures and balance the tree for the collective call at the
end of MPI Comm validate all. The third design provides the best performance and a
negligible overhead compared to the fault-unaware implementation. Our approach markedly
differs from theirs. The protocol presented in this paper aims to provide an automatic solu-
tion for fault tolerance in collectives, without the intervention of the programmer.

Bronevetsky et al presented a protocol for application-level coordinated checkpoint that
targets applications without global synchronization points [4]. In their extension for collec-
tive communication operations, the checkpoint infrastructure is based on an algorithm that

4 Esteban Meneses, Laxmikant V. Kalé

creates a coordinated checkpoint similar to Chandy-Lamport algorithm [8]. In their pro-
tocol, an initiator starts the checkpoint process and coordinates the rest of the procedure.
This protocol assumes the checkpoint calls are not made in global synchronization points,
hence the presence of special measures to log messages and non-deterministic events during
checkpoint. Recovery works properly by replaying the necessary messages and reproducing
all non-deterministic events. Their algorithm finds two important consistent cuts. The first
cut is composed by the collection of local checkpoints of the processes. This cut forms a
recovery line to which all processes may roll back in case of a failure. The second cut is
composed by the points at which processes stop recording messages and non-deterministic
events. The algorithm makes strong claims about the consistency of both cuts. In particular,
there must not be any data flow from collectives crossing the second cut. Our approach is
based on synchronized checkpoints. Therefore, we removed all the complexity at check-
point time. In addition, we extend a full message-logging protocol that features the benefits
of faster recovery and low energy consumption.

This paper presents a message-logging protocol that minimizes the memory overhead
for collective communication operations. A different mechanism, named team-based mes-
sage logging [21, 26], creates groups of nodes in the system (called teams) and only logs
messages crossing team boundaries. That way, if teams are created to match the commu-
nication graph of the application, a substantial amount of the total communication volume
can be contained internal to the teams and does not need to be stored. That scheme may
apply to any implementation of collective communication operations. However, a failure
in one node requires the whole team to roll back, increasing the recovery cost. This paper
presents a mechanism that decreases memory pressure in collectives and does not increase
the recovery cost.

2.2 System Model

We define the system on which a parallel application runs as a setN of processes. Each pro-
cess stores a portion of the application’s data in its own private memory. Message passing is
the only mechanism to share information in the system. The channels that connect processes
are assumed to respect FIFO ordering. Therefore, messages between same source and same
destination can not be reordered.

Processes fail according to the fail-stop model. After a process fails, it ceases all activity
and becomes unreachable. An incarnation number is associated with each instance of a
process. A failure is represented by a set F of failed processes. Different fault tolerance
protocols offer higher or lower resilience levels according to the maximum size of set F
they can handle. In any case, failed processes are replaced by a new incarnation, keeping
constant the size of set N . All processes in N have been instrumented with a checkpoint
function that dumps the state of each process to stable storage.

2.3 Message Logging

Rollback-recovery [10] is the most popular mechanism to build a fault tolerant system in
HPC. Checkpoint/restart is the simplest implementation of rollback-recovery. It consists in
having all processes in N periodically storing their checkpoint. The set of all checkpoints
form a restart line from which the system can recover in case of a failure. As execution
progresses and processes take checkpoints, the number of restart lines increases. Not every

CAMEL: Collective-Aware Message Logging 5

restart line will bring the system to a consistent state. For instance, if there are in-flight mes-
sages crossing a particular restart line, it is not possible to restart from that restart line relying
exclusively on a set of checkpoints. Some extra measures are needed to avoid a cascading
rollback in such situations. If checkpoints are uncoordinated among the processes, in-flight
messages could be logged and replayed during recovery. Alternatively, checkpoints can be
coordinated among the processes, guarantying a consistent restart line. This last option is an
appealing one for most HPC applications that already have global synchronization points.
Triggering checkpoints at those global synchronization operations creates a synchronized
(and coordinated) valid checkpoint for restart with no in-flight messages. In the rest of this
paper, we assume checkpoints are coordinated.

Checkpoint/restart requires a global rollback to recover from a failure. That leads to
an excessive recovery cost in terms of performance and energy consumption [24]. There
are mechanisms that only require a local rollback, i.e. rolling back only those processes
in F . Message logging is one of those mechanisms. It requires, in principle, to log all the
application messages in order to replay them during recovery. Messages are usually stored
in the memory of the sender process [16]. By replaying the messages sent to processes in
F , a healthy process avoids to rollback and helps failed processes to recover. To ensure a
consistent state is reached after recovery, the recovering processes must deliver all replayed
messages in the same order as before the crash. Figure 2(a) presents the typical location of
the message-logging layer in a software stack. Starting from the top, application messages
are handled by a runtime system and later tagged by the message-logging protocol. The final
message is eventually transmitted through the network. At the receiver side, the message-
logging layer captures all network messages and processes them before delivering them to
the upper layers.

In addition to storing messages, a message-logging protocol must ensure that recovery is
consistent. An inconsistent state may be reached if a process waits for a message that never
comes. Such process is usually referred to as an orphan. For example, a system with pro-
cesses X and Y may generate an orphan if Y sends message m to X, Y fails and rolls back,
and during recovery Y does not send m to X. In that case, X would be orphan. This is in fact
possible, because Y may have sources of non-determinism. Therefore, non-deterministic
decisions must be safely stored and provided to the recovering process to ensure a con-
sistent recovery. Message reception is, in general, non-deterministic. In this paper, we will
assume message reception is the only source of non-determinism. A determinant is a piece
of information that records the non-deterministic information from a message reception. For
message-logging protocols, the determinant #m of a message m is usually composed of the
tuple #m = 〈sender, recver, ssn, rsn〉, where sender and recver are the IDs of the pro-
cesses exchanging message m. The sender sequence number (ssn) corresponds to a unique
number that identifies message m. The receive sequence number (rsn) represents the or-
der reception of message m. Figure 2(b) presents the structure of an application message,
showing the fields in the header that will be used to build a determinant. More concretely,
every application message will carry information about source and destination (sender and
recver), the message identifier at the source (ssn), the incarnation number of the source
(inc), and potentially some determinants (dets).

The way in which a protocol handles determinants gives rise to several flavors of mes-
sage logging [2]. All protocols must guarantee a consistent state is reached after a failure.
One traditional family of message-logging protocols is known as the causal variant [2].
A causal message-logging protocol ensures determinants are safely stored if they causally
affect other events in the system. For instance, upon reception of message m on X, the
determinant d, that the reception of m generates, does not need to be stored at that point

6 Esteban Meneses, Laxmikant V. Kalé

Application

Runtime

Message Logging

Network

(a) Layers in the software stack

sender
recver
ssn
inc
dets

header payload

(b) Structure of an application message

Fig. 2 Message-logging infrastructure. The software stack has to be extended with an additional layer, and
the message header has additional fields.

in time. Instead, it can be piggybacked on outbound message from X and stored at the re-
ceivers of those messages. The number of copies of determinant d that have to be stored in
the system depends on the reliability of the protocol (i.e. the maximum size of set F that
can be tolerated). One particular group of causal message-logging protocols is known as
the Family-Based Protocols [1], or Simple Causal Message Logging [20]. These protocols
tolerate single-process failures, i.e. |F| = 1. We will focus the theoretical presentation of
the material on this type of protocols.

2.3.1 Simple Causal Message Logging

The most basic version of causal message logging [11] tolerates a single process failure at a
time [1] and requires all checkpoints to be globally coordinated [20]. We name this protocol
simple causal message logging. Table 1 shows the fundamental data structures required at
each process to carry out all the operations of the protocol. Let us nameM the set of mes-
sages sent during the execution of the application and D the set of determinants generated
by those messages.

Name Type Description

ssn N Sender sequence number
rsn N Receive sequence number

rsnMap N × N→ N Maps a process and an ssn to an rsn
detLog 2D Storage of incoming determinants
detBuf 2D Buffer of outgoing determinants
msgLog 2M Storage of outgoing messages

inc N Incarnation number
incMap N → N Maps a process to its incarnation number

Table 1 Data structures used in Simple Causal Message Logging (Algorithm 1).

Each process keeps two scalars to identify messages: ssn uniquely identifies the outgo-
ing messages, while rsn assigns a reception order to the incoming messages. Upon reception
of a message m, a process associates the sender of m and its ssn with the corresponding rsn

and stores that mapping into rsnMap. If the received message comes with piggybacked de-
terminants, they will be stored in detLog. The determinant created as the result of a message
reception is temporarily stored in detBuf and it will be piggybacked in the next outgoing
messages, until an acknowledgment has been received. At that point, the determinant can
be removed from detBuf . Therefore, remote determinants (created at other processes) are
stored in detLog, while local determinants (created by the process itself) are temporarily

CAMEL: Collective-Aware Message Logging 7

stored in detBuf . Each sent message will be stored in msgLog until the following check-
point stage, when message logs are emptied. Finally, the current incarnation of a process is
kept in inc and it will be incremented every time a process fails. In addition, a process keeps
the current incarnation of other processes in incMap.

The details of the simple causal message logging protocol, or SCMEL, are shown in Al-
gorithm 1. The SENDMSG procedure is executed at process X. It catches a message from
the runtime layer to the network layer (see Figure 2(a)), and fills out the header entries of
the message depicted in Figure 2(b). The counter ssn has to be increment with each mes-
sage submission to make sure each message has a unique identifier. Before the message
gets effectively sent through NETSENDMSG, the message is stored into msgLog. The RE-
CEIVEMSG procedure presents the more complex case of message reception. The first step
is to check for a message that should not be delivered at that point in time. The function
OUTOFORDER checks for multiple conditions under which the message should be held
in an out-of-order queue or should be discarded. More specifically, an old message comes
from a process Y has an incarnation number lower than the current incarnation number of
Y . A duplicate message is a message that has already been received. Both old and duplicate
messages have to be suppressed, and they appear in different scenarios during failure and
recovery of processes. A message can also be received out-of-order if it has an rsn already
assigned, but the receiving process is behind that number. This may occur during recovery
when messages may overrun earlier messages and reach the destination out of order. For
those messages, a special queue usually stores and delivers them at the appropriate point
in time. If a message is successfully received, it receives a unique rsn, a determinant for
its reception is generated and the determinants it carries are stored. An acknowledgment
is sent for those determinants. The RECEIVEACKS procedure removes the acknowledged
determinants from detBuf and stops its replication through the system.

A process failure is handled by various procedures. The CHECKPOINT procedure as-
sumes the checkpoint call is globally coordinated and empties all data structures holding
determinants and messages. The checkpoint is assumed to be stored in a safe place, such
as the file system or the memory of a different node. When the system detects process Y

has failed, it will find a spare node to reinstate process Y using its latest checkpoint. The
system will also call procedure FAILURE on all other processes. The call of FAILURE will
increase the incarnation number for Y and proceed to send all determinants related to Y and
messages bound to Y in two phases. Once all determinants have been received by Y , the
messages bound to Y will be sent. Procedure RECEIVEDETS presents the counterpart in the
recovery process. Process Y will be receiving determinants from other processes and it will
store them into rsnMap. Once it has a response from all other processes, it will call the
barrier to start the reply of logged messages. The global barrier may be replaced by a more
efficient mechanism that separates the determinant collection from the message replay.

2.3.2 Theoretical Formulation

In order to formalize the property a message-logging protocol should enforce, we provide
the traditional definition of DEP and LOG sets [2].

Definition 1 (Depend set) The set of all processes that reflect the delivery of message m,
denoted by DEP(m), contains the destination of message m and any other process that has
delivered a message sent causally after the delivery of m.

DEP(m) =

{
X ∈ N

∣∣∣∣ (X = m.recver) ∧ deliverX(m) ∨
∃m′ : deliverm.recver(m)→ deliverX(m′)

}

8 Esteban Meneses, Laxmikant V. Kalé

Algorithm 1 SCMEL: Simple Causal Message Logging Protocol
1: procedure SENDMSG(msg, recver)
2: msg.sender ← X . Adds sender
3: msg.recver ← recver . Adds receiver
4: msg.ssn← INCREMENT(ssn) . Updates ssn
5: msg.inc← inc
6: msg.dets← detBuf . Piggybacks determinants
7: msgLog ← msgLog ∪ {msg} . Stores message
8: NETSENDMSG(msg, recver)
9: end procedure

10: procedure RECEIVEMSG(msg)
11: if OUTOFORDER(msg) then return . Checks for out-of-order
12: end if . messages
13: rsnMap(msg.sender,msg.ssn)← INCREMENT(rsn) . Updates rsn
14: detBuf ← detBuf ∪ {〈msg.sender,X,msg.ssn, rsn〉} . Creates determinant
15: detLog ← detLog ∪msg.dets . Adds remote determinants
16: NETSENDDETACK(msg.dets,msg.sender)
17: PROCESSMSG(msg)
18: end procedure
19: procedure RECEIVEDETACK(dets)
20: detBuf ← detBuf \ dets . Removes determinants
21: end procedure
22: procedure CHECKPOINT()
23: detLog ← ∅ . Empties remote determinants
24: detBuf ← ∅ . Empties local determinants
25: msgLog ← ∅ . Empties message log
26: STORECHECKPOINT() . Creates a restart line
27: end procedure
28: procedure FAILURE(Y)
29: dets← ∅
30: INCREMENT(incMap(Y)) . Updates Y ’s incarnation
31: for all det ∈ detLog do . Collects all determinants
32: if det.recver = Y then . bound to Y
33: dets← dets ∪ {det} . in detLog
34: end if
35: end for
36: NETSENDDETS(dets, Y)
37: BARRIER() . Global synchronization
38: for all msg ∈ msgLog do . Collects all messages
39: if msg.recver = Y then . bound to Y
40: NETSENDMSG(msg, Y) . in msgLog
41: end if
42: end for
43: end procedure
44: procedure RECEIVEDETS(dets)
45: for all det ∈ dets do . Receives determinants
46: rsnMap(det.sender, det.ssn)← det.rsn . and populates rsnMap
47: end for
48: if ALLDETS() then
49: BARRIER() . Global synchronization
50: end if
51: end procedure

Definition 2 (Logging set) The logging set of a message m, denoted by LOG(m), contains
all processes that have stored a copy of the determinant of m.

LOG(m) =

{
X ∈ N

∣∣∣∣ (X = m.recver) ∧ deliverX(m) ∨
∃m′ :

(
deliverm.recver(m)→ deliverX(m′)

)
∧#m ∈ m′.dets

}

To ensure a consistent recovery, a message-logging protocol must avoid the creation of
orphan processes. We provide the formal definition of an orphan process [2] and specify the
non-orphan property.

CAMEL: Collective-Aware Message Logging 9

Definition 3 (Orphan process) A process X becomes orphan after the failure of processes
in set F if the following condition holds:

(X ∈ N\F) ∧ (∃m : X ∈ DEP(m) ∧ LOG(m) ⊂ F)

Property 1 (No-orphan execution) A consistent recovery produces a no-orphan execution:

∀m ∈ R : DEP(m) 6= ∅ =⇒ LOG(m) 6⊂ F

where R is the set of replayed messages.

Theorem 1 (Correctness of Simple Causal Message Logging) The SCMEL protocol de-
tailed in Algorithm 1 complains with Property 1 by creating no orphan process during re-
covery.

Proof Let us proceed by contradiction. Negating Property 1 is equivalent to:

∃m ∈ R : DEP(m) 6= ∅ ∧ LOG(m) ⊂ F

which means there is at least a message m in the set of replayed messages and there is at
least a process X that depends on that message, but its corresponding determinant is not
available. That is, X ∈ DEP(m), but LOG(m) ⊂ F . Since |F| = 1, let us call Y the only
failing process, or F = {Y }. By Definifition 3, we have X 6= Y . Using Definition 1, we
have to consider two cases with respect to X:
• Case 1, (X = m.recver) ∧ deliverX(m). In this case, X is the original receiver of the
message and, by Definition 2, X ∈ LOG(m). Therefore, it is not possible to have LOG(m) ⊂
F because X survives the failure of Y .⇒⇐
• Case 2, ∃ m′ : deliverm.recver(m) → deliverX(m′). Let us assume Z = m.recver.
Therefore, Z ∈ LOG(m) by Definition 2. If Z 6= Y , then Z 6∈ F and LOG(m) 6⊂ F . On the
other hand, if Z = Y we have to demonstrate that there is at least one process, other than Y ,
storing a replica of #m. Let us assume there is a message chain of length n connecting the
reception of m at Y and the reception of m′ at X. We will proceed by induction on n. For
the base case, n = 1, either Y piggybacked #m on m′ to X, in which case X ∈ LOG(m),
or Y received the ACK from process W that #m was safely stored. In either case, there is
at least one process that survives the crash and LOG(m) 6⊂ F . For the inductive step, we
assume LOG(m) 6⊂ F is true for n − 1. If the message chain is size n, then we are more
than certain #m is safely stored, because the inductive hypothesis tells us that by the time
the message chain reached the previous hop, it was size n− 1 and LOG(m) 6⊂ F . One more
hop in the message chain to reach X does not change that statement.⇒⇐ ut

3 Collective-Aware Message Logging

3.1 Intuitive Presentation

The increase of the memory footprint is the major concern of message-logging protocols.
Fortunately, collective-communication operations present opportunities to significantly re-
duce the memory pressure of such protocols. We will focus the discussion on two prevalent
operations in large-scale parallel computing: multicast and reduction. Intuitively, a multi-
cast message should not have more than one copy stored in the message logs. Even when
a multicast message reaches potentially many processes by virtue of being replicated many

10 Esteban Meneses, Laxmikant V. Kalé

R

S U VT W X Y Z

(a) Serial Implementation

R

S

U V

T

W X

Y Z

(b) Tree-based Implementation

Fig. 3 Two strategies to implement collective-communication operations.

times, only one replica in the system is necessary to store to guarantee consistent recovery.
A reduction operation involves several messages from different processes. But, once the re-
duction has been finished, not all the contributing messages have to be stored. In particular,
if messages are agglomerated along the way to the root of the reduction, partial contributions
are no longer needed if the last contribution messages are safely stored.

The easiest way to understand the multicast and reduction operations is by considering
its serial implementation. For instance, a multicast from a source to many destinations is
nothing else than a sequence of messages from the source to each destination. Similarly, a
reduction from many sources to a common destination is nothing else than a sequence of
messages from each source to the same destination. Figure 3(a) illustrates these ideas with a
system having processes R,S, ..., Z and being R the source of a multicast or the destination
of a reduction. This implementation of multicast and reduction operations allows the use of
any traditional message-logging protocol. That is why popular message-logging implemen-
tations in HPC have used this strategy [3,7,13]. One advantage of the serial implementation
is that it permits a multicast operation save only one copy of the message at the source. The
same can not be said about a reduction operation.

The downside of a serial implementation is its scalability. Very quickly, the source in
the multicast or the destination in the reduction becomes a bottleneck and large scaling
is not feasible. Figure 3(b) presents a tree-based implementation for collective operations.
This alternative increases scalability and enables parallelism, but presents a challenge for
message-logging protocols. A collective operation can run on a spanning tree using regu-
lar message-logging protocols, but they can not avoid saving unnecessary copies of certain
messages. For example, a multicast on the spanning tree of Figure 3(b) would require the
same message to be stored 4 times (at processes R,S, T , and X). The memory-reducing
advantage of the serial implementation is lost. A goal of CAMEL, the message-logging pro-
tocol introduced in this section, is to use a spanning tree and store a multicast message only
once. Similarly, a reduction on the spanning tree of Figure 3(b) using regular message log-
ging would require the storage of 8 messages. However, once the reduction is finished, only
2 messages are necessary to store (the ones reaching the root of the spanning tree). CAMEL

aims to provide a mechanism that only stores the contributing messages reaching the root
in a reduction. In a nutshell, CAMEL extends the traditional message-logging protocols and
stores the minimum number of messages necessary to provide a correct recovery.

In designing CAMEL, it is crucial to understand the different failure scenarios and how
collective-communication operations can be reproduced. Let us start with a multicast and
a failure that occurs before the multicast message reaches all the destinations. Imagine a
case in Figure 3(b) where a multicast message from R has reached all processes but Y

and Z. Now, if process W fails, it will not be able to receive the multicast message from
T , because multicast messages are not stored at intermediate nodes as in regular message-

CAMEL: Collective-Aware Message Logging 11

logging protocols. The original sender of the multicast message, R, will be the only one
retaining a copy of the message and it will provide it directly to W . If it is process X the
one failing, then the question is how processes Y and Z will receive the multicast message.
Once again, during recovery, process R will send the message to X, and X will forward the
message to Y and Z. Finally, if R fails during a multicast operation, then such operation
must finish. Therefore, processes Y and Z will not drop the multicast message, even if it
comes from a sender with an old incarnation number. Multicast operations are thus atomic,
once started they must be completed.

Similarly, a reduction operation require special considerations. In the same system of
Figure 3(b), a reduction with root R is being carried out when a failure happens. Let us
assume the contributing messages have arrived at S and T , but not R. If process T fails,
then it will not be able to send the final contribution to R unless its children store copies
of the contributing messages. Therefore, we will require all processes to temporarily store
reduction messages until an acknowledgment confirms that a particular reduction has been
finished. The reduction messages from S and T to R must be kept all the time as they
are necessary to recover R. If instead of failing T , it is X that fails, the same mechanism
will ensure the children of X send the messages again. Upon reception, X will send the
contribution to T . This message is a duplicate and can easily be discarded by the standard
mechanism of message logging. Finally, to recover any process, the root of every group
will provide a reduction number that will determine which reduction messages are old and
should be discarded.

3.2 Algorithmic Description

The formalization of the ideas presented above is called Collective-Aware Message Logging
(CAMEL). The design of CAMEL is influenced by the functionality of each layer in Fig-
ure 2(a). More specifically, the runtime layer interacts with the message-logging layer through
a set of functions. The first group of functions is related to the structure of the spanning tree.
We assume a group G of processes is formed at the runtime layer through some calls from
the application. The runtime layer, however, exposes the spanning tree of any group G to
the message-logging layer. In particular, the message-logging layer at process X can query
the runtime layer about the parent of X, the children of X, and the root of the spanning tree
of group G. This functionality will be represented by a collection of data structures. The
second set of functions in the interface between the runtime and the message-logging layer
are concerned with the execution of a reduction. When several contributing messages reach
a particular process, they will be merged by functions provided by the runtime layer. We
make a subtle distinction between accumulate messages, and agglomerate messages. The
former refers to merely collecting the messages, whereas the latter represents the construc-
tion of a consolidated message from the individual contributions. Thus, a process that stands
at an intermediate node in the spanning tree of a group during a reduction will accumulate
the messages from its children (and itself), and once all messages have been received, it will
agglomerate them and forward the consolidated message to its parent.

An extension to the message header in Figure 2(b) is necessary to identify the particular
group a collective message belongs to. Therefore, a message header will contain a group

field that uniquely identifies a set of processes. Similarly, a determinant will include a new
field for the group. The reception of a reduction message will be associated with determi-
nant 〈sender, recver, group, ssn, rsn〉. Note that regular messages do not require a group
identifier.

12 Esteban Meneses, Laxmikant V. Kalé

Name Type Description

rootMap 2N → N Maps a group to its corresponding spanning tree root
parentMap 2N ×N → N Maps a group and a process to its parent process in that group
childrenMap 2N ×N → 2N Maps a group and a process to its children in that group
redSsnMap 2N → N Maps a group to a reduction ssn
redRsnMap 2N ×N × N→ N Maps a group, a process, and an ssn to a reduction rsn

Table 2 Additional data structures used in CAMEL (Algorithm 2).

Table 2 presents a list of the data structures in each process that represent part of the
interface between the runtime and the message-logging layer. A group G represents a group
of processes in N , therefore G ∈ 2N . Each group G will have an associated spanning
tree. The data structures rootMap, parentMap, and childrenMap associate a group with a
root process, the parent, and children in the spanning tree, respectively. Each process will
hold two additional data structures to keep track of reduction operations. The redSsnMap

maintains a sender sequence number for each reduction operation in each group. Therefore,
a particular process can determine how many contributions it has made to a particular group.
Finally, redRsnMap stands for reduction receive sequence number map and it is used only
at the root of a reduction. It associates a reception sequence number with a sender (one of
its chidren in the spanning tree for the particular group), a group and a reduction number.

CAMEL extends Algorithm 1 by handling messages of collective-communication oper-
ations in a way that minimizes the amount of memory in the message logs. The protocol
is presented in Algorithm 2. Auxiliary functions for CAMEL are listed in Algorithm 3. We
assume a multicast or a reduction message has a flag that allows the runtime system decide
whether to call the regular message methods or the collective-aware ones. For instance, in
case of a message emission, the runtime system will check that flag to call either SENDMSG

or SENDMULTICASTMSG. The notation msg indicates that the identifier of the message is
being transmitted, and not the message itself.

Functions SENDMULTICASTMSG and RECEIVEMULTICASTMSG in Algorithm 2 deal
with emission and reception of multicast messages. The former is a straightforward exten-
sion of the regular message send. The latter shows the creation of a regular determinant, and
the forwarding of the message down the spanning tree. However, message copy is avoided
at the intermediate nodes of the spanning tree. Once a multicast message arrives at some
process, function OUTOFORDER checks whether the message is valid or not. This verifica-
tion process includes checking whether the message is a duplicate or is old. In the case of
multicast messages, because the root relies on the spanning tree to deliver the message, old
messages are not discarded.

Function SENDREDUCTIONMSG tags the message with the group ID and the corre-
sponding rssn. Then, it calls VERIFYREDUCTIONMSG, which is a generic function that
checks whether the reduction message is ready to be propagated up in the spanning tree. Al-
gorithm 3 presents the implementation of VERIFYREDUCTIONMSG. If the reduction mes-
sage is not ready, it accumulates the new contribution and leaves the forwarding for a fu-
ture call. Otherwise, it agglomerates all contributing messages and submits the reduction
message. It will temporarily store the reduction message. Once the reduction has been com-
pleted, copies of the reduction messages will be eliminated, except for the direct children
of the reduction root. Function RECEIVEREDUCTIONMSG receives a contributing message
and generates a determinant only at the root of the spanning tree. It also calls VERIFYRE-
DUCTIONMSG to complete the execution of the reduction.

CAMEL: Collective-Aware Message Logging 13

Algorithm 2 CAMEL: Collective-Aware Message Logging
1: procedure SENDMULTICASTMSG(msg, group)
2: msg.sender ← X . Adds sender
3: msg.group← group . Adds receiver
4: msg.ssn← INCREMENT(ssn) . Updates ssn
5: msg.inc← inc
6: msg.dets← detBuf . Adds determinants
7: msgLog ← msgLog ∪ {msg} . Stores message
8: SENDMSGTOCHILDREN(msg)
9: end procedure

10: procedure RECEIVEMULTICASTMSG(msg)
11: if OUTOFORDER(msg) then return . Cheks for out-of-order
12: end if . messages
13: rsnMap(msg.sender,msg.ssn)← INCREMENT(rsn) . Updates rsnMap
14: detBuf ← detBuf ∪ {〈msg.sender,X,msg.ssn, rsn〉} . Creates determinant
15: detLog ← detLog ∪msg.dets . Adds remote determinants
16: NETSENDDETACK(msg.dets,msg.sender)
17: PROCESSMSG(msg)
18: msg.dets← ∅ . Removes piggybacked determinants
19: SENDMSGTOCHILDREN(msg)
20: end procedure
21: procedure SENDREDUCTIONMSG(msg, group)
22: msg.sender ← X . Adds sender
23: msg.group← group . Adds group
24: msg.ssn← INCREMENT(redSsnMap(group)) . Updates redSsnMap
25: msg.inc← inc
26: VERIFYREDUCTIONMSG(msg)
27: end procedure
28: procedure RECEIVEREDUCTIONMSG(msg)
29: if OUTOFORDER(msg) then return . Checks for out-of-order
30: end if . messages
31: if X = rootMap(msg.group) then
32: redRsnMap(msg.sender,msg.group,msg.ssn)← INCREMENT(rsn) . Updates redRsnMap
33: detBuf ← detBuf ∪ {〈msg.sender,X, group,msg.ssn, rsn〉} . Adds determinant
34: end if
35: detLog ← detLog ∪msg.dets . Adds remote determinants
36: NETSENDDETACK(msg.dets,msg.sender)
37: msg.dets← ∅ . Removes piggybacked determinants
38: VERIFYREDUCTIONMSG(msg)
39: end procedure

3.3 Formal Proof of Correctness

We prove the correctness of CAMEL algorithm in two steps. First, we show all required
messages are available in the message log of surviving processes. Second, we demonstrate
there are no orphan processes after a failure.

Lemma 1 (Availability of replayed messages) All required messages are available during
recovery with CAMEL protocol.

Proof The only messages CAMEL handles differently than traditional message-logging pro-
tocols are multicast and reduction messages. Therefore, we will show both those types of
messages are available during recovery. In the first case, a multicast message m received by
a failed process X is always available at the root Y of the spanning tree for m. Therefore,
a recovering X will have Y replaying the message, regardless of whether Y directly sent
a message or not to X before the failure. As for reduction messages, these are temporarily
stored until the reduction is finished. If X fails and a reduction is ongoing, the children of
X will replay the messages. In any other case, X will not need the contributing messages
because it will advance its current reduction sequence number for each group to the latest.
If X happens to be the root of a reduction, its children will store the contributing messages.

14 Esteban Meneses, Laxmikant V. Kalé

Algorithm 3 Auxiliary CAMEL Functions
1: procedure SENDMSGTOCHILDREN(msg)
2: for all recver ∈ childrenMap(msg.group) do
3: msg.recver ← recver . Updates receiver
4: NETSENDMSG(msg, recver)
5: end for
6: end procedure
7: procedure VERIFYREDUCTIONMSG(msg)
8: if REDUCTIONREADY(msg) then
9: msg ← AGGLOMERATE(msg) . Consolidates message

10: msg.sender = X . Updates sender
11: if X = rootMap(msg.group) then
12: PROCESSMSG(msg)
13: SENDMSGACKTOCHILDREN(msg)
14: else
15: msg.recver ← parentMap(msg.group) . Updates receiver
16: msg.inc← inc
17: msg.dets← detBuf . Piggybacks determinants
18: msgLog ← msgLog ∪ {msg} . Stores message
19: NETSENDMSG(msg, parent)
20: end if
21: else
22: ACCUMULATE(msg)
23: end if
24: end procedure
25: procedure SENDMSGACKTOCHILDREN(msg)
26: for all recver ∈ childrenMap(group) do
27: NETSENDMSGACK(msg, recver)
28: end for
29: end procedure
30: procedure RECEIVEMSGACK(msg)
31: group← msg.group . Updates group
32: parent← parentMap(group)
33: if parent 6= msg.sender then
34: msgLog ← msgLog \msg . Removes message
35: end if
36: for all recver ∈ childrenMap(group) do
37: NETSENDMSGACK(msg, recver)
38: end for
39: end procedure

Theorem 2 (Correctness of Collective-Aware Message Logging Protocol) The Collective-
Aware Message Logging (CAMEL) protocol detailed in Algorithm 2 complains with Prop-
erty 1 by creating no orphan process during recovery.

Proof We will proceed by contradiction. Let us assume there is an orphan process, in other
words:

∃m ∈ R : DEP(m) 6= ∅ ∧ LOG(m) ⊂ F

Message m belongs to one of the three classes of messages: regular, multicast, or reduction.
We analyze each case separately.
• Case 1 (regular message). Theorem 1 guarantees there are not orphan processes for regular
messages.
• Case 2 (multicast message). This case is analogous to the regular case, because other
than the storage of the message, multicast messages are handled as regular messages at the
receiver.
• Case 3 (reduction message). In order to have X ∈ DEP(m), the whole reduction has
to be finished. Therefore, X ∈ DEP(m̂), where m̂ is one message reaching the root of
the reduction tree. Intermediate messages are irrelevant for consistency of recovery. Again,
Theorem 1 ensures m̂ gets its associated determinant.⇒⇐ ut

CAMEL: Collective-Aware Message Logging 15

4 Implementation

The CHARM++ parallel programming runtime system [18] was chosen for CAMEL’s im-
plementation. There are several features of the CHARM++ execution model that make it a
general framework for message-passing programs. The CHARM++ philosophy encourages
modularity and locality by having objects that carry out the execution of the program. Each
object, called a chare in CHARM++’s terminology is an independent execution unit that ex-
ports remote methods. Each method invocation is transformed into an active message that
triggers a particular method upon reception. Thus, the collection of objects in a CHARM++
program performs a computation by exchanging messages in an asynchronous fashion, pro-
viding what is called message-driven execution. This mechanism is more general than the
one enforced by the message-passing interface (MPI). The CHARM++ runtime system con-
ceives the underlying machine as a collection of processing entities (PEs). The unit of failure
in the CHARM++ model is one PE. Therefore, we will consider in the rest of the paper the
loss of one PE as the representative example of a failure in HPC systems. The set of objects
in a computation is divided among the set of PEs by the runtime system. Because multiple
objects may reside on the same PE, it is said that CHARM++ provides overdecomposition.
The runtime system also handles migration of objects between different PEs in order to
achieve load balance, fault tolerance, and power management.

Figure 4 presents a general view of the architecture in CHARM++ that implements the
CAMEL protocol. The processing entities take the place of the processes described in Sec-
tion 2. Therefore, the failure of one PE implies multiple objects are lost simultaneously.
Figure 4 also shows two spanning trees: one for the set of PEs {R,S, T,W,X} rooted at R,
one for the group of objects {r, s, t, ..., z} rooted at r. This figure replaces the view of the
spanning tree between the group of processes in Figure 3(b). In CHARM++, both PEs and
objects have spanning trees, although they are interdependent. A manager object (tagged
with a letter M in the diagram) represents a special kind of object that manages collective
operations among the set of objects and defines the spanning tree. All the information rel-
ative to spanning trees for collectives is maintained in this set of objects. In addition, the
manager is in charge of sending and receiving all collective communication messages. Be-
cause of its strategic role, the manager object may interact with the runtime system layer
(see Figure 2(a)) to perform all necessary operations in Algorithm 2, in particular functions
ACCUMULATE and AGGLOMERATE.

r
s u vt

xw y z

M
M M

M MPE R
PE S PE T

PE W PE X

Fig. 4 Architecture of CAMEL implementation in CHARM++.

Seemingly, the two major challenges of the implementation of CAMEL in CHARM++
are the non-FIFO channels and the asynchrony of execution. If channels do not conserve
FIFO ordering, then Algorithms 1 and 2 will still work because reception order is stored
and reproduced during recovery. However, the programmer has to be aware of this property
and design the application accordingly. By the same token, asynchronous operations do not

16 Esteban Meneses, Laxmikant V. Kalé

prevent the algorithms to be correct, but create a restriction on the mind of the programmer
as to what type of assumptions can be made.

5 Experimental Evaluation

5.1 Setup

The implementation of CAMEL protocol presented in Section 4 was deployed on two differ-
ent supercomputers, Intrepid and Stampede. Intrepid is housed by the Argonne Leadership
Computing Facility (ALCF) in Argonne National Laboratory (ANL). It is an IBM Blue
Gene/P machines with 40,960 nodes. Each node consists of one quad-core 850MHz Pow-
erPC 450 processor and 2GB DDR2 of main memory. Intrepid has a total of 163,840 cores,
80 terabytes of RAM, and a peak performance of 557 TeraFLOPs. Stampede is hosted at
Texas Advanced Computing Center (TACC). It has 6,400 nodes, with each node containing
2 Intel Xeon processors (16 cores total) and 32GB of memory. Stampede’s interconnect uses
Mellanox FDR Infiniband technology in a 2-level fat-tree topology. With a total of 96,000
cores, it can deliver more than 10 PetaFLOPs.

A couple of CHARM++ applications were selected to experimentally evaluate the im-
plementation of CAMEL. These applications were introduced in Figure 1. LeanMD is a
mini-application that emulates the communication pattern in NAMD. The major goal of
LeanMD is to compute the interaction forces between particles in a three-dimensional space
based on the Lennard-Jones potential. It does not include long-range force computation. The
object decomposition divides a three-dimensional space into hyperrectangles. Each of these
boxes, called cells, contains a subset of the particles. A specific object, called a compute, is
connected to the two cells and receives the particles from both cells to perform the particle
interaction computation. In each iteration of LeanMD, each cell sends its particles to all
the computes attached to it and receives the updates from those computes. OpenAtom is a
parallel application for molecular dynamics simulations based on fundamental quantum me-
chanics principles. Car-Parrinello ab-initio molecular dynamics (CPAIMD) is a well-known
approach that has proven to be efficient and useful in this type of simulations. The par-
allelization of this approach beyond a few thousand processors is challenging, due to the
complex dependencies among various subcomputations. This may lead to complex com-
munication optimization and load balancing problems. OpenAtom implements CPAIMD in
CHARM++.

5.2 Results

The main goal of CAMEL is to reduce the memory footprint of the message log in message-
logging protocols. We measured the size and type of all messages logged during executions
of both LeanMD and OpenAtom and present the breakdown of the message log. Figure 5
presents the message log memory consumption of LeanMD on Stampede using the tradi-
tional SCMEL protocol (listed in Algorithm 1) and CAMEL (listed in Algorithm 2). The
former is represented by letter S in the figure, while the latter by letter C. Figure 5(a) shows
a small problem size, whereas Figure 5(b) shows a moderate problem size. In both cases,
CAMEL manages to dramatically decrease the memory pressure. CAMEL reduces the size
of the memory log by at least 95%. Both figures also show the strong scale of CAMEL from

CAMEL: Collective-Aware Message Logging 17

 0

 20

 40

 60

 80

 100

S C S C S C S C S C

P
er

ce
n

ta
g
e

o
f

T
o

ta
l

M
es

sa
g

e
L

o
g

Number of Cores
1K 2K 4K 8K 16K

Multicast
Reduction
Point−to−point

(a) 1-million-particle dataset

 0

 20

 40

 60

 80

 100

S C S C S C S C S C

P
er

ce
n

ta
g
e

o
f

T
o

ta
l

M
es

sa
g

e
L

o
g

Number of Cores
1K 2K 4K 8K 16K

Multicast
Reduction
Point−to−point

(b) 4-million-particle dataset

Fig. 5 Relative message log size of SCMEL (S) and CAMEL (C) in LeanMD.

1K cores up to 16K cores. This dramatic reduction comes from the fact that LeanMD trans-
fers most of the data through collective operations (as shown in Figure 1(a)). In fact, less
than 1% of the data is sent via point-to-point operations. LeanMD exchange particle in-
formation between cells and computes using multicast and reductions. We should note that
CAMEL is more effective reducing the memory footprint of multicast. That is reflected in
Figures 5 and 5(b). In general, CAMEL decreases multicast memory pressure from 50% to
1%, whereas reduction memory pressure goes down from 50% to 3%. This is a natural effect
of having to store only one copy of the multicast message, but as many reduction messages
as the root of the spanning tree receives (see Algorithm 2).

Figure 6 shows the OpenAtom results on Intrepid. Two problem sizes, small and mod-
erate, were used and appear in Figures 6(a) and 6(b), respectively. Again, CAMEL shows a
significant reduction of the message log. In Figure 6 the total memory required by the mes-
sage log gets reduced from 24% to 52% as we move from 256 to 4K cores. The fraction of
messages that belong to point-to-point operations remains unchanged because CAMEL only
addresses collective messages. That fraction is significant in OpenAtom, taking from 55%
to 32%. Again, CAMEL has a higher impact on multicast messages than in reduction mes-
sages. For instance, at 4K in Figure 6, the fraction of the message log related to reduction
messages goes from 30% to 10%, whereas its multicast counterpart goes from 38% to 6%.
Figure 6(b) shows similar results for a bigger problem size in OpenAtom. The decrease on
the message log for this case goes from 24% to 65% as we strong scale the program from
1K to 16K cores. Figures 6(a) and 6(b) share the same trend to decrease the message log
used by CAMEL as the program strong scales. The reason for such pattern is that OpenAtom
uses more heavily collective communication operations as more cores are available. That
can be verified by the decreasing fraction of point-to-point messages in the spectrum. Many
HPC applications apply the same logic of relying more heavily on collective operations as
the scale gets larger. Finally, a difference in the magnitude of the impact of CAMEL on Le-
andMD and OpenAtom relates to the depth of the spanning tree. LeanMD uses spanning
trees that reach more cores and hence CAMEL manages to get a more dramatic decrease in
the size of the message log.

An additional benefit of CAMEL is the elimination of certain determinants for reduction
operations and the avoidance of piggybacking certain determinants for multicast operations.
Algorithm 2 shows in function RECEIVEREDUCTIONMSG how a reduction message gener-
ates determinants only at the root of the spanning tree. Therefore, compared with SCMEL,
CAMEL does not create determinants for reception of intermediate contribution messages to

18 Esteban Meneses, Laxmikant V. Kalé

 0

 20

 40

 60

 80

 100

S C S C S C S C S C

P
er

ce
n

ta
g
e

o
f

T
o

ta
l

M
es

sa
g

e
L

o
g

Number of Cores
256 512 1K 2K 4K

Multicast
Reduction
Point−to−point

(a) 32-molecule water system

 0

 20

 40

 60

 80

 100

S C S C S C S C S C

P
er

ce
n

ta
g
e

o
f

T
o

ta
l

M
es

sa
g

e
L

o
g

Number of Cores
1K 2K 4K 8K 16K

Multicast
Reduction
Point−to−point

(b) 256-molecule water system

Fig. 6 Relative message log size of SCMEL (S) and CAMEL (C) in OpenAtom.

a reduction. In the case of multicast, Algorithm 2 shows in function RECEIVEMULTICAS-
TMSG how piggybacked determinants are removed from the original multicast messages be-
fore being forwarded to the children by function SENDMSGTOCHILDREN. Table 3 presents
relevant communication statistics for LeanMD running 100 iterations on the 1-million parti-
cle dataset. The test was run on Stampede for the range between 1,024 and 16,384 cores. The
first row in Table 3 reports the total number of messages sent in the system during the whole
execution. Although the table presents a strong scaling test, the number of total messages
increases with the system size due to a different and deeper structure in the spanning tree.
The same holds true for the size of the message log. Table 3 compares SCMEL and CAMEL

for the size of the message log (the proportion appears in Figure 5(a)), the total number of
determinants created and the total number of determinants piggybacked. Again, the num-
bers correspond to the sum of all determinants in all the processes for the whole execution.
Besides the dramatic reduction in message log size, CAMEL is also able to approximately
reduce in half the number of determinants created and the number of determinants piggy-
backed. Eliminating determinants (and their distribution) can alleviate the main source of
performance penalization of message-logging protocols [17]. It does, however, depend on
the type of interconnection. The performance difference on Stampede was not significant.

Number of Cores
1,024 2,048 4,096 8,192 16,384

Messages (×106) 24.32 23.7 32.33 32.05 33.09

SCMEL
Message Log (GB) 269.49 261.19 363.44 359.59 370.82

Determinants (×106) 54.72 54.04 62.68 62.4 63.44
Piggybacked (×106) 348.23 265.33 275.84 221.68 185.39

CAMEL

Message Log (GB) 12.77 12.77 12.79 12.83 12.94
Determinants (×106) 28.94 28.61 32.99 32.87 33.44

Determinants (%) 52.88 52.94 52.63 52.68 52.71
Piggybacked (×106) 185.48 143.52 136.62 129.19 111.51

Piggybacked (%) 53.26 54.09 49.53 58.28 60.15

Table 3 Message and determinant statistics for LeanMD.

CAMEL: Collective-Aware Message Logging 19

6 Analysis

Traditional message-logging protocols can cope with messages from collective-communication
operations [3, 7, 13], but fail to leverage the structure of those operations to decrease the
memory size of the message log. CAMEL capitalizes on the implementation of collective
operations on a spanning tree and only saves the minimum amount of data needed to repro-
duce the result of such operation after a failure. CAMEL is meant to extend any traditional
message-logging protocol by adding extra few bits of information and handling collective
messages slightly differently. Although this paper uses causal message logging as an exam-
ple, CAMEL philosophy is applicable to other protocols.

CAMEL does not require the generation of determinants for reduction messages, except
at the root of the spanning tree. Determinism is not needed when agglomerating messages
at the intermediate nodes because replicating the same deterministic decisions will not have
any impact on the correctness of the execution. More specifically, if process X is an inter-
mediate node in a spanning tree and agglomerates reduction messages in a non-deterministic
way, the exact same decision does not need to be made during recovery because the agglom-
erated message emitted by X will be discarded. If functions ACCUMULATE and AGGLOM-
ERATE are deterministic, then determinant generation can be removed from the root node in
Algorithm 2.

The failure unit assumed in this paper is a process (or a PE in the CHARM++ imple-
mentation). A more realistic assumption, given the failure pattern of modern supercomput-
ers [22], is to assume a node as the unit of failure. It is straightforward to extend CAMEL’s
ideas into a multicore node-based runtime system. At the node level, CAMEL would work
exactly the same way as in the PE-based case. For instance, the SCMEL protocol in Algo-
rithm 1 has been extended to multicore node systems [22] and CAMEL could be adjusted to
such environment.

The design of CAMEL includes a tight collaboration with the runtime system. Figure 2(a)
shows this interaction in which certain operations in CAMEL call the runtime layer for ac-
cumulation and agglomeration of messages. One additional function at the runtime layer
might be to provide message buffering in case of concurrent collective operations.

One of the main features of CAMEL is its appeal for scalability. The results in Section 5
demonstrated the benefits of CAMEL in both strong and weak scaling. As more processes are
used to run collective-intensive programs, the spanning trees get deeper and there is a bigger
impact on saving messages near the root that would otherwise have been stored throughout
the whole tree.

There are several ways in which CAMEL can be optimized. First, during recovery multi-
cast messages are always propagated, regardless whether the multicast has actually reached
all nodes. Duplicate multicast messages can be suppressed by having acknowledgments
from children. Therefore, parents in the spanning tree would not propagate a multicast mes-
sage if the operation has been confirmed by its children. Second, other structures for collec-
tives can be used. In some cases, processes would delegate collective messages even if they
are not part of the group involved in the collective. Third, it is possible to merge CAMEL

with other memory-reducing techniques for message logging. For instance, team-based mes-
sage logging [21,26] groups processes into teams and avoids storing communication within
teams. Team-based message logging can be integrated with CAMEL.

20 Esteban Meneses, Laxmikant V. Kalé

7 Conclusions and Future Work

The effective usage of future supercomputers will depend on the ability of the system to
overcome the high rate of failures predicted for such large systems. Rollback-recovery
strategies have been widely adopted in the HPC community. One of those strategies is mes-
sage logging, which stores communication to avoid a global rollback. That feature makes
message-logging protocols able to reduce execution time and energy consumption on a
faulty machine. However, a drawback of message logging is the increased memory pres-
sure due to the message log.

This paper introduces CAMEL, a collective-aware protocol to reduce the size of the
message log in memory. CAMEL extends traditional protocols by adding a few bits of ex-
tra information and only stores messages that are absolutely necessary to reproduce multi-
cast and reduction operations during recovery. Results on two different platforms and using
two different applications demonstrate CAMEL’s ability in substantially reduce the memory
pressure of message logging.

Other types of collective communication operations can be incorporated into CAMEL’s
model. We will explore those operations in the future along with other applications that make
a significant use of collective operations. In addition, we will design a holistic approach that
combines CAMEL with other memory-reducing techniques for message logging.

Acknowledgements This research was supported in part by the US Department of Energy under grant DOE
DE-SC0001845 and by a machine allocation on the Teragrid under award ASC050039N. This work also used
machine resources from PARTS project and Directors discretionary allocation on Intrepid at ANL for which
authors thank the ALCF and ANL staff.

References

1. Alvisi, L., Hoppe, B., Marzullo, K.: Nonblocking and orphan-free message logging protocols. In: FTCS,
pp. 145–154 (1993)

2. Alvisi, L., Marzullo, K.: Message logging: pessimistic, optimistic, and causal. International Conference
on Distributed Computing Systems pp. 229–236 (1995)

3. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model for high performance.
Concurrency and Computation: Practice and Experience 22(16), 2196–2211 (2010)

4. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Collective operations in application-level fault-
tolerant mpi. In: Proceedings of the 17th annual international conference on Supercomputing, ICS ’03,
pp. 234–243. ACM, New York, NY, USA (2003)

5. Cappello, F.: Fault tolerance in petascale/ exascale systems: Current knowledge, challenges and research
opportunities. IJHPCA 23(3), 212–226 (2009)

6. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale resilience. Int. J.
High Perform. Comput. Appl. 23(4), 374–388 (2009). DOI 10.1177/1094342009347767. URL http:
//dx.doi.org/10.1177/1094342009347767

7. Chakravorty, S., Kale, L.V.: A fault tolerance protocol with fast fault recovery. In: Proceedings of the
21st IEEE International Parallel and Distributed Processing Symposium. IEEE Press (2007)

8. Chandy, K.M., Lamport, L.: Distributed snapshots : Determining global states of distributed systems.
ACM Transactions on Computer Systems (1985)

9. E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey, A. Hoisie, K. McKinley, R. Melhem, J.
S. Plank, P. Ranganathan and J. Simons: System resilience at extreme scale. Defense Advanced Research
Project Agency (DARPA), Tech. Rep. (2008)

10. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)

11. Elnozahy, E.N., Zwaenepoel, W.: Manetho: Transparent roll back-recovery with low overhead, limited
rollback, and fast output commit. IEEE Trans. Comput. 41(5), 526–531 (1992). DOI http://dx.doi.org/
10.1109/12.142678

CAMEL: Collective-Aware Message Logging 21

12. Ferreira, K., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K., Brightwell, R., Riesen, R., Bridges,
P.G., Arnold, D.: Evaluating the viability of process replication reliability for exascale systems. In:
Supercomputing, pp. 44:1–44:12. ACM, New York, NY, USA (2011)

13. Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated checkpointing without
domino effect for send-deterministic mpi applications. In: IPDPS, pp. 989–1000 (2011)

14. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for linux clusters. In: SciDAC
(2006)

15. Hursey, J., Graham, R.L.: Preserving collective performance across process failure for a fault tolerant
mpi. In: Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, IPDPSW ’11, pp. 1208–1215. IEEE Computer Society, Washington, DC,
USA (2011)

16. Johnson, D.B., Zwaenepoel, W.: Sender-based message logging. In: In Digest of Papers: 17 Annual
International Symposium on Fault-Tolerant Computing, pp. 14–19. IEEE Computer Society (1987)

17. Jonathan Lifflander, E.M., Menon, H., Miller, P., Krishnamoorthy, S., Kale, L.: Scalable Replay with
Partial-Order Dependencies for Message-Logging Fault Tolerance. In: Proceedings of IEEE Cluster
2014. Madrid, Spain (2014)

18. Kalé, L., Krishnan, S.: Charm++ : A portable concurrent object oriented system based on C++. In:
Proceedings of the Conference on Object Oriented Programmi ng Systems, Languages and Applications
(1993)

19. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P.,
Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S.,
Snavely, A., Sterling, T., Williams, R.S., Yelick, K.: Exascale computing study: Technology challenges
in achieving exascale systems (2008)

20. Meneses, E., Bronevetsky, G., Kale, L.V.: Evaluation of simple causal message logging for large-scale
fault tolerant HPC systems. In: 16th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2011). (2011)

21. Meneses, E., Mendes, C.L., Kale, L.V.: Team-based message logging: Preliminary results. In: 3rd Work-
shop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids (CC-
GRID 2010). (2010)

22. Meneses, E., Ni, X., Kale, L.V.: Design and analysis of a message logging protocol for fault tolerant mul-
ticore systems. Tech. Rep. 11-30, Parallel Programming Laboratory, Department of Computer Science,
University of Illinois at Urbana-Champaign (2011)

23. Meneses, E., Ni, X., Zheng, G., Mendes, C.L., Kale, L.V.: Using migratable objects to enhance fault
tolerance schemes in supercomputers. In: IEEE Transactions on Parallel and Distributed Systems (2014)

24. Meneses, E., Sarood, O., Kale, L.V.: Energy profile of rollback-recovery strategies in high perfor-
mance computing. Parallel Computing 40(9), 536 – 547 (2014). DOI http://dx.doi.org/10.1016/
j.parco.2014.03.005. URL http://www.sciencedirect.com/science/article/pii/
S0167819114000350

25. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In: SC, pp. 1–11 (2010)

26. Ropars, T., Guermouche, A., Uçar, B., Meneses, E., Kalé, L.V., Cappello, F.: On the use of cluster-
based partial message logging to improve fault tolerance for mpi hpc applications. In: Euro-Par (1), pp.
567–578 (2011)

27. Snir, M., Gropp, W., Kogge, P.: Exascale Research: Preparing for the Post Moore Era.
https://www.ideals.illinois.edu/bitstream/handle/2142/25468/Exascale%
20Research.pdf (2011)

28. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in mpich.
International Journal of High Performance Computing Applications 19(1), 49–66 (Spring 2005). DOI
10.1177/1094342005051521

29. Zheng, G., Shi, L., Kalé, L.V.: FTC-Charm++: An In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPI. In: 2004 IEEE Cluster, pp. 93–103. San Diego, CA (2004)

