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Deterministic Replay & Fault Tolerance

� Fault tolerance often crosses over into replay territory!

� Popular uses
I Online fault tolerance
I Parallel debugging
I Reproducing results

� Types of replay
I Data-driven replay

F Application/system data is recorded
F Content of messages sent/received, etc.

I Control-driven replay
F The ordering of events is recorded
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Deterministic Replay & Fault Tolerance
→ Our Focus

� Fault tolerance often crosses over into replay territory!
� Popular uses

I Online fault tolerance
I Parallel debugging
I Reproducing results

� Types of replay
I Data-driven replay

F Application/system data is recorded
F Content of messages sent/received, etc.

I Control-driven replay
F The ordering of events is recorded

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 3 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance3 / 33



Online Fault Tolerance
→ Hard failures

� Researchers have predicted that hard faults will increase

I Exascale!
I Machines are getting larger
I Projected to house more than 200,000 sockets
I Hard failures may be frequent and only affect a small percentage of

nodes
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Online Fault Tolerance
→ Approaches

� Checkpoint/restart (C/R)
I Well-established method
I Save snapshot of system state
I Roll back to previous snapshot in case of failure

� Motivation beyond C/R
I If a single node experiences a hard fault, why must all the nodes roll

back?
I Recovering from C/R is expensive at large machine scales

F Complicated because it depends on many factors (e.g checkpointing
frequency)

� Solutions
I Application-specific fault tolerance
I Other system-level approaches
I Message-logging!
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Hard Failure System Model

� P processes that communicate via message passing

� Communication is across non-FIFO channels
I Sent asynchronously
I Possibly out of order

� Guaranteed to arrive sometime in the future if the recipient process
has not failed

� Fail-stop model for all failures
I Failed processes do not recover from failures
I They do not behave maliciously (non-Byzantine failures)
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Sender-Based Causal Message Logging (SB-ML)

� Combination of data-driven and control-driven replay
I Data-driven

F Messages sent are recorded
I Control-driven

F Determinants are recorded to store the order of events

� Incurs costs in the form of time and storage overhead during forward
execution

� Periodic checkpoints reduce storage overhead
I Recovery effort is limited to work executed after the latest checkpoint
I Data stored before the checkpoint can be discarded

� Scalable implementation in Charm++
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Example Execution with SB-ML

Checkpoint Failure

Task A
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Task E
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Motivation
→ Overheads with SB-ML
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Forward Execution Overhead with SB-ML

� Logging the messages
I Just requires a pointer to be saved and message is not deallocated!
I Increases memory pressure

� Determinants, 4-tuple of the form: <SPE,SSN,RPE,RSN>

I Components:
F Sender processor (SPE)
F Sender sequence number (SSN)
F Receiver processor (RPE)
F Receiver sequence number (RSN)

I Must be stored stably based on the reliability requirements
F Propagated to n processors
F Unacknowledged determinants are augmented onto new messages (to

avoid frequent synchronizations)
I Recovery

F Messages must be replayed in a total order
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Forward Execution Microbenchmark (SB-ML)

Component Overhead (%)

Determinants 84.75%
Bookkeeping 11.65%

Message-envelope size increase 3.10%
Message storage 0.50%

� Using the LeanMD (molecular dynamics) benchmark
� Measured on 256 cores of Ranger
� Largest source of overhead is determinants

I Creating, storing, sending, etc.
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Benchmarks
→ Runtime System—Charm++

� Decompose parallel computation into objects that communicate
I More objects than number of processors
I Objects communicate by sending messages
I Computation is oblivious to the processors

� Benefits
I Load balancing, message-driven execution, fault tolerance, etc.
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Benchmarks
→ Configuration & Experimental Setup

Benchmark Configuration

STENCIL3D matrix: 40963, chunk: 643

LEANMD (mini-app for NAMD) 600K atoms, 2-away XY, 75 atoms/cell
LULESH (shock hydrodynamics) matrix: 1024x5122, chunk: 16x82

� All experiments on IBM Blue Gene/P (BG/P), ‘Intrepid’
� 40960-node system

I Each node consists of one quad-core 850MHz PowerPC 450
I 2GB DDR2 memory

� Compiler: IBM XL C/C++ Advanced Edition for Blue Gene/P, V9.0
� Runtime: Charm++ 6.5.1
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Forward Execution Overhead with SB-ML
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� The finer-grained benchmarks, LeanMD and LULESH, suffer from
significant overhead
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Reducing the Overhead of Determinants

� Design Criteria
I We must maintain full determinism

I We must devolve well for all cases (even very non-deterministic
programs)

I Need to consider tasks or lightweight objects
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Reducing the Overhead of Determinants

� ‘Intrinsic’ determinism
I Many researchers have noticed that programs have internal

determinism

F Causality tracking (1988: Fidge, Partial orders for parallel debugging)
F Racing messages (1992: Netzer, et al., Optimal tracing and replay for

debugging message-passing parallel programs)
F Theoretical races (1993: Damodaran-Kamal, Nondeterminancy: testing

and debugging in message passing parallel programs)
F Block races (1995: Clemencon, An implementation of race detection and

deterministic replay with MPI
F MPI and Non-determinism (2000: Kranzlmuller, Event graph analysis for

debugging massively parallel programs)
F . . .
F Send-determinism (2011: Guermouche, et al., Uncoordinated

checkpointing without domino effect for send-deterministic MPI
applications)
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Our Approach

� In many cases, only a partial order must be stored for full determinism

I Program = internal determinism + non-determinism + commutative

I Internal determinism requires no determinants!
I Commutative events require no determinants!
I Approach: use determinants to store a partial order for the

non-deterministic events that are not commutative
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Ordering Algebra
→ Ordered Sets, O

� O(n, d)
I Set of n events and d dependencies

I Can be accurately replayed from a given starting point
I Dependencies d can be among the events in the set, or on preceding

events
I Intuitively, they are ordered sets of events

� Define sequencing operation, �:
O(1, d1)�O(1, d2) = O(2, d1 + d2 + 1)
I Intuitively, if we have two atomic events, we need a single dependency

to tell us which one comes first

� Generalization: O(n1, d1)�O(n2, d2) = O(n1 + n2, d1 + d2 + 1)
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Ordering Algebra
→ Unordered Sets, U

� U(n, d)
I Unordered set of n events and d dependencies

I Example is where several messages are sent to a single endpoint
I Depending the order of arrival, the eventual state will be different

� We decompose this into atomic events with an additional dependency
between each successive pair:

U(n, d) = O(1, d1)�O(1, d2)� · · ·�O(1, dn)
= O(n, d+ n− 1)

where d =
∑

di

I Result: additional n− 1 dependencies required to fully order n events
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Ordering Algebra
→ Interleaving Multiple Independent Sets, � operator

Lemma

Any possible interleaving of two ordered sets of events A = O(m, d) and
B = O(n, e), where A ∩B = ∅, is given by:
O(m, d)�O(n, e) = O(m+ n, d+ e+min(m,n))

Lemma

Any possible ordering of n ordered set of events
O(m1, d1),O(m2, d2), . . . ,O(mn, dn), when

⋂
iO(mi, di) = ∅, can be

represented as:
n

�
i=1
O(mi, di) = O(m, d+m−maximi) where

m =
n∑

i=1
mi ∧ d =

n∑
i=1

di
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Internal Determinism
→ D

� D(n) = O(n, 0)
� n deterministically ordered events are structurally equivalent to an

ordered set of n events with no associated explicit dependencies!

� What happens if we interleave internal determinism with something
else?

� k interruption points => O(k, k − 1)
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Communtative Events
→ C

� Some events in programs are communtative
I Regardless of the execution order the state will be identical

� All existing theories of message logging execute record a total order
on them

� However we can reduce a commutative set to:
I C(n) = O(2, 1)
I A beginning and end event sequenced together
I Sequencing other sets of event around the region just puts them before

and after

I Interleaving other events puts them in three buckets:
F (1) before the begin event
F (2) during the commutative region
F (3) after the end event

I This corresponds exactly to an ordered set of two events!
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Applying the Theory
→ PO-REPLAY: Partial-Order Message Identification Scheme

� Properties
I It tracks causality with Lamport clocks
I It uniquely identifies a sent message, whether or not its order is

transposed
I It requires exactly the number of determinants and dependencies

produced by the ordering algebra

� Determinant Composition (3-tuple): <SRN,SPE,CPI>
I SRN: sender region number, incremented for every send outside a

commutative region and incremented once when a commutative region
starts

I SPE: sender processor endpoint
I CPI: commutative path identifier, sequence of bits that represents the

path to the root of the commutative region
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Experimental Results
→ Forward Execution Overhead: Stencil3D
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� Course-grained, shows small improvement over SB-ML
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Experimental Results
→ Forward Execution Overhead: LeanMD
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� Fine-grained, reduction from 11-19% overhead to <5%
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Experimental Results
→ Forward Execution Overhead: LULESH
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� Medium-grained, many messages, 17% overhead to <4%
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Experimental Results
→ Fault Injection

� Measure the recovery time for the different protocols

I We inject a simulated fault on a random node
I During approximately the middle of the period
I We calculate the optimal checkpoint period duration using Daly’s

formula
F Assuming 64K–1M socket count
F Assuming MTBF of 10 years

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 27 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance27 / 33



Experimental Results
→ Fault Injection

� Measure the recovery time for the different protocols
I We inject a simulated fault on a random node

I During approximately the middle of the period
I We calculate the optimal checkpoint period duration using Daly’s

formula
F Assuming 64K–1M socket count
F Assuming MTBF of 10 years

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 27 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance27 / 33



Experimental Results
→ Fault Injection

� Measure the recovery time for the different protocols
I We inject a simulated fault on a random node
I During approximately the middle of the period

I We calculate the optimal checkpoint period duration using Daly’s
formula
F Assuming 64K–1M socket count
F Assuming MTBF of 10 years

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 27 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance27 / 33



Experimental Results
→ Fault Injection

� Measure the recovery time for the different protocols
I We inject a simulated fault on a random node
I During approximately the middle of the period
I We calculate the optimal checkpoint period duration using Daly’s

formula
F Assuming 64K–1M socket count
F Assuming MTBF of 10 years

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 27 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance27 / 33



Experimental Results
→ Recovery Time Speedup C/R
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� LeanMD has the most speedup due to its fine-grained,
overdecomposed nature

� We achieve speedup in all cases in recovery time
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Experimental Results
→ Recovery Time Speedup SB-ML

 0

 0.5

 1

 1.5

 2

 2.5

LeanMD Stencil3D LULESH

S
p
ee

d
u
p

8192 Cores
16384 Cores
32768 Cores
65536 Cores

131072 Cores

� Increased speedup with scale, due to expense of coordinating
determinants and ordering
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Experimental Results
→ Summary

� Our new message logging protocol has about <5% overhead for the
benchmarks tested

� Recover is significantly faster than C/R or causal
� Depending on the frequency of faults, it may perform better than C/R

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 30 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance30 / 33



Experimental Results
→ Summary

� Our new message logging protocol has about <5% overhead for the
benchmarks tested

� Recover is significantly faster than C/R or causal

� Depending on the frequency of faults, it may perform better than C/R

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 30 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance30 / 33



Experimental Results
→ Summary

� Our new message logging protocol has about <5% overhead for the
benchmarks tested

� Recover is significantly faster than C/R or causal
� Depending on the frequency of faults, it may perform better than C/R

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance � Jonathan Lifflander � 30 / 33 Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance30 / 33



Future Work

� More benchmarks

� Study for broader range of programming models
� Memory overhead of message logging makes it infeasible for some

applications
� Automated extraction of ordering and interleaving properties
� Programming language support?
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Conclusion

� Comprehensive approach for reasoning about execution orderings
and interleavings

� We observe that the information stored can be reduced in proportion
to the knowledge of order flexibility

� Programming paradigms should make this cost model clearer!
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Questions?




