
Charm++ & MPI: Combining the Best of Both Worlds
Nikhil Jain∗, Abhinav Bhatele†, Jae-Seung Yeom†, Mark F. Adams§, Francesco Miniati¶, Chao Mei‖, Laxmikant V. Kale∗

∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA

§Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
¶Institute for Astronomy, ETH Zurich, Zurich, Switzerland
‖Google Inc., Mountain View, California 94043 USA

Abstract—MPI and Charm++ embody two distinct per-
spectives for writing parallel programs. While MPI provides
a processor-centric, user-driven model for developing paral-
lel codes, Charm++ supports work-centric, overdecomposition-
based, system-driven parallel programming. One or the other
can be the best or most natural fit for distinct modules that
constitute a parallel application. In this paper, we present a
framework that enables hybrid parallel programming with MPI
and Charm++, and allows programmers to develop different
modules of a parallel application in these two languages while
facilitating smooth interoperation. We describe the challenges
in enabling interoperation between MPI and Charm++, and
present techniques for managing the control flow and resource
sharing in such scenarios. Finally, we demonstrate the benefits of
interoperation between MPI and Charm++ through several case
studies that use production applications and libraries, including
CHARM/Chombo, EpiSimdemics, NAMD, FFTW, MPI-IO and
ParMETIS.

I. INTRODUCTION

The increasing computational power of supercomputers is
expected to lead to significant breakthroughs in science and
engineering. These breakthroughs will come from accurate
predictions arising from faithful modeling of physical phe-
nomena, which in turn will require multi-physics modeling and
coupled simulations. Further, effective use of increased com-
putational power will require more sophisticated techniques
such as dynamic adaptive refinements.

The toolbox of the parallel programmer should also be rich
to match the complexity of parallel simulations. In particular, it
should include multiple programming languages. For simplic-
ity, we use the term language to refer to all the notations that
provide a mechanism for writing a parallel program — a com-
munication library, a runtime system, a programming model,
a compiler-supported parallel language, or any other mode
of expression. Different languages provide various features
that are instrumental in designing and implementing parallel
applications in them.

Most of the existing parallel applications are implemented
in a single language. Hence, they are limited in their ability to
exploit features provided by multiple languages. As modern
parallel codes get more complex and are implemented as
a collection of several diverse modules, this limitation can
severely impact programmer’s productivity and application
performance. This is because features from different program-
ming languages might be the best or most natural fit for each

of these diverse modules. Moreover, the restriction of using
one language prevents reuse of parallel software developed in
different languages.

To overcome this restriction, the high performance com-
puting (HPC) community is actively exploring interoperation
of multiple parallel programming languages within an appli-
cation. For example, OpenMP [1] is frequently used with
MPI [2] to facilitate intra-node shared memory parallelism [3],
[4]. Along these lines, this paper presents our experience
with combining Charm++ [5] and MPI [2] for writing par-
allel applications. We describe the challenges we faced, the
methodology that we developed to enable interoperation, and
the applicability and scalability of the proposed framework.
Our primary goal is to use interoperation in multi-module
parallel applications, wherein the combined use of MPI and
Charm++ for implementing distinct modules can lead to better
performance, increased productivity, and code reuse.

The biggest challenge in enabling interoperation between
MPI and Charm++ is the management and transfer of control
flow between these languages because they have different
models for driving program execution. MPI is a processor-
centric, user-driven language where the programmer explic-
itly defines the control flow, while Charm++ is a work-
centric, overdecomposition-based, system-driven language. In
Charm++ programs, a runtime system drives the execution
based on the availability of data.

Simultaneous use of MPI and Charm++ in a parallel applica-
tion also requires sharing of system resources such as process-
ing elements and the interconnection network, and information
such as application data. Depending on the application at
hand and the physical system being used, the best method to
enable such sharing may also vary, which poses a significant
challenge.

Finally, for wide-spread acceptability, it is critical that the
interoperation methodology for combining MPI and Charm++
is easy to use and provides scalable performance. Moreover,
code reuse can be ensured only if no more than minor
modifications are required for interoperation.

In the rest of the paper, we present a framework for enabling
interoperation between Charm++ and MPI that addresses
the above mentioned challenges. Four case studies based
on production codes such as CHARM/Chombo [6], EpiSim-
demics [7], and NAMD [8], and libraries including FFTW [9],
MPI-IO, and ParMETIS [10], executed on thousands of cores

of IBM Blue Gene/Q and Cray XE6 are presented. These
examples establish the utility of hybrid programming us-
ing MPI and Charm++ in exploiting the best features of
each language and eliminating performance bottlenecks in
the applications with minimal effort. At the same time, they
demonstrate how interoperation leads to code reuse and eases
programmers’ burden by allowing them to use features from
different programming languages that match the requirements
of the individual application modules.

II. BACKGROUND

MPI [2], the defacto standard for parallel programming,
provides a processor-centric model with a localized view
of application data within a processor. Data domains are
typically divided among MPI ranks which equals the number
of processors; two-sided and global communication is per-
formed to exchange information among these ranks. MPI is
a quintessential user-driven language in which the program
control flow is explicitly defined by the programmer. Data
exchanges among MPI ranks are mostly predetermined and
the execution is defined as a single flow of control. Exceptions
such as MPI_ANY_* exist, wherein the programmer delegates
the ordering to the system, but are not commonly used.

Charm++ [5] is a work-centric overdecomposed-objects
based programming language, which also provides a localized
view of application data, but within a C++-object. Application
domains are divided among data and work objects, which are
chosen based on application requirements, independent of the
number of processors. Charm++ is a system-driven language
in which a runtime system (RTS) decides what computation
to execute next based on the availability of data for various
objects. This execution model allows for many concurrent
control flows, with progress driven by the availability of data
(data-driven execution) and the RTS’s guidelines.

Table I lists ease-of-use of some of the features provided
by MPI and Charm++. In MPI, it is easy to take advantage of
important features such as expression of global control flow
and global communication. However, it may not be ideal for a
dynamic, data-dependent control flow due to limited support
for load balancing and handling message-driven interactions.
Significant changes are required to provide such support in
MPI [11], [12].

TABLE I
RELATIVE EASE-OF-USE OF VARIOUS FEATURES IN MPI AND CHARM++.

Language Feature MPI Charm++

Express Global Control Flow Easy Hard
Message-driven Interaction Hard Easy
One-sided Interaction Hard Easy
Global Communication Easy Hard
Exploit Comm.-Comp. Overlap Hard Easy
Concurrency Management Easy Hard
Load Balancing Hard Easy
Existing Libraries Many Few

In contrast to MPI, Charm++ can effectively adapt to
dynamic environments due to its powerful RTS that enables

automatic load balancing and message-driven interactions.
However, the inability to natively express global control flow
and difficulty in performing global communication limits its
use in various scenarios. Given these limitations of MPI and
Charm++, a desirable end-point is a framework that allows
the programmer to use either MPI or Charm++ for each of
the modules in their applications and have them interoperate.

A. Related Work

In parallel computing, interoperation was initially explored
by Harper who developed a library that allowed programs
written for version 3 of Parallel Virtual Machine (PVM [13])
to execute in the Legion environment. A runtime library, Meta-
Chaos, was developed to enable data exchange between data
parallel programs written using High Performance Fortran,
Chaos, Multiblock Parti libraries and pC++ [14]. Kale et
al. [15] proposed and demonstrated the use of a common
runtime framework (Converse) for interoperation of various
parallel programming languages such as MPI [2], PVM [13]
and Charm++ [16].

More recently, STAPL [17] has provided a methodology
that enables third party libraries to be used with it. In terms of
languages, hybrid use of MPI [2] and OpenMP [1] has received
significant attention and has been widely adopted [18], [19].
Use of MPI in Unified Parallel C [20] programs, where MPI
is available as an additional communication interface, has also
been explored [21]. Efforts have also been made by MPI
implementors to facilitate interoperation and support other
languages. Zhao et al. [12] present an extension to MPI which
supports asynchronous active messages that may overlap with
other communication in MPI applications. Dinan et al. [22]
have proposed adding flexible communication end-points to
MPI to relax the one-to-one relation between processes and
MPI ranks.

The research in this paper differs from previous work in sev-
eral aspects. We demonstrate the interoperation of languages
that control parallelism for the entire machine (intra-node and
inter-node) and have very different control flow styles – one
is user-driven and the other is system-driven. We also focus
on the capability to reuse existing code written in diverse
languages. These have not been attempted before. For MPI and
Charm++ interoperation, unlike the previous work that is only
usable with MPI reimplemented on top of Converse [15], we
present a method that requires minimal changes to both MPI
and Charm++, and works with any MPI implementation.

III. CONTROL FLOW MANAGEMENT

The simultaneous use of MPI and Charm++ for writing
a parallel program raises several interesting questions about
managing different aspects of the program. Among these,
management and transfer of control between them is critical,
even more so because the languages differ with respect to the
driver of program execution. In this section, we try to find
answers for the following important questions: 1) How many
control flows should be used to execute different language
modules? 2) How should the control be transferred from one

language module to another? 3) How frequently should the
control be transferred?

When interoperating between two languages of the same
type (user-driven or system-driven), transfer of control from
one language to another is simple. For example, in hybrid
programming with MPI and UPC, the user explicitly drives the
program with the control being returned to them after every
system-invocation [21]. In contrast, for hybrid programming
with MPI and Charm++, there is no obvious solution. If
the execution begins in MPI, there exists no mechanism to
progress Charm++-based modules as the RTS is hidden from
the user. Similarly, if the execution begins in Charm++, there
exists no mechanism to transfer the control to MPI because
the RTS does not support yielding control to the user.

Solution I – Concurrent flows: One possible solution is to
avoid the need for transfer of control by using concurrent
flows. In this method, the MPI and Charm++ modules are
executed in their own home threads (e.g. pthreads). Thus,
these modules make progress when their home threads are
scheduled. While this scheme is simple and easy to use, it
may lead to significant performance problems.

First, the overhead of scheduling threads can impact per-
formance negatively. Second, a default time-sharing based
scheduling of the threads on processors may result in sig-
nificant idle time. While a module in one language wastes
cycles busy-waiting for data, the modules that could have used
these cycles will have to wait for their turn. Such wastage
is even higher for our primary use case where modules are
written in the language suitable for them, and sequential
dependencies may exist among these modules. Third, although
the performance degradation caused due to busy-waiting can
be addressed by an idle module voluntarily yielding control,
implementing this can require significant effort. Such a so-
lution is feasible only if extensive changes are made to the
existing implementations of MPI and Charm++.

Solution II – Exposing the scheduler: In light of the
drawbacks of the approach discussed above, we propose an
alternate solution that executes different modules using a
single control flow. This is made feasible by exposing the
scheduler of Charm++ and empowering the user to control
it. In this approach, the execution of a program begins in
MPI, wherein the semantics of MPI are followed (Figure 1,
Step 1). When required, the exposed scheduler of Charm++
is activated (Step 2). From this point, the execution is driven
by the RTS following the semantics of Charm++ (Step 3).
At a later time, the scheduler is explicitly deactivated and the
control is returned back to MPI (Figure 1, Step 4). Following
it, the MPI module may again activate the Charm++ scheduler,
and hence repeat the cycle. This approach eliminates the
major disadvantages of the former approach — no thread
scheduling overheads, minimal busy-waiting for module-based
applications, and limited changes to MPI and Charm++.

The idea of exposing Charm++’s scheduler is not flawless. It
increases programmer’s burden by demanding explicit control
transfer. It also prevents seamless automated exchange of

control between Charm++ and MPI that concurrent flows can
provide. However, these negatives are minimized by the use of
a module-based design for interoperable programs. Note that
seamless automated exchange between MPI and Charm++ can
also be provided if both of them are reimplemented on top of
a common lower level runtime. Such an exploration is out of
scope for this paper because we aim at minimal changes to
MPI, Charm++, and application codes to enable interoperation.

int main(int argc, char **argv) {
 // Initialization
 mpi_module1(data);
}

mpi_module1(data) {
 // do work
 charm_module1(data);
}

charm_module1(data) {
 // do work
}

charm_module2(data) {
 // do work
 mpi_module2(data);
}

EXIT

1

2 3

4
5

mpi_module2(data) { }

Activate
Exposed

Scheduler

Deactivate
Scheduler

Fig. 1. Flowchart showing the steps in transfer of control between MPI and
Charm++ using an exposed scheduler

Control transfer frequency: Explicit transfer of control by
the user leads to another important question — how frequently
should the control be transferred? If an application is written
using two user-driven languages, say MPI and UPC, the
programmer is encouraged to make a fine-grained selection
between MPI and UPC calls, i.e. for every communication
operation, select between MPI or UPC calls [21]. However, a
frequent transfer of control between the user and the system
in a program may have negative impact on productivity
and performance. Since the availability of data drives the
execution in Charm++, the user will have to consider all
possible orderings to exchange the control with MPI safely.
This may be significantly more demanding if the control is
transferred frequently and may result in deadlocks. At the
same time, performance degradation may be observed if there
is a mismatch in the modules executed by different processes,
which may block one or the other, leading to idle time.

The disadvantages of frequent control transfer listed in the
previous paragraph are eliminated by transferring the control
between MPI and Charm++ infrequently. This leads to ease
of use and maintains simplicity of interoperation between MPI
and Charm++. Coarse grained control transfer also allows for
reuse of independent modules/libraries as one unit without
significant modifications.

IV. WRITING HYBRID CODE IN CHARM++ AND MPI

Based on the discussion in Section III, we have developed
a framework that enables interoperation between MPI and
Charm++. In this framework, both MPI and Charm++ are
augmented to provide the following constructs that allows
hybrid applications to be developed in them:

• Initialize: given a set of processes, perform setup such
as identifying rank space, initializing low-level commu-
nication substrate, etc. to create a language instance.

• Execute: make progress in the given language instance
following the semantics of the associated language.

• Transfer: stop execution in this instance in order to
transfer control to another instance.

• Clean up: destroy the language instance.
For MPI, all of these constructs already exist in its standard.

Along with MPI_Init, creation of a sub-communicator is
sufficient to perform the initialization. Execute and transfer
constructs are implicitly available since every MPI call returns
the control back to the user after it is complete. Freeing the
communicator and MPI_Finalize perform the necessary
clean up.

For Charm++, a new API has been added to perform these
tasks. CharmLibInit initializes a Charm++ instance for a
given set of processes. In order to execute a Charm++ module,
one should invoke StartCharmScheduler to transfer con-
trol to the Charm++ RTS. The scheduler can be stopped either
on a single processor using StopCharmScheduler or
collectively on the full set of processes by calling CkExit. Fi-
nally, the clean up is performed by invoking CharmLibExit.

For a programmer, developing hybrid MPI-Charm++ pro-
grams and enabling the use of stand-alone MPI and Charm++
modules in them requires minor additional work. Other than
including the necessary headers, following is a list of all the
required steps needed to write an interoperable program with
MPI and Charm++.
Common Tasks: Initialize MPI, create sub-communicator(s),
initialize Charm++ instance(s), destroy Charm++ instance(s),
free sub-communicator(s), finalize MPI.
MPI module: Provide a C/C++-based interface function to
transfer control to the module; to transfer control to Charm++
modules, call interface function provided by the Charm++
modules.
Charm++ module: Provide an interface function callable
from MPI — this interface function should initiate start up
messages to the module and activate the Charm++ RTS;
to transfer control to MPI modules, call interface function
provided by the MPI modules.

The code snippet in Figure 2 shows the MPI part of a
hybrid program with all the changes required to interoperate
with a Charm++ module. As usual, execution begins in main
and MPI_Init is invoked first. After that, the processes are
divided into two sets by creating sub-communicators. One
set of processes continues with MPI work while Charm++ is
initialized on the other. This second set of processes invokes
the Charm++ module and on return, the Charm++ instance is
destroyed. If needed, control can be transferred back and forth
multiple times between MPI and Charm++ modules before the
instance is destroyed.

When using a Charm++ module for interoperation, execu-
tion in Charm++ begins only when it is invoked explicitly
by initiating a message to one of its objects and starting the
Charm++ RTS using StartCharmScheduler. In the code

#include "mpi-interoperate.h"

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_split(MPI_COMM_WORLD, myrank%2, myrank, &

newComm);
if(myrank % 2) {
// Create Charm++ instance on subset of processes
CharmLibInit(newComm, argc, argv);
HiStart(16); // Call Charm++ library
CharmLibExit(); // Destroy Charm++ instance

} else {
// MPI work on rest of the processes

}
MPI_Finalize();

}

Fig. 2. Interoperable MPI-based module: create MPI and Charm++ instances;
transfer control by calling simple interface functions.

#include "mpi-interoperate.h"

// function invoked from MPI
// marks the begining of Charm++
void HiStart(int elems) {
if(CkMyPe() == 0) {
mainHi.StartHi(elems);

}
StartCharmScheduler();

}

// Charm++ function that deactivates scheduler
void MainHi::StartHi(int elems) {
CkExit();

}

Fig. 3. Charm++-based module suitable for interoperation: provides an
interface function that invokes Charm++ scheduler.

snippet in Figure 3, HiStart is an interface function that
performs these tasks. On processor 0, a message is initiated
to the mainHi object after which all processes activate the
Charm++ RTS. In this simple example, when the RTS receives
this message and schedules it, calling CkExit collectively
stops the scheduler on all processes, thus returning the control
to the interface function.

V. SHARING RESOURCES AND DATA

In the framework presented in Section IV, the presence
of both MPI and Charm++ requires explicit coordination of
certain aspects that are otherwise handled by the language
implementations. We focus on two such important issues –
1) How are resources shared? 2) How is data shared? between
MPI and Charm++.

A. Resource Sharing
Execution of modules written in MPI and Charm++ on

the same physical resources is only possible through the
sharing of hardware such as cores, the memory subsystem and
the network. These resources can be allocated to individual
modules either explicitly by the programmer, or implicitly
by the framework based on the preferences expressed in
the application. Figure 4 presents three schemes provided in
our framework for sharing resources — time division, space
division and hybrid division.

MPI Charm++

P(1)

(a) Time Division (b) Space Division (c) Hybrid Division
Time

P(2)

P(n-1)
P(n)

.

.

Fig. 4. Different schemes for sharing resources between MPI and Charm++.

Time Division: In this mode, during the execution of an
application, all the processes switch from one language module
to another synchronously. As depicted in Figure 4(a), the
execution of an application begins in one of the languages.
At some point in the execution, all the processes switch to
executing a module written in another language. Such an
exchange may happen multiple times before the application
exits. This method of interoperation is useful for applications
that have an ordering among the tasks to be executed in
different language modules.

Space Division: Instead of time slicing the resources, this
mode assigns subsets of processes to different languages for
the entire duration of the program execution. Figure 4(b)
shows this scenario in which modules written in Charm++ run
on some of the processes, while modules written in MPI run
on the rest. Space division is useful for making simultaneous
progress in modules that can be executed simultaneously and
are loosely connected to one another.

Hybrid Division: A combination of time division and space
division provides a hybrid method of resource sharing. In
this scheme, subsets of processes execute modules written in
MPI and Charm++. Different subsets may execute different
modules independently of other subsets. For example, in Fig-
ure 4(c), a subset of processes transfer control among modules
written in MPI and Charm++, while another subset executes
modules written in MPI only. A hybrid model of interoperation
can be particularly useful in applications that require different
subsets to perform different tasks during application execution.

Simultaneous use of low-level resources such as network
FIFOs and links by multiple high-level language clients may
require a customized solution for each type of hardware. In
Section VI, we describe the mechanisms used on machines
such as IBM Blue Gene/Q and Cray XE6 to divide low-level
resources between MPI and Charm++.

B. Data Sharing

Modules implemented in MPI and Charm++ need to ex-
change data during program execution. Unlike programs writ-
ten in a single language, it is not possible to invoke regular
communication mechanisms, e.g. it is not possible to invoke
an MPI_Send for sending data from an MPI module to a
Charm++ module. To solve these problems, the following
schemes are supported.

Pointer-based Data Sharing: This simple method is based
on exchanging data by explicitly passing memory pointers. If

data is to be transferred between MPI and Charm++ instances
within a process, it can be directly exchanged via use of re-
served memory space. However, if the data is to be transferred
between MPI and Charm++ instances on different processes,
a two step mechanism will be need. First, the data should be
transferred to the destination process using the source language
(MPI or Charm++), and then it is transferred to the destination
language using shared memory (or transfer to the destination
language first, and then to the destination process).

It is obvious that this mechanism puts the entire burden of
data exchange on the programmer. In addition to implementing
the code responsible for data transfer, the programmer is
also responsible for ensuring correctness and avoiding race
conditions. However, this scheme is very flexible, and is often
the best option if few data exchanges are performed.

Data Transfer Repository: Alternatively, a generic data trans-
fer repository can be used for intra-process and inter-process
communication. An API is used for depositing and retrieving
data to and from the local client modules in MPI and Charm++
(a pull model). Under the hood, the data transfer repository
communicates with its counterparts on other processes to
service the requests.

Use of a data transfer repository increases productivity
as it leads to code reuse and relieves the end user from
the burden. It also allows for implementing more complex
schemes for data exchange that may be used by a wide range
of applications. For example, in addition to data exchange via
deposition and retrieval based on source and destination, data
can be elevated to being named entities and be universally
accessible (as is done by PGAS languages [20]).

C. Rank Mapping

Dinan et al. [21], [22] have provided various alternatives for
managing the rank space between interoperable MPI and UPC
modules. We believe that the flat and nested models proposed
by them are adequate for interoperation between MPI and
Charm++. We will refer to their flat model as a one-to-one
mapping — for every rank in one module, a corresponding
rank exists in other modules on the same process. The nested
model can be seen as a one-to-many mapping — for every
rank in one module, multiple ranks exist in other modules on
the same process. However, in the presence of space division
of processes, the rank mapping is neither one-to-one nor one-
to many. If ranks for certain modules are not available on
certain processes, we refer to this mapping as one-to-none or
many-to-none.

VI. IMPLEMENTATION OF THE FRAMEWORK

In this section, we provide details of how low-level re-
sources are used and shared between different modules in the
Charm++/MPI interoperation framework.

A. Communication Substrate

Inter-process communication in most languages is imple-
mented using a low-level communication API exposed by the
machine, e.g. PAMI on IBM Blue Gene/Q and GNI on Cray

XE6. The presence of multiple languages requires that the
communication started by any one of them be delivered to
the corresponding receiver module at the destination. For each
language, we use distinct communication domains in the low-
level API to ensure this property.

For Cray’s GNI, a domain is created by GNI_CdmCreate,
which enables interoperation on Cray machines such as
Cray XE6/XK7 (Blue Waters, Titan, Hopper) and Cray
XC30 (Edison). When using PAMI, on IBM Blue Gene/Q
(Sequoia, Mira), communication is isolated by creating
a distinct communication client for each module using
PAMI_Client_create. Alternatively on Blue Gene/Q, it
is possible to register distinct dispatch IDs with a common
communication client for different modules. This approach
may be better since it avoids a static division of resources
among the clients. However, we use the former approach in
our framework due to the unavailability of the client created
by MPI outside of its implementation.

An interesting alternative, which has also been imple-
mented, is to use MPI as the communication substrate for
Charm++ modules. This enables interoperation between MPI
and Charm++ on any system that supports MPI. A potential
disadvantage of this approach is the lower performance of
Charm++ built on top of MPI in comparison to a low-level
communication API.

B. Resource Sharing

The three resource sharing schemes described in Sec-
tion V-A are implemented by means of MPI communica-
tors. The user splits the given set of processes into sub-
communicators that should execute various modules. The sub-
communicator is passed to Charm++ as an argument during
its initialization. If Charm++ is built on top of MPI, the
sub-communicator is passed directly as an argument in the
communication calls, thus dividing the set of processes and
their communication in a manner that most MPI programmers
are familiar with. If Charm++ is not built on top of MPI, the
RTS uses this information to find the set of processes on which
the given Charm++ instance should be initialized.

C. Data Repository

The data repository for exchange of data has been im-
plemented as a C++ module, which uses Charm++ in the
background for communication. To keep things simple, the
current interface to the data repository is not generic, but
is customized based on the application needs. As a result,
depending on the application being used, the data repository
stores different data types. Work on fully generalizing the
data repository (using templates and related concepts) is under
progress.

D. Multi-threading

Unlike MPI, Charm++ can also be built in a shared memory
mode. In this setup, the RTS launches only one Charm++
process for each multi-socket compute node. The RTS spawns
multiple threads within that process, which share their ad-
dress space and a communication thread. In MPI, similar

shared memory optimizations are typically enabled via use of
OpenMP [1]. Currently, our framework supports interoperation
only if both MPI and Charm++ are being used in similar
modes, i.e. if MPI has one rank per compute node, Charm++
will also have one process per compute node. In this scenario,
both MPI and Charm++ spawn threads of their own to enable
shared memory based optimizations.

VII. APPLICATION STUDIES

An important goal of this study is to explore the ease-of-use
and benefits of hybrid programming with MPI and Charm++.
This section examines the interoperation of MPI and Charm++
using many production codes wherein for applications written
in one language, a module written in another language is added
(or exchanged). These examples, summarized in Table ??,
demonstrate the productivity and performance benefits derived
from the synergistic existence of MPI and Charm++.

A. CHARM/Chombo (MPI) and HistSort (Charm++)

Our first example explores the use of a Charm++-based
parallel sorting library, HistSort [23], in a production cosmo-
logical and astrophysical code called CHARM [6] (not to be
confused with Charm++). CHARM is implemented on top of
the Chombo framework [24] which is written in MPI. Use of
HistSort in CHARM eliminates a performance bottleneck in
the code that arises from a critical global sort operation, and
hence enables CHARM to scale to large core counts.

CHARM, and cosmology codes in general, often have very
non-uniform particle distributions. Load balance and data
locality of the particles, with respect to the mesh, are of
critical importance for the performance of such particle in cell
(PIC) codes. To optimize load balance and data locality (and
hence optimize particle-mesh interactions), CHARM takes
the approach of periodically sorting particles with a space-
filling curve index. Hence, this global sort of particles is a
critical component of this algorithm but has been a scalability
bottleneck in its current implementation.

Figure 5 shows all the changes that were made to make
Charm++’s HistSort an interoperable library callable from any
MPI program, and its use in CHARM. The interface function
shown in Figure 5 (right) performs the actions described in
Section IV — initiate a message to the main object and
activate Charm++ RTS. CHARM uses HistSort by invoking
the interface function instead of the default Multiway-merge
Sort implementation as shown in Figure 5 (left).
Benefits: Charm++ is a suitable candidate for performing an
operation such as sorting because of the features it provides
(Table I): message-driven interaction and ease of exploiting
communication-computation overlap. Moreover, a highly scal-
able histogram-based sorting library, HistSort, already exists
in Charm++ [23].
Resource Sharing: The global sorting in CHARM needs
to be performed in every iteration before the computation
of particle-mesh interactions can proceed. This dependency
suggests that a time division of the resources between HistSort

/* CHARM code that prepares the input */
...
195 lines of Multi-way Merge sort in MPI
/* Computation code in CHARM*/
...

CHARM code flow with Multi-way Merge Sort

/* CHARM code that prepares the input */
...
// call to HistSort
HistSorting<key_type, std::pair<partType,

char[MAX_PART_SZ]>>(loc_s_len, dataIn,
&loc_r_len, &dataOut);

/* Computation code in CHARM*/
...

CHARM code flow with Charm++’s HistSort

// interface function for HistSort
template <class key, class value>
void HistSorting(int input_elems_, kv_pair<key,

value>* dataIn_, int * output_elems_, kv_pair<
key, value>** dataOut_) {

// store parameters to global locations
dataIn = (void*)dataIn_;
dataOut = (void**)dataOut_;
in_elems = input_elems_;
out_elems = output_elems_;
// initiate message to main object
if(CkMyPe() == 0) {
static CProxy_Main<key,value> mainProxy =

CProxy_Main<key,value>::ckNew(CkNumPes());
mainProxy.DataReady();

}
StartCharmScheduler();

}

Fig. 5. (left) Modifications required to transfer control from MPI/CHARM to Charm++’s HistSort; (right) The interface function for the HistSort library that
can be called from any MPI program.

 0.1

 1

 10

 100

512 1024 2048 4096 8192 16384

T
im

e
(s

)

Number of cores

Strong scaling on Cray XE6

Multiway-Merge Sort
Charm++ HistSort

Fig. 6. CHARM using Charm++’s histogram sorting: scaling bottleneck
caused due to sorting is resolved using Charm++’s sorting library.

(Charm++) and CHARM (MPI) with one-to-one rank mapping
would be ideal.

Data Sharing: The data is explicitly transferred between
CHARM and HistSort using local memory pointers. These
pointers are passed between the modules when the MPI code
invokes HistSort through a simple C++ function call. This
is possible because CHARM stores the data in a distributed
manner that matches the input/output of HistSort.

Figure 6 compares the performance of HistSort with
Multiway-merge Sort. The plot shows the global sorting time
for a strong-scaling experiment with 131, 884, 914 keys (72
bytes of data attached to each key) executed on Hopper, a Cray
XE6. HistSort, written in Charm++, outperforms the MPI-
based Multiway-merge Sort for large core counts (48× speed
up on 16, 384 cores). While the performance of Multiway-
merge Sort gets worse, HistSort’s performance improves sig-
nificantly with increasing core count. The improvement in
performance resolves the scaling bottleneck of CHARM due
to sorting. In addition, replacing the sorting code in CHARM
with a call to HistSort reduces its lines of code by 195.

B. EpiSimdemics (Charm++) and MPI-IO

This second case study shows the coupling of the MPI-IO
library [2] with a contagion simulation code called EpiSim-
demics [7], implemented in Charm++. Use of MPI-IO enables
generation of output data at scale, enables fast writing to a
single file, and helps alleviate the performance bottleneck in
EpiSimdemics caused by I/O operations.

EpiSimdemics is an agent-based simulator used to study the
spread of contagious diseases over social contact networks.
EpiSimdemics requires three input files: the person file, the
location file, and the visit file. The sizes of these files for
the entire US population are 2.1 GB, 1 GB, and 28 GB
respectively. Among the many output files of EpiSimdemics,
the disease and dendogram files are of large sizes. These
two files, in addition to the one recording the summary of
global simulation states, allow the scientists to understand the
simulation results in detail.

Given the large input files, the use of sequential input is a
performance bottleneck in EpiSimdemics. Performance tests
using sequential input showed that while the actual simulation
may complete in tens of minutes, the setup including the input
takes approximately an hour! EpiSimdemics has a custom
application-specific parallel output scheme in which the output
is written by all processes to distinct files. This scheme is
good for the performance but requires post-processing of data
before it is used for any analysis. Also, due to a limitation on
the number of file descriptors per job on Blue Gene/Q, this
output scheme is not feasible at scale. To solve these issues,
we make use of MPI-IO in EpiSimdemics.

Benefits: Included in the MPI standard, MPI-IO defines an
API for parallel I/O. Most vendors provide a high-performance
implementation of MPI-IO, making it a portable solution
expected to deliver good performance on high-end parallel
computers. Scalable performance of MPI collectives helps
improve performance of these implementations. The use of
MPI collectives also helps in performing efficient global
communication required for orchestrating writes to the same

 0.1

 1

 10

 100

 1000

 10000

16k 32k 64k 128k 256k

In
pu

t
tim

e
(s

)

Number of cores

Time spent in input on Blue Gene/Q

Sequential reading of Schedule file not
done at scale to save CPU hours

Schedule/Serial
Person/Serial

Schedule/MPI-IO
Person/MPI-IO

 0

 100

 200

 300

 400

 500

 600

 700

8k 16k 32k 64k 128k 256k

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
)

Number of cores

Time spent in simulation + output on Blue Gene/Q

Custom I/O failed
at large core counts

With Custom Parallel-IO
With MPI-IO

Fig. 7. EpiSimdemics using MPI-IO: use of MPI-IO library enables faster execution with writes to a single file. At scale, the Custom I/O runs out of file
descriptors as each node writes to individual files.

file in EpiSimdemics.

Resource Sharing: Input in EpiSimdemics is read once by
all processes at the program startup. The output is produced
by processes in every iteration, hence periodic flushing is
required. This suggests a hybrid division of resources to
interoperate EpiSimdemics with MPI-IO. A set of processes
switch from Charm++ to MPI, once at program startup to input
data and periodically for output. The rank mapping is many-
to-one as Charm++ uses threads for optimal performance.

Data Sharing: Data is transferred between MPI and Charm++
during input and output through a data transfer repository.
When the input data is read by MPI tasks, it is deposited
locally for retrieval by the corresponding Charm++ tasks.
For the output, data is first buffered on some processes that
maintain the data repository. Every few iterations, the control
is transferred on these processes to MPI, which retrieve the
data and perform a collective write to a single file.

The productivity benefits of using MPI-IO are obvious –
reimplementation of a parallel I/O library is avoided, and
all output data is obtained as a single file which eliminates
the post processing step. Figure 7 compares the performance
obtained using MPI-IO and EpiSimdemics’ default schemes.
Figure 7 (left) shows that the total input time is reduced
significantly from 4, 086.56 seconds to 17.34 seconds using
MPI-IO. On 262,144 cores, the time spent in the input phase
is only 4.77 seconds.

Figure 7 (right) compares the sum of the simulation time and
output time when using MPI-IO with EpiSimdemics’ custom
scheme that outputs to multiple files. Note that this time does
not include the time spent in reading input files. At small
scales, the performance of the two versions is similar. At
65,536 cores, use of MPI-IO improves the performance of
the application by 10% in comparison to the custom scheme.
Beyond this, use of the custom parallel-IO scheme is not
feasible given the restriction on the number of file descriptors
per job. Use of MPI-IO enables us to execute the application
at very large scales with output being obtained as desired.

C. NAMD (Charm++) and Parallel FFTW (MPI)

NAMD [8] is a parallel molecular dynamics code designed
for high-performance simulations of large biomolecular sys-
tems. NAMD uses a fast Fourier transform (FFT) calculation
over a charge grid to approximate long-range force calcula-
tions. Through this example, we demonstrate the replacement
of a custom implementation of a parallel 3D FFT in NAMD
with a standard parallel library.
Benefits: Many parallel FFT libraries exist, e.g. FFTW and
ESSL; most of them are written using MPI. It is desirable
from a productivity standpoint that NAMD utilizes one of
these libraries, and thus benefit from reduced workload in
code development and maintenance. Moreover, vendors often
provide highly optimized implementations of FFT algorithms.
Use of these versions, provided by the vendors, may also
improve performance.
Resource Sharing: During one iteration of NAMD, short-
range forces and long-range forces can be computed in
parallel. A space division of the resources can enable the
progress of both modules in parallel. Hence, the Charm++
tasks calculate the short-range forces while the MPI tasks
perform a parallel FFT for long-range forces. As stated earlier,
the rank mapping for space-division is one-to-none.
Data Sharing: Data is communicated using a data transfer
repository. The Charm++ objects that produce the charge grid
deposit their data with the repository; on receiving the data,
the repository triggers the execution of a parallel FFT in MPI.

The changes required to replace NAMD’s FFT code with
parallel FFTW call are minimal and similar to the changes
made in the CHARM/HistSort example (§VII-A). Replacing
the parallel FFT code in NAMD reduces the source lines of
code (SLOC) by 280. More importantly, use of a well-known,
actively-developed, third-party library relieves the NAMD
developers from the additional task of maintaining the FFT
library. It also ensures that any improvements made to FFTW
(or any other FFT library that can be used instead of FFTW)
will be available to NAMD without any extra effort.

Figure 8 presents the time step comparison between NAMD
using its highly optimized FFT implementation and that using

 2

 4

 6

 8

 10

 12

 14

512 1024 2048 4096 8192 16384

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Number of cores

Strong scaling on Blue Gene/Q

NAMD with Custom FFT
NAMD with Parallel FFTW

Fig. 8. NAMD’s performance with Custom FFT and Parallel FFTW using
MPI

parallel FFTW. These runs on Blue Gene/Q use the ApoA1
dataset. It can be seen that the two versions of NAMD have
similar performance. Thus, the use of a generic FFT library
in NAMD provides similar performance, but leads to the
productivity benefits listed above.

D. Charm++ codes and ParMETIS (MPI)

Our final example demonstrates the use of ParMETIS [10]
to enable parallel graph partitioning in the automatic load bal-
ancing framework of Charm++. Measurement-based strategies
in Charm++ instrument the application (computational load
and communication graph) for a brief period of time, and use
the instrumented data to redistribute the objects to balance the
load. In addition to the built-in strategies, end-users can easily
integrate new strategies specific to their applications. This pro-
vides a great opportunity for using external MPI libraries for
load balancing if interoperation is possible. ParMETIS [10],
and Trilinos [11] are examples of such libraries.
Benefits: Reuse of state-of-art graph partition libraries, e.g.
ParMETIS, enables Charm++ to perform fast communication-
aware load balancing. By further extensions, interoperation can
enable load balancing of application defined tasks in MPI.
Resource Sharing: Most iterative Charm++ applications per-
form periodic load redistribution, which results in a barrier-
style load balancing. This makes it an ideal candidate to use
the time division of resources between Charm++ applications
and the MPI-based ParMETIS library. Rank mapping is either
one-to-one or many-to-one based on Charm++’s use of threads.
Data Sharing: Data is shared between the load balancing
framework in Charm++ and ParMETIS through pointers when
calls are made to the ParMETIS library. This is feasible since
the load balancing database is stored in a distributed manner.

We use kNeighbor, a communication-intensive Charm++
benchmark, to demonstrate the benefits of using ParMetis for
load balancing. In kNeighbor, each object exchanges 256 KB
messages with 14 other objects in every iteration. Imbalanced
computational load is also associated with these objects.

Figure 9 presents the performance improvement in the time
per step of kNeighbor from using ParMetisLB, a ParMETIS-
based load balancer in Charm++. The time per step is reduced

 0.01

 0.1

 1

 10

 2048 4096 8192 16384 32768 65536

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

kNeighbor with load balancing on BG/Q

No LB
RefineLB

ParMetisLB

Fig. 9. Load balancing Charm++ applications using ParMETIS: kNeighbor
is communication intensive, and benefits significantly from a global graph
partitioning enabled by the use of ParMETIS.

to one-third or one-fourth (66%-75% improvement) of the
time per step obtained when no load balancing is performed.
ParMetisLB does much better than RefineLB, an existing
strategy in Charm++ that aims at balancing computational
load only. The time spent in load balancing is similar for both
ParMetisLB and RefineLB.

VIII. LESSONS LEARNED

Our experience with hybrid programming for various pro-
duction applications in the previous section has helped us
formulate some basic guidelines for selecting the right tech-
nique for sharing resources and data in various scenarios.
When deciding on the best strategy to share resources, it is
important to understand various phases and modules in an
application. If the modules that need to be implemented in
different programming languages are clearly demarcated by
phases in time, then time division of the resources is advisable.
This is often the case when there is an input-output sort of
data dependency across different phases. When the application
has modules that can proceed in parallel, a space division of
resources can help overlap the progress in these modules. In
any other situation, either time or space division can be used
in different phases of the application, resulting in a hybrid
division of resources.

The sharing of data depends on how various modules
that have to interoperate are implemented. If the data to
be exchanged between the modules is already local to each
process where it is required, then pointer-based sharing is
straightforward. In most other cases, the user has to develop
a scheme or set up a data transfer repository for exchange of
data across modules.

In this paper, we presented an easy-to-use, scalable method
to enable hybrid programming with MPI and Charm++.
For the presented framework, we have implemented multi-
ple schemes for managing important attributes of programs
running in an interoperation environment. Productivity and
performance benefits of interoperation using production ap-
plications and libraries implemented in MPI and Charm++
have been demonstrated on IBM Blue Gene/Q and Cray XE6

TABLE II
PRODUCTIVITY AND PERFORMANCE BENEFITS FOR THE APPLICATION STUDIES PRESENTED IN THIS PAPER.

Application Library Productivity Performance

CHARM HistSort Efficient sorting requires support for asynchronous
and unexpected messages – a feature provided by
Charm++; Reuse of Charm++’s HistSort.

48x speed up in sorting; Removes scaling bottle-
neck.

EpiSimdemics MPI-IO EpiSimdemics I/O is a synchronous operation that
can be implemented efficiently using MPI collec-
tives; Enabled organized output to a single file
(avoids post processing); Reuse of a standard library,
MPI-IO, implemented by vendors.

256x input speed up; Enables output at scale.

NAMD FFTW Offloads development of the critical FFT component
to experts; Reuse of FFTW library.

Similar performance.

kNeighbor ParMETIS Enables parallel graph partitioning based load bal-
ancing in Charm++; Reuse of ParMETIS.

Better time per step for applications: 66-75% better
for kNeighbor.

systems. Table II summarizes our findings on productivity and
performance benefits. It is evident that enabling interoperation
can bring the best of both worlds together for achieving good
performance, high programmer productivity, and code reuse.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
663041).

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE Computational Science & Engi-
neering, vol. 5, no. 1, January-March 1998.

[2] “MPI: A Message Passing Interface Standard,” in MPI Forum,
http://www.mpi-forum.org/.

[3] H. Brunst and B. Mohr, “Performance Analysis of Large-scale OpenMP
and Hybrid mpi/openmp Applications with VampirNG,” in Proceedings
of the International Workshop on OpenMP (IWOMP), Eugene, OR, June
2005.

[4] J. Corbalan, A. Duran, and J. Labarta, “Dynamic load balancing of
MPI+OpenMP applications,” icpp, vol. 00, pp. 195–202, 2004.

[5] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable
Objects + Active Messages + Adaptive Runtime = Productivity +
Performance A Submission to 2012 HPC Class II Challenge,” Parallel
Programming Laboratory, Tech. Rep. 12-47, November 2012.

[6] F. Miniati and P. Colella, “Block structured adaptive mesh and time
refinement for hybrid, hyperbolic+n-body systems,” J. Comput. Phys.,
vol. 227, no. 1, pp. 400–430, Nov. 2007.

[7] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V.
Kale, M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on Blue
Waters,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer Society, May
2014.

[8] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale,
“Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, April 2008.

[9] M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for
the FFT,” Acoustics, Speech and Signal Processing, 1998. Proceedings
of the 1998 IEEE International Conference on, vol. 3, pp. 1381–1384
vol.3, May 1998.

[10] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” in Supercomputing ’96: Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM), 1996, p. 35.

[11] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the Trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[12] X. Zhao, D. Buntinas, J. A. Zounmevo, J. Dinan, D. Goodell, P. Balaji,
R. Thakur, A. Afsahi, and W. Gropp, “Toward asynchronous and MPI-
interoperable active messages,” in CCGRID, 2013, pp. 87–94.

[13] V. S. Sunderam, “PVM: A framework for parallel distributed com-
puting,” Concurrency: Practice & Experience, vol. 2, 4, pp. 315–339,
December 1990.

[14] G. Edjlali, A. Sussman, and J. Saltz, “Interoperability of data parallel
runtime libraries with Meta-Chaos,” in In Proceedings of the Eleventh
International Parallel Processing Symposium. IEEE Computer. Society
Press, 1997.

[15] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon,
“Converse: An Interoperable Framework for Parallel Programming,” in
Proceedings of the 10th International Parallel Processing Symposium,
April 1996, pp. 212–217.

[16] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng,
“Programming Petascale Applications with Charm++ and AMPI,” in
Petascale Computing: Algorithms and Applications, D. Bader, Ed.
Chapman & Hall / CRC Press, 2008, pp. 421–441.

[17] A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. Amato, and
L. Rauchwerger, “Design for interoperability in stapl: pmatrices and
linear algebra algorithms,” in Languages and Compilers for Parallel
Computing, ser. Lecture Notes in Computer Science, J. Amaral, Ed.
Springer Berlin Heidelberg, 2008, vol. 5335, pp. 304–315. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-89740-8 21

[18] E. Lusk and A. Chan, “Early experiments with the OpenMP/MPI hybrid
programming model,” in Proceedings of the 4th international conference
on OpenMP in a new era of parallelism, ser. IWOMP’08, 2008, pp. 36–
47.

[19] G. Tang, E. F. D’Azevedo, F. Zhang, J. C. Parker, D. B. Watson,
and P. M. Jardine, “Application of a hybrid mpi/openmp approach for
parallel groundwater model calibration using multi-core computers,”
Comput. Geosci., vol. 36, pp. 1451–1460, November 2010. [Online].
Available: http://dx.doi.org/10.1016/j.cageo.2010.04.013

[20] T. S. Tarek El-Ghazawi, William Carlson and K. Yelick, UPC: Dis-
tributed Shared Memory Programming. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2005.

[21] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid
parallel programming with MPI and Unified Parallel C,” in Proceedings
of the 7th ACM International Conference on Computing Frontiers, ser.
CF ’10, 2010, pp. 177–186.

[22] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and R. Thakur, “En-
abling MPI interoperability through flexible communication endpoints,”
in EuroMPI 2013, Madrid, Spain, 2013.

[23] E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), April 2010.

[24] “Chombo – infrastructure for adaptive mesh refinement,”

http://seesar.lbl.gov/anag/chombo/. [Online]. Available: http://seesar.
lbl.gov/anag/chombo

