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Abstract
Power and energy efficiency is one of the major challenges
to achieve exascale computing in the next several years.
While chips operating at low voltages have been studied to
be highly energy-efficient, low voltage operations lead to
heterogeneity across cores within the microprocessor chip.
In this work, we study chips with low voltage operation and
discuss programming systems, and performance modeling in
the presence of heterogeneity. We propose an integer linear
programming based approach for selecting optimal configu-
ration of a chip that minimizes its energy consumption. We
obtain an average of 26% and 10.7% savings in energy con-
sumption of the chip for two HPC mini-applications - min-
iMD and Jacobi, respectively. We also evaluate the energy
savings with execution time constraints, using the proposed
approach. These energy savings are significantly more than
the savings by sub-optimal configurations obtained from
heuristics.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming; G.1.6 [Optimiza-
tion]: Integer programming, Quadratic programming mod-
els; F.1.2 [Models of Computation]: Parallelism and con-
currency; H.3.4 [Systems and Software]: Performance eval-
uation (efficiency and effectiveness); C.1.2 [Multiple Data
Stream Architectues]: Parallel processors

General Terms Measurement, Performance, Experimenta-
tion

Keywords Energy, Power, Optimization, Multicore chips,
Low Voltage Computing, Near Threshold Voltage Comput-
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ing, Process Variation, Heterogeneity, Integer Programming,
Quadratic Integer Programming

1. Introduction
Future microprocessor chips are expected to have variations
across the many cores because of the variation in the CMOS
manufacturing process. The variation across the chip is ex-
pected to further increase with low voltage operation. Chips
with low voltage operation have high energy efficiency that
is required to build an exascale machine with a power budget
of 20MW set by the U.S. Department of Energy. Therefore,
it is accepted in the High Performance Computing (HPC)
community that there will be heterogeneity across cores of
the future generation chips [3]. Frequency and static power
consumption of the cores on the same chip can be very dif-
ferent. Low voltage operation can cause up to 50% varia-
tion in frequency across the cores of the same chip. Variation
across multiple cores on the same chip can also be obtained
on the recent Intelr Haswell chip which allows independent
core-frequency scaling, that is, various cores on the same
chip can be controlled by the user to run at different fre-
quencies. However, unlike the Intelr Haswell chip, hetero-
geneity across the cores in a chip with low voltage operation
will be forced on to the user (unless all the cores are made to
run at a minimum frequency, which will be a very inefficient
design).

Energy is one of the biggest challenges faced by the
HPC community. Data centers worldwide consumed energy
equivalent to 235 billion KWh in 2010, which is 2% of total
US electricity consumption. CPU accounts for about 65%
of the total power consumption of a supercomputer [51].
Therefore, minimizing CPU energy consumption is critical
for overall savings in the energy costs of a data center. In
this work, we focus on intelligent selection of the cores on
a chip with variation for running parallel HPC applications
such that the energy consumption of the chip is minimized
given execution time constraints. To provide the necessary
background, we discuss the variation in future chips, the pro-
gramming systems that can mitigate the impact of hetero-
geneity on application performance, and performance mod-



eling of the chip in the wake of heterogeneity. We then pro-
pose a cubic integer programming based model for optimal
selection of cores on the chip used for running the paral-
lel application. Because of the cubic terms involved in the
formulation, the problem is particularly hard to solve and
therefore, we propose schemes to convert it to integer pro-
gram formulation. Performance of the proposed approach is
compared with two heuristics. Our results show that intelli-
gent selection of cores using integer programming can lead
to significant savings in energy costs.

The paper is divided into 7 sections. In Section 2, we
perform a survey of literature on energy optimizations for
HPC workloads. In Section 3, we discuss process variation
that leads to heterogeneity across the cores on a chip, and
performance modeling for such chips. The proposed integer
programming approach for core selection is given in Sec-
tion 4. The evaluation setup is given in Section 5, which is
followed by results and their analysis in Section 6. Finally,
we conclude the paper with conclusions and future work in
Section 7.

2. Related Work
In the past, the emphasis has been on minimizing the com-
pletion times of the HPC applications. However, such solu-
tions could have excessive energy consumption and hence
high energy costs for the data centers. Consequently, mini-
mizing energy consumption has become a major challenge
for high performance computing data centers, especially
with the increase in the size of the data centers. Hence, min-
imizing energy consumption has been a subject of intensive
research over the past several years.

Dynamic power consumption of a chip is known to be a
function of the frequency of the chip [20]. Applications do
not yield proportionate improvement in performance with
the increase in frequency of the chip, and therefore fre-
quency is scaled down to reduce the power consumption
of the chip while having tolerable impact on the comple-
tion time of the application. Modern processor architectures
allow users to control the frequency of the chip through
DVFS modules. There have been many studies on the use
of DVFS for energy efficient computing for HPC work-
loads [24, 34, 40, 44]. Rizvandi et al [38] make some obser-
vations on optimal frequency selection in DVFS-based en-
ergy consumption minimization. Etinski et al [17] present
a model that predicts the upper bound on performance loss
due to frequency scaling. They study how sensitivity of the
application to frequency scaling together with cluster char-
acteristics determines the effectiveness of DVFS for energy
consumption optimization. Wang et al [52] propose an en-
ergy aware scheduling heuristic that studies the slack time of
non-critical tasks, and extends their execution time (by using
DVFS) to save energy without affecting the overall execu-
tion time of the job. Vishnu et al [50] leverage DVFS to use

the slack in one-sided communication primitives of PGAS
for energy efficiency.

Lower core frequency also leads to lower core tempera-
tures. DVFS has also been used for controlling the temper-
ature of the chips, which reduces the temperature of the hot
spots, that is, the nodes with highest temperature in the data
center. Lower temperature of the hot spots means reduction
in the cooling energy required to keep the temperatures of
the hot spots at the room temperature. In this way, DVFS
can been used to reduce the cooling energy costs of the data
center. There has been a significant amount of work on var-
ious strategies for reducing the cooling energy of HPC and
non-HPC data centers [8, 9, 37, 45, 46, 53, 54].

Energy efficiency has been studied extensively in the
context of large scale cloud computing as well [48, 55]. The
richness of the literature on energy optimization for data
centers establishes the importance of this work.

Recent processor architectures, such as IBM Power6 [10],
IBM Power7 [12], AMD Bulldozer [4], Intelr Sandy-
bridge [39], provide the user with the ability to control the
power consumption of CPU, DRAM, etc. The ability to con-
strain the power consumption of nodes provides the flexi-
bility to add more nodes to the data center while remaining
within the same power budget. This is also called overpro-
visioning. In our previous work ([41, 42]), we have shown
significant improvement in performance of a data center by
using overprovisioning under a strict power budget. We have
also shown the benefit of using integer linear programming
methods for improving the performance of applications on
chips with low voltage operation under a strict power bud-
get [47]. In contrast, the focus of this work is on minimizing
the energy consumption of the chips, which is an even harder
problem to solve because of the cubic and quadratic terms
involved in the formulation of the problem.

Previous work (e.g. [30]) has proposed heterogeneous
chip designs that have custom designed cores for a given
set of target workloads. Different cores are designed to cater
to different classes of applications. On the contrary, hetero-
geneity in the low voltage chips is inherent in the manufac-
turing process. Integer linear programming has been used in
the past in the context of homogeneous multiprocessor chips.
Kadayif et al [25] use integer linear programming for deter-
mining the optimal number of cores that will be used in ex-
ecuting each nest in the code of array-intensive applications
under energy and performance constraints. Power Aware Re-
source Manager, PARM, proposed by Sarood et al [41] uses
Integer Linear Program (ILP) to schedule and determine the
optimal allocation of power and compute nodes to jobs sub-
mitted to a data center. Venugopalan et al [49] propose the
use of ILP for optimal task scheduling on multiprocessors.
To the best extent of our knowledge, energy efficiency in the
context of chips with low voltage operation has not been ad-
dressed before.
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Figure 1: An example of core frequencies in a manycore chip
with variation across cores.

3. Preliminaries
In this section, we review the causes of heterogeneity for
future generation chips, and its impact on performance of
parallel applications, such load imbalance. We then briefly
study some of the programming systems that can overcome
the impact on applications performance by performing load
balancing of over-decomposed tasks. Finally we discuss
some performance models that can predict an application’s
performance in such a heterogeneous environment. The per-
formance models will be used in the next section (Section 4)
for optimal selection of cores for energy-efficient comput-
ing. More details about these preliminaries can be found in
previous work [47].

3.1 Process Variation
Operating at low voltage leads to increase in energy-efficiency
of the chip. High energy efficiency of operation at low volt-
ages has been established for 65, 45, 32, 22 nm technolo-
gies [7, 22, 28, 29]. Kaul et al [27, 29] show that as the sup-
ply voltage of the transistor is reduced, the energy efficiency
increases, and is maximum near the threshold voltage of the
transistor. At threshold voltage, energy efficiency is 10× as
compared to at the nominal supply voltage. However, as the
supply voltage reaches near the threshold voltage, even a
small change in the supply voltage leads to large spread in
the frequency of operation. Therefore, different cores will be
operating at different frequencies in a manycore chip. Leak-
age power also varies significantly across chips. More chal-
lenges associated with low voltage operation can be found
in [27]. Nearest frequency of operation is assigned to these
cores as shown in Figure 1.

3.2 Programming Systems
HPC applications are highly synchronized applications. For
example, in many applications all the processors synchro-
nize after every iteration (or every few iterations) to ex-
change neighbor boundaries. Hence, the speed of execution
of a parallel HPC application is only as fast as the speed

of the slowest processor. Of course, this is true only if the
workload is distributed equally to the processors. When the
processors have different speeds, the work load assigned to
a core should be proportionate to its speed of operation. In
order to do so, the total work has to be over-decomposed
into many small tasks (more than the number of cores), such
that it can be evenly distributed to the cores in proportion
to their frequencies. It is not always possible to ensure load
balance in such a situation. For example, if there are two
processors with frequencies f and 0.75f, and there are three
equal sized tasks, then it is impossible to achieve perfect load
balance. However, as the total number of tasks increases,
the load imbalance decreases (provided an intelligent algo-
rithm for load distribution is being used). Previous work [47]
has shown that with an over-decomposition level of 16 (that
is, the number of tasks to number of cores ratio is 16), the
load imbalance can be contained to within 2-6% of the to-
tal execution time of the application. There are many par-
allel programming languages that over-decompose the total
work into many small tasks. Some examples of such dis-
tributed parallel programming languages are Charm++ [6],
AMPI [23], etc. For shared memory machines, Cilk [11],
OpenMP [16], etc. are some examples of programming mod-
els in which the work is divided into chunks (for example,
iterations in for loops in OpenMP) that can be dynamically
assigned to processors during runtime.

For our proposed method, no changes are required either
in the programming language or in the code (except possibly
the addition/use of a variation aware load balancer).

3.3 Performance Modeling
In this section, we discuss the models to predict the perfor-
mance (execution time or instructions per cycle) of a paral-
lel HPC application on any configuration of a heterogeneous
manycore chip. A configuration is a subset of the cores on
the chip on which the parallel application will be executed.
Other cores on the chip are turned-off so that they do not
consume any static power. A good configuration of the chip
for a given HPC application minimizes the total energy con-
sumption during the execution period of the application. It is
practically infeasible to evaluate all possible configurations
of the chip for every application because the total number of
configurations is combinatorially large. For example, when
the number of cores on the chip is 36, the total number of
possible configurations is 236 − 1 ≈ 6.87e10. Therefore,
performance models are required that can predict the perfor-
mance of an application for any configuration. The model
should require minimal profiling information of the applica-
tion to be collected, so that the overhead of developing the
performance models is negligible.

We now review the performance models for manycore
heterogeneous chips from previous work [47]:
Model 1: All the cores can be individually profiled for the
application, and the performance for a given configuration
could be modeled as the sum of the performance of the



individual cores in the configuration (c).

S =
∑
i∈c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
Tcpu∑
i∈c

fi
+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
∑
i∈c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i
si static power consumption of core i
atk, b

t
k line constants for performance model

of configurations with k cores
apk, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )× tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
∑
i∈c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
N∑

k=1

(nk ∗ (apk
∑
i

xifi + bpk +
∑
i

sixi) ∗ (atk
∑
i

xifi + btk))



where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
∑
i

xifi + bpk is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

∑
i

sixi is the total static power con-

sumption, and atk
∑
i

xifi + btk is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

n∑
k=1

nk ∗ (apk
n−1∑
i=0

xifi + bpk +

n−1∑
i=0

sixi) ∗ (atk
n−1∑
i=0

xifi + btk)

(4)

Select One Value of k

n∑
k=1

nk = 1 (5)

Total Number of Cores Equals k

n−1∑
i=0

xi =

n∑
k=1

nkk (6)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (7)

∀k ∈ (0, n], nk ∈ {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k
cores is given below in Equations (9)-(11).
Objective Function

min (apK

n−1∑
i=0

xifi + bpK +

n−1∑
i=0

sixi) ∗ (atK
n−1∑
i=0

xifi + btK)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k ∈ [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k ∈ [1, n]}

Total Number of Cores Equals K

n−1∑
i=0

xi = K (10)

Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12 ≤ x1, y12 ≤
x2, and y12 ≥ x1 + x2− 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n−1∑
i=0

n−1∑
j=0

(apKfi + si)(a
t
Kfj)yij + btK

n−1∑
i=0

(apKfi + si)xi

+bpKatK

n−1∑
j=0

fjxj + bpKbtK

(12)

Total Number of Cores Equals K

n−1∑
i=0

xi = K (13)

New variable constraints

yij ≤ xi, ∀i, j ∈ [0, n), j ≤ i

yij ≤ xj , ∀i, j ∈ [0, n), j ≤ i

yij ≥ xi + xj − 1, ∀i, j ∈ [0, n), j ≤ i (14)



Variables Range

∀i ∈ [0, n), xi ∈ {0, 1} (15)

This approach increases the number of variables v by a
factor of v(v−1)

2 , and the number of constraints by a factor
of 3v(v−1)

2 . Since the value of v is small for the focal prob-
lem, the size of the linear program remains tractable. It is
possible that the configuration with minimum energy con-
sumption has a very large execution time as compared to
best execution time. In order to constrain the increase in ex-
ecution time, the following time constraint is added to the
linear programs, where tp is the allowed increase in execu-
tion time.

atK(

n−1∑
i=0

xifi) + btK ≤ (1 +
tp
100

) ∗ tmin (16)

This proposed ILP methodology is evaluated in Section 6.

5. The Setup
We use Sniper Multi-core Simulator [13] for simulating
chips with heterogeneity. We use the default core model
of Sniper. The default core model is similar to Intelr

Gainestown model and has been validated [13]. We sim-
ulate chips with 36 cores. Each chip has x86 cores with
4-wide out-of-order issues. Each core has a private 4-way
L1 Instruction cache of size 32 KB, and a private 8-way
L2 cache of size 256 KB. There is a shared 4-way L1 In-
struction cache of size 32KB. The memory latency is 75ns,
when there is no memory contention. We use 11-nm tech-
nology, with average frequency of 2.6GHz, and 0.765 Vdd.
McPAT (Multicore Power, Area, and Timing) [33] frame-
work was integrated with Sniper for dynamic power mod-
eling of manycore applications. Our experimental results in
this paper are for chips with 36 cores. For modeling process
variation at micro-architectural level and for static power
modeling of cores, we use VariusNTV [26]. 25 chips were
generated with different core frequencies and static power
consumption. The frequencies and the corresponding static
power consumption of various cores for one of the chips is
shown in Figure 2.

5.1 Applications
Two HPC applications are used for benchmarking the per-
formance:

• miniMD: It is a simple, parallel molecular dynamics code
that is a micro-application in the Mantevo project at San-
dia National Laboratories 1. miniMD is written in MPI
and performs parallel molecular dynamics simulation of
a Lennard-Jones system. miniMD is a computationally
intensive application.

1 http://software.sandia.gov/mantevo/
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Figure 2: Frequencies and static powers of various cores on
a manycore chip with variation.

• Jacobi: Jacobi is a 3D stencil computation code. It is a
memory intensive application. We use a Charm++ imple-
mentation of Jacobi.

Most other HPC applications fall in between miniMD and
Jacobi in terms of their computation and memory sensitiv-
ity. For developing the performance and dynamic power con-
sumption models of these applications, we obtained 2n sam-
ples from each application, where n is the number of cores
on the chip. For each value of k ∈ [1, n], 2 samples are re-
quired to build the linear model for all configurations with
k cores. We chose the configurations with k minimum, and
k maximum frequency chips, and obtained their simulated
performance on the Sniper simulator. The simulated perfor-
mance was used to compute the line constants for the perfor-
mance and power consumption models.

We use the reference energy consumption (refenergy) as
the energy consumption corresponding to the configuration
with the best possible execution time (tmin), computed using
Algorithm 2. Our results are compared against refenergy.

Algorithm 2 Algorithm for computing the best possible
execution time (tmin) for an application on the chip

1 tmin = 0
2 for k ∈ [1, n] :
3 Ck = {cores with k largest frequencies}
4 tmin = min(tmin, atk

∑
i∈Ck

fi + btk)

5 return tmin

5.2 Heuristics
The proposed integer linear programming approach for en-
ergy minimization is compared against two heuristics, called
the MIN, and MAX heuristics as described below:

• MIN heuristic: The cores are sorted in the increasing or-
der of their frequencies, such that, f0 < f1 < f2... <



fn−1. The heuristic selects the value of k such that the
configuration with k consecutive cores, starting from
core0 has the minimum energy consumption and the ex-
ecution time is within the desirable threshold (tp). The
MIN heuristic algorithm is given in Algorithm 3.

Algorithm 3 Algorithm for MIN heuristic

1 sort frequencies such that f0 < f1... < fn−1

2 energymin = refenergy
3 for k ∈ [1, n]:
4 Ck ={corei for i ∈ [1, k]}
5 time = atk

∑
i∈Ck

fi + btk

6 if energy(Ck) < energymin and time < (1 + tp
100

)tmin:

7 energymin = energy(Ck)
8 return energymin

• MAX heuristic: The cores are sorted in the decreasing or-
der of their frequencies, such that, f0 > f1..... > fn−1.
The heuristic selects the value of k such that the config-
uration with k consecutive cores, starting from core0 has
the minimum energy consumption and the execution time
is within the desirable threshold (tp). The MAX heuristic
algorithm is given in Algorithm 4.

Algorithm 4 Algorithm for MAX heuristic

1 sort frequencies such that f0 > f1... > fn−1

2 energymin = refenergy
3 for k ∈ [1, n]:
4 Ck ={corei for i ∈ [1, k]}
5 time = atk

∑
i∈Ck

fi + btk

6 if energy(Ck) < energymin and time < (1 + tp
100

)tmin:

7 energymin = energy(Ck)
8 return energymin

5.3 ILP Solver
There are several solvers available for integer linear program
optimization, such as, Gurobi [1], CPLEX [2], GLPK [36],
CBC [18], SCIP [5], Xpress [32]. We use the commercial
state-of-the-art solver, Gurobi, for solving the Integer Lin-
ear Programs (ILPs). ILPs are NP-hard problems and are
solved by using variants and extensions of Branch-and-
Bound (BnB) method. In BnB method, the corresponding
linear program, obtained by relaxing the integrality con-
straints on integer variables, is first solved by using the sim-
plex or the interior point method. This gives a fractional
solution. Branching is done on the fractional values, which
gives more linear programs. Linear program optimizations
are done and the branching is continued until an integer so-
lution is found. The integer solution with the best cost acts
as an incumbent solution and is used to prune other vertices
of the BnB tree that can provably be shown to not have better
cost than the current incumbent. Commercial state-of-the art
solvers like Gurobi have highly optimized implementations

for solving ILPs. They fully exploit the latest mathematical
and engineering improvements in the underlying method-
ologies to provide very fast solutions to linear/mixed-integer
programs. Solvers like Gurobi are used for variety of cost
and quality optimization purposes in various fields of opti-
mization.

6. Results
In this section, we discuss the energy savings obtained using
the ILP methodology and the optimization times of the ILPs.

6.1 Energy-efficiency
Figure 3 shows the savings in energy consumption by using
configurations selected by the MIN heuristic, MAX heuristic,
and the proposed integer linear programming method when
compared to the configuration with best execution time. The
results are summary of benefits across 25 different chips.
We consider 3 cases, corresponding to Figure 3a, 3b, 3c,
respectively.

1. In this case, configuration with minimum energy con-
sumption is sought using the three methods without any
limit on the increase in execution time (i.e. tp→∞).

• miniMD The ILP method gives an average of 26%
in energy savings, while the savings were 9.8% and
4.7% from MIN, and MAX heuristics, respectively.

• Jacobi We obtain an average of 10.77% savings in
energy consumption using the ILP method. On the
other hand, MIN and MAX heuristics give energy
savings of only 5.45% and 1.52%, respectively.

Although ILP gives significant savings in energy, it leads
to significant increase in execution time. For instance,
for miniMD there was an average of 74%, 10%, 156%
increase in execution time with MIN, MAX heuristic, ILP,
respectively. Therefore, we consider the following two
cases in which there is a limit to the increase in execution
time.

2. When the execution time is less than 1.15 ×tmin, that is,
tp = 15%

• miniMD We obtain an average of 4.8%, 4.4%, 18.4%
savings in energy with MIN, MAX heuristic, ILP, re-
spectively.

• Jacobi An average of 2.9%, 1.5%, 8.6% savings in
energy with MIN, MAX heuristic, ILP, respectively is
obtained.

3. When the execution time is less than 1.05 ×tmin, that is,
tp = 5%

• miniMD We obtain an average of 0.2%, 3.5%, 13.4%
savings in energy with MIN, MAX heuristic, ILP, re-
spectively.
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(b) Maximum 15% time penalty
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Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.
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Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n−2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated



for a 36 core chip is 236− 1, which is equal to 68719476736
configurations. Exhaustive evaluation of all these configu-
rations in parallel on 8 cores takes 74 hours. These results
show the benefit of using ILP solvers. The time to solution
for the ILP method can be significantly reduced further by
using a compute node with more cores, or using multiple
nodes for parallel optimization. Since HPC simulations run
for several hours, the overhead of finding the optimal con-
figuration is negligible as compared to the execution time of
the jobs, which can be from hours to days.

7. Conclusion and Future Work
We studied chips with variation - the heterogeneity across
their cores, their performance modeling, and runtime sys-
tem. We proposed an integer linear programming based
methodology to obtain a configuration of the chip that op-
timizes the energy consumption for a given application that
originally has a hard-to-solve quadratic integer program for-
mulation. Our results show that as much as 26% savings
in energy can be obtained for some applications by using
the proposed methodology. On the other hand, exhaustive
evaluation of all the configurations is intractable for practi-
cal purposes. Using the proposed method, the overhead of
performance modeling and optimal configuration selection
is negligible. Whenever a job is scheduled for execution on
selected chips, the ILP optimizer can be executed on the
chip itself to determine the optimal configuration for the
job, prior to actual execution of the job on that chip. In this
way, no extra compute resources are required for optimal
configuration selection.

There is significant future work that ensues from here. We
plan to evaluate the proposed approach for chips with very
large number of cores. We also wish to explore optimization
techniques which can further reduce the solution time for
finding the optimal configurations. We plan to evaluate the
proposed methodology for other applications that are both
computationally and memory intensive such as Adaptive
Mesh Refinement [31], Lulesh [35], etc.
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