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Abstract—

The cache hierarchy often consumes a large portion of
a processor’s energy. To save energy in HPC environments,
this paper proposes software-controlled reconfiguration of the
cache hierarchy with an adaptive runtime system. Our approach
addresses the two major limitations associated with other methods
that reconfigure the caches: predicting the application’s future
and finding the best cache hierarchy configuration. Our approach
uses formal language theory to express the application’s pattern
and help predict its future. Furthermore, it uses the prevalent
Single Program Multiple Data (SPMD) model of HPC codes to
find the best configuration in parallel quickly. Our experiments
using cycle-level simulations indicate that 67% of the cache
energy can be saved with only a 2.4% performance penalty
on average. Moreover, we demonstrate that, for some applica-
tions, switching to a software-controlled reconfigurable streaming
buffer configuration can improve performance by up to 30% and
save 75% of the cache energy.

I. INTRODUCTION

Power- and energy-related issues are of growing concern in
computer systems. The number of transistors on a single chip
has already surpassed one billion and continues to increase.
Although semiconductor processes can give us ever more
transistors, thermal dissipation and broader power and energy
constraints will limit their use.

These limitations have a direct impact on science and engi-
neering applications in High-Performance Computing (HPC).
The HPC community is aiming to keep the total power intake
of future Exascale machines at tens of MW, whereas current
systems with only 10 PetaFLOPS of performance are already
consuming over 10 MW of power. Multiple innovations must
be developed to dramatically reduce the total power usage of
supercomputers.

The cache hierarchy has potential for many such innova-
tions. A significant fraction of the power used by a processor
chip is consumed by the cache hierarchy. For example, caches
in IBM’s POWER7 consume around 40% of the processor’s
power [1]. Yet, the caches may not be utilized equally in
various Computational Science and Engineering (CSE) appli-
cations and even across different phases of a single application.

To exploit this fact, we have developed a scheme that
saves energy by using the runtime system (RTS) to selectively
turn off parts of the caches. Our approach takes advantage
of common characteristics of workloads found in CSE. We
also leverage adaptive RTSs that include an introspective

component that is aware of both the current hardware status
and the application.

In this paper, we characterize HPC platforms and appli-
cations and find common patterns of cache utilization. We
then use these patterns to develop a novel, adaptive RTS-based
scheme that automatically turns parts of the caches on or off to
save energy. Our scheme also switches the cache to a streaming
organization depending on the application’s behavior. In this
case, the runtime reconfigures the streaming parameters for
best performance and energy efficiency.

Our scheme addresses major limitations associated with
other methods that reconfigure the caches. It uses persistence
and formal language theory to express the application’s pattern,
and the Single Program Multiple Data (SPMD) model to find
the best configuration concurrently. This approach is practical
since it only requires minor hardware support.

We evaluate our scheme using cycle-level simulations of a
chip multiprocessor running the Mantevo mini-apps suite [2]
and real applications such as NAMD [3] and MILC [4]. Our
results indicate that 67% of cache energy can be saved on
average, with only a slight performance penalty. We also
demonstrate that adaptively switching to a reconfigurable
streaming organization for the L3 cache (prefetching cache
lines for detected memory-access streams) can improve both
performance and energy efficiency with various tradeoffs. For
example, performance can be improved by 30% while saving
75% of cache energy consumption.

The contributions of our work can be summarized as
follows. We analyze the memory access characteristics of
common HPC applications using the inherent properties of
scientific domains and algorithms. In contrast to previous HPC
characterization works [5], [6], [7], [8], we consider all the
relevant aspects from algorithms to hardware. We also examine
the capabilities of HPC runtime systems, and the related energy
reduction possibilities in caches. Taking into consideration all
the involved system components, we propose a novel cross-
layer solution for adaptive cache reconfiguration. We also
propose a software-controlled reconfigurable streaming scheme
that can improve performance and energy efficiency for many
common applications. Our proposals are highly practical since
the RTS is easy to change, and the hardware complexity does
not increase significantly. To the best of our knowledge, this
is the first work to use HPC runtime systems to reconfigure
the cache hierarchy for energy efficiency.

This paper is organized as follows: Section II and Sec-
tion III discuss the necessary background and common pat-
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terns in HPC applications and architectures. Next, Section IV
introduces our RTS-based scheme. Section V explains our eval-
uation methodology and presents the results of our scheme for
cache reconfiguration. Section VI explains our reconfigurable
streaming scheme and presents the results and their analysis.
Section VII discusses the related work and we conclude the
paper in Section VIII.

A. Background and Motivation

Cache reconfiguration (cache tuning) has been extensively
studied, because of the high energy consumption of caches [9],
[10], [11], [12], [13], [14]. Dynamic hardware-based methods
need to 1) monitor the application to predict the future,
and 2) find the best cache configuration effectively. Both
of these stages have considerable performance and energy
overhead [15], eliminating the benefits of reconfiguration. For
example, the hardware could monitor some system metrics
such as Instructions Per Cycle (IPC) and cache miss rate in
a short interval and choose a new configuration. However,
there is no guarantee that the interval is representative of
the application execution, especially for HPC applications,
which typically have long iteration times. In general, phase
change detection is known to be challenging. Furthermore,
the chosen configuration may not be the best possible, and
good design space exploration heuristics are difficult to design
for complex modern processors. In Section VI, we analyze
a typical case where the miss rate is decreased but the
performance is degraded due to different, complex factors
of a modern speculative processor. A survey by Zang and
Gordon-Ross [15] explores the challenges. Because of these
issues, these hardware methods have not found their way
to modern processors, and some recent processors, such as
Angstrom [16], rely on software to reconfigure their caches.

Cache reconfiguration by the compiler has also been pro-
posed [17], [18]. Many assumptions are made for the required
footprint analysis, such as having only simple nested-loops
and affine functions for array indices (only constants and
loop index variables are allowed). However, large-scale HPC
codes are usually more complicated. Moreover, the hardware
complexities mentioned previously can prevent the compiler
from choosing good configurations. We argue that the RTS
can perform this task much more easily and effectively.

As an example of current practice on modern HPC ma-
chines, let us consider the simulations that were used for a
recent scientific discovery at Illinois. Researchers used NAMD
to simulate an HIV molecular system with 64 million atoms.
Considering the maximum possible cache utilization with all
the read only data (e.g. structures of atoms) and transient
data (multicasts of force calculation results), only about 400
bytes per atom are needed. Therefore, the application uses only
25.6 GB of data in the working set. Note that in NAMD, the
main data being updated in each iteration are the position and
velocity of the atoms, which need only 48 bytes per atom
combined. A typical simulation uses about 4000 Cray-XE
nodes of Blue Waters (each containing two AMD Interlagos
processors) with a total of 256 GB in L2 and L3 caches. Thus,
more than 90% of the cache capacity was not used for the
simulation. Each simulation took more than 16 days of wall
clock time, which translates to a huge waste of power in the

caches. Section II explains why the algorithms of this particular
class of HPC applications do not need large caches.

II. HPC SYSTEMS

A. Provisioning Practices

Machines in HPC data centers are used very differently
than non-HPC ones. Usually, there is no multi-programming
or time-sharing of different jobs. In addition, there is no co-
location of different jobs on the same nodes. Therefore, each
node is dedicated to a single job at a time.

Furthermore, there is no migration of jobs across nodes. A
set of nodes is dedicated to a single job for its entire execution
time, which is usually much longer than the execution times of
non-HPC jobs. Note that capability supercomputers usually try
to run long jobs with large allocations (especially on the full
machine) to facilitate new and significant scientific discoveries.
On the other hand, non-HPC data centers run short and small
jobs (e.g. search queries) that can be migrated using virtual
machines. Thus, HPC machines are simpler to analyze and
there is much more predictability and persistence in HPC data
centers that can be exploited.

The processors in current supercomputers are often com-
modity chips. The reason is that designing and manufacturing a
processor is a large investment that needs larger markets. Thus,
most processors used in HPC are designed for commercial
workloads in various environments, which can be very different
than HPC workloads. This can result in inefficiencies of both
power and performance in HPC environments. However, as we
demonstrate in this paper, these can be overcome with minor
support for HPC.

B. Applications

Common HPC applications are usually iterative and per-
sistent, meaning that their computation and communication
patterns tend to persist over time. They perform roughly
the same (or very similar, at least from a memory access
pattern perspective) computations and communications in each
iteration. Each simulation consists of thousands to millions of
these iterations (each iteration might be structured and have
phases in itself, which is discussed later). For example, to
simulate a bio-molecular system (e.g. in NAMD [3]), forces
need to be integrated for every one (or few) femtosecond(s) of
simulated time. Therefore, a one microsecond simulation of a
bio-molecular system takes one million iterations. Even though
the simulation is dynamic and the molecules and atoms might
move across regions, the computations are roughly the same.
Thus, many scientific and engineering applications follow the
principle of persistence. This means that the computation and
communication tends to persist or change slowly over time.
This principle allows the RTS to predict the future of the
application and has led to many successful features, such as
measurement-based load balancers [19]. All the mini-apps in
the suite we consider are iterative and highly persistent.

Some HPC applications (e.g. stencils and matrix-vector
multiplies) are memory-bound and have lower temporal lo-
cality but higher spatial locality than other workloads. This
property is studied extensively in the literature [5], [20], [7],
[8]. For example, a sparse matrix vector multiply (SpMV)



kernel sweeps the matrix and vector linearly and there is a high
chance of accessing neighboring values. However, if the matrix
and vector inputs are larger than the largest cache, the data will
not be present in the cache for the next iteration. For example,
a physical domain with 1003 grid cells per processor1 and
240B of data per cell (for different attributes such as velocity,
energy, mass, their derivatives, etc.) will occupy 230MB of
memory, which should be updated in every iteration.

On the other hand, some applications have high temporal
locality as well as spatial locality, but their working set (in
typical execution runs) is usually much smaller than the cache
hierarchy. Many Molecular Dynamics (MD) applications, such
as NAMD, usually fall into this category. For example, 1000
atoms per processor with 80B of data per atom takes only
78KB of memory, which is only a small fraction of a typical
Last Level Cache (LLC).

Most HPC applications follow similar memory access pat-
terns. To study these patterns, we use the Mantevo suite’s mini-
apps as representative of common HPC applications. Mini-
apps are simplified versions of applications that are of interest
to the CSE community. They are designed to be similar to
real applications from a computational perspective, and more
representative than micro-benchmarks. The mini-apps of the
Mantevo suite can be divided into three classes:

1) Stencil computations (CloverLeaf and MiniGhost)
2) Sparse Linear Algebra (HPCCG, MiniFE and

MiniXyce)
3) Particle simulations, such as molecular dynamics

(MiniMD and CoMD)

Stencil computations, which are key kernels of many struc-
tured grid applications and their PDE solvers, have limited data
reuse. These kernels sweep through domain data structures that
are typically much larger than caches and fill a sizable fraction
of the main memory. Thus, they do not benefit from caches
to the full extent. For example, Figure 1 illustrates a 5-point
2D stencil computation. In this example, the update of Point
3 uses Points 1, 2, 3, 4, and 5, which can potentially result
in four cache misses. The next update, which is for Point 4
(displayed with dotted lines), can reuse some of the data of the
previous update. Therefore, a memory location is reused only
a few times after its first use. Similarly, consecutive updates go
through the top, middle and bottom rows of the data domain
in the figure. From the memory hierarchy point of view, three
different address ranges are being read (“streamed”) with few
reuses.

In essence, these classes of applications have much more
spatial locality than temporal locality. Thus, streaming buffers
(or other forms of block transfers) can be more effective than
typical caches for stencil computations. Streaming strategies
can capture more of the available spatial locality in stencil
codes to hide memory latencies. Also, spatial locality is
partially captured through the cache line in caches, and a
smaller cache could be just as effective.

Note that cache tiling (blocking) optimizations reduce the
dimension sizes, increasing the number of reuses. However, the
block size needs to be tuned and does not need to fit the whole

1by “processor” we mean a processor chip in this paper (not a single core).
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Fig. 1. 5-point 2D stencil example: boxes represent memory locations, ovals
represent stencil data points, and arrows indicate data dependencies

LLC, as previous work demonstrates [21]. Furthermore, many
legacy HPC codes do not incorporate these optimizations, and
the required programming effort is a burden. The applications
and mini-apps we evaluate do not use tiling for stencils for the
same reason. Programming paradigms such as Hierarchically
Tiled Arrays (HTA) [22] can alleviate this issue.

Sparse Linear Algebra computations in HPC applications
also have limited cache utilization if the domain is large
enough. The HPCCG, MiniFE, and MiniXyce mini-apps use
sparse linear algebra methods, such as Conjugate Gradient
(CG) and Generalized Minimal Residual (GMRES). Most of
the execution time of these methods is spent in matrix-vector
and vector-vector operations. These kernels stream data from
main memory without much reuse. For example, matrix-vector
multiply kernels read the matrix only once in every iteration.
The vector accesses might also not have much data reuse
depending on the structure of the matrix (e.g. a matrix from a
regular 2D grid). In addition, if the matrix is large enough, the
vector is evicted from the cache. Thus, consecutive addresses
from a few address ranges are read regularly (from the memory
hierarchy) for these kernels. Therefore, they have high spatial
locality, similar to stencils, and the same arguments apply.

Many Molecular Dynamics (MD) and other particle inter-
action kernels are different than the previous categories and
can have high temporal locality (as well as spatial locality).
The reason is that the previous categories usually represent
discretized points in the physical domain, while particle kernels
represent entities. Each entity can have many interactions with
other entities, while a point is fine-grained and usually interacts
only with its neighbors. For example, in many particle kernels
each particle (an atom in MD or a star in astrophysics) interacts
with all other particles within a cut off distance. Hence, while
each memory location is accessed O(1) times in the other
two classes of applications, it is accessed O(n) times in
particle applications (n is the number of particles in a cut-off),
resulting in high data reuse. On the other hand, the data size
for practical runs is typically smaller than caches of modern
machines, especially the LLC. One reason is that the order
of the computation time is roughly the square of the data
size in the cut-off, making large input sizes impractical. Thus,
large caches are not exploited to their full potential in many
members of this class of applications either.

As we discussed earlier, cache effectiveness of common
HPC applications is highly related to their per-processor work-
ing set size. Therefore, even a single application can have
different cache utilization profiles depending on the input size



and the number of processors used. Thus, there is no single
cache hierarchy configuration that could fit all cases, providing
the highest performance and energy efficiency.

C. Runtime Systems

In HPC environments, the RTS mainly mediates the com-
munication and provides parallel services, such as message
passing in MPI. This parallel management, in addition to
applications’ persistence, empowers the runtime system to
provide other important features such as load balancing [19],
fault tolerance [23], efficient parallel I/O [24], [25], and
power management [26], [27]. Therefore, an adaptive RTS
orchestrates a control system [28].

Our approach is based on the management of Sequential
Execution Blocks (SEBs), which we define as sequential com-
putations between two communication calls (e.g. MPI calls).
The RTS has control before and after each SEB, but it cannot
usually interrupt it. These SEBs are repeated every iteration
and they perform roughly the same computation (especially
from a cache access perspective). For example, in most stencil
codes the processors iteratively exchange the boundaries and
update their values in an SEB. Thus, we try to adapt the caches
to the SEB that is about to execute.

III. CACHE HIERARCHY

A. Cache Structure

Modern processors have multiple levels of very large
caches to hide memory latency as much as possible. For
example, the Intel Xeon E7-8870 [29] has 30MB of L3 cache
in SRAM technology and IBM POWER8 [30] has 96MB of
L3 cache in eDRAM technology. Architects try to incorporate
larger caches to accelerate different workloads, while meeting
the area, power, and latency budgets (e.g., it is critical in
many designs to have only one cycle latency for L1 caches).
Therefore, a large fraction of the silicon area is used by caches.

The cache hierarchies are designed for a diverse set of
applications and hence, a fixed design might not be best
for every workload. Furthermore, most supercomputers use
commodity processors, which are designed for other (non-
HPC) markets with different workloads. These factors result
in immense waste of power and energy in supercomputers.
For example, “big data” applications such as graph analysis
might not have any locality because they are unstructured in
their memory accesses (e.g. pointer chasing pattern). Thus, a
level of adaptivity is needed to match the running application
without too much hardware overhead.

B. Cache Power

Caches consume a large fraction of processor chips’ power
budget. For example, even with many advanced hardware
power reduction techniques in place, caches in POWER7
consume around 40% of the total power [1]. The power
consumption of caches depends on the technology, but our
approach can help in most cases. SRAM technology has high
leakage but is faster. On the other hand, eDRAM has much
less leakage and higher capacity but needs to be refreshed [31].
Our approach can help with either technology.

Turning off ways of caches, used in our approach, can
save the power consumption of various caches differently. In
conventional caches, tag lookup and data access are performed
in parallel for faster access. Therefore, considering that a large
fraction of dynamic energy is consumed in data arrays, turning
off ways of the cache saves significant dynamic energy in
addition to leakage (static) energy. On the other hand, the
caches that are not on the critical path of the processor can
be made so that tag and data accesses are done sequentially,
accessing only one way after tag lookup [32]. Thus, turning off
ways can only save leakage energy in this case. This usually
applies to Last Level Caches (LLC), which consume a lot of
leakage energy.

C. Architectural Opportunities

Modern set-associative caches are partitioned into multiple
sub-arrays for performance reasons, and only minor hardware
modifications are required to turn them off. Previous work
proposes to do so, through simple changes to the cache
controller and the addition of a register to let software turn
ways off [32].

Most recent processors (and proposals) incorporate ad-
vanced features which let the software control various aspects
of the processor similar to what we need, so our proposal
is practical. The Angstrom architecture [16], which has been
proposed for extreme-scale computing, allows the cache size
to be changed by turning off ways and banks of the caches
in software. The RAPL (Running Average Power Limit) [33]
interface of recent Intel processor lets the software limit the
power consumption of the chip among other features. The
architectural support we need for our approach seems to be
much simpler than RAPL.

D. Streaming

Some related proposals focus on streaming strategies as a
cache efficiency technique for scientific applications [34]. In
short, streaming relies on the spatial locality of HPC applica-
tions to load more data to reduce memory access latency. This
can improve both performance and energy efficiency. In this
work, we propose a unique software-controlled reconfigurable
streaming scheme.

Streaming schemes strive to recognize the memory ac-
cesses with simple patterns (streams) and prefetch them using
prefetch buffers. When a memory access misses in the cache,
a stream is allocated and the cache blocks are prefetched
starting from the missed target. Thus, subsequent memory
accesses of the stream will have the data available in the
cache. This method is simple, but it is usually effective for
HPC applications because of the common patterns discussed
in Section II.

Since most HPC applications usually access multiple arrays
in each loop (e.g. pressure and temperature at each grid point),
using more than one stream is useful (i.e., multi-way streams).
When a memory access misses in the cache (i.e. it is not
prefetched by the other streams), an old stream is flushed and a
new stream is allocated starting at the miss address. We assume
a Least Recently Used (LRU) policy to select the stream to be
deallocated.



The depth of the stream is an important parameter. Streams
should be deep enough to hide the memory latency for the
subsequent accesses, but not too deep. If a stream is too deep,
it competes with other useful accesses, potentially delaying
them. Also, it can evict useful blocks from the cache. Thus,
it can waste memory bandwidth and energy. We evaluate the
reconfiguration of the depth of streams in Section VI.

It is important to filter isolated references, as allocating
streams for them can waste memory bandwidth and energy.
This is done with a small history buffer that stores the
addresses of recent misses. A stream is allocated only when
a miss to a block occurs next to a previously missed block
(e.g. a and a + l). This also facilitates the detection of non-
unit strides that are prevalent in some HPC applications (e.g.
accesses to addresses of a, a + d, and a + 2d, for d > 1). A
stream can have unit strides or non-unit strides depending on
the application’s memory access pattern.

In this paper, we reconfigure the cache’s (used as the
streaming buffer) size and prefetch depth automatically to
improve performance and energy efficiency significantly. This
needs some hardware support (e.g., a small stream detection
table), but it is relatively low cost. For the streaming implemen-
tation in this work, we use a previous work [34] that identifies
a few streams of constant stride. However, we do not use a
separate stream buffer and prefetch to the LLC instead (more
details in Section VI).

IV. RECONFIGURATION IN ADAPTIVE RUNTIME SYSTEMS

In this section, we introduce our approach for automatic
way reconfiguration of the cache hierarchy. First, we present
our baseline approach, which is enough for many common
applications. Then, we formulate the general problem of ap-
plication pattern recognition to incorporate more applications.

A. Overview of Our Approach

The RTS can easily identify common iterative patterns.
This can be done by monitoring communication calls (e.g.,
MPI Recv, MPI Barrier etc.) to see if they are repeated regu-
larly with similar arguments. The time between the matching
calls is the iteration time and should be reasonably consistent.
Even complex HPC patterns can also be expressed using
Formal Language Theory, as discussed later. Alternatively,
some applications have calls to the RTS marking the end of
each iteration, which are used for other purposes such as load
balancing and fault tolerance. For example, calls that mark
the best place for checkpointing are usually made between
iterations.

Figure 2 presents the time between successive calls to
MPI Allreduce in MILC [4], which is a prominent code for
Quantum Chromodynamics (QCD), running on a BlueGene/Q
system. The Allreduce collective is called in the Multi-CG
solve phases of MILC, which designates the CG steps. As
can be seen, there is a clear regular pattern even for this
sophisticated application. After removing the outliers, the
average is 6.893 ms with a standard deviation of only 0.045
ms. In addition, the patterns for other phases of MILC are
also regular (but with nearest-neighbor communication instead
of collectives). Thus, even a sophisticated application such as
MILC has a repetitive and regular pattern that is recognizable
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Fig. 2. Time between calls to Allreduce in MILC

by the runtime system using the the time between communi-
cation calls.

Note that, just like other runtime adaptation mechanisms
such as load balancing, we ignore the initialization and some
iterations in the beginning of the execution. However, since
initialization is usually a small fraction of the execution time,
using the best configuration is not essential.

After identifying the iterative pattern and reconfiguration
units (i.e., Sequential Execution Blocks (SEBs)), the RTS
should ensure the iterations and their SEBs are the same across
different processors. For this purpose, the runtime gathers
some characteristic information about the execution of each
SEB on different nodes, including execution time, instruction-
based samples [35], and key performance counters. Then,
reconfiguration is applied if the attributes are within a threshold
on all nodes. This can be accomplished by collective calls
(e.g. Allreduce) that determine if the collected attributes are
statistically similar (e.g. the minimum and maximum of the
attributes are not too far from the average).

After finding the persistence pattern, the best cache sizes
need to be found for each reconfiguration unit (SEBs or whole
iteration). For example, the (2,1,2,4) configuration specifies
that 2 ways need to remain active for L1D cache, 1 way for L1I
cache, 2 ways for L2 cache and 4 ways for L3 cache. This is
accomplished by applying and benchmarking different config-
urations on different processor in parallel to find the best one.
We can map the configurations to sequential numbers and each
processor can use its number (e.g. derived from MPI ranks) to
know which configuration it needs to try. Different processors
measure the execution time and energy consumption for some
number of iterations and the minimum is reported by collective
calls (e.g. Allreduce). The best configuration is then used on
all the processors.

When the best configuration is applied, the RTS observes
the execution of future iterations until the attributes become
significantly different. Then, our method is invoked again to
adapt to the change. Note that if the variation of the application
is so high that our method could degrade performance, we
switch to the default configuration (full size caches and normal
policy), which is the “safest.” In our experiments, we found
that the runtime would not need to switch to the default
configuration very often, but this is possible in the general
case.

Our approach in the RTS can be summarized as follows:

1) Determine iterations (and relevant SEBs)



2) Ensure the SEBs are the same across processors
3) Run different configurations on different processors

and find the best in performance and power/energy
efficiency

4) Apply the best configuration to all processors
5) Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are
the same or similar on different processors. This follows from
the Single Program Multiple Data (SPMD) paradigm assumed
in most distributed memory parallel languages, such as MPI.

B. Generalization

Most scientific applications are structured: they can have
multiple phases in each overall iteration, but these phases
are also often iterative, forming a “hierarchical” iteration
structure. For example, Figure 3 depicts different phases of
MILC on four processors. This is a timeline diagram, where
different phases (e.g domain updates with nearest neighbor
communication, and CG solve) are color-coded differently.
Note that the executions of four processors are stacked, but
they appear very similar.

Using Formal Language Theory, the hierarchical iterative
structure of an HPC application can be expressed as a Regular
Language. We define each unique SEB as a symbol a of an
alphabet Σ. Each application execution might have a different
number of iterations and hence, is a word of the language.

Theorem. A hierarchical iterative pattern is a regular lan-
guage.

Proof by construction: Each execution is a number
of repeated iterations. Therefore, the pattern can be written
as a regular expression of this form: (a0, a1, ..., ad)

∗, where
each ai is a regular expression for each (possibly iterative)
component of each iteration. The regular expressions ai can
also be constructed in the same way, since each component is
iterative as well. Following this procedure, in a finite number
of steps, the whole regular expression can be constructed
recursively. Hence, the language is regular, since it has a
regular expression.

The general problem of finding the application’s pattern
(to use for phase change detection) is a pattern recognition
problem. Using our formulation, it can be modeled as a
classical Formal Language Theory problem: learning a regular
language from text [36], [37]. During the application profiling,
we collect a stream of symbols that are from a regular
language, and we need to infer the language.

In the profiling phase, we gather a string of symbols
(Sample S) of the language by monitoring the SEBs. We need
to infer the grammar to build a deterministic finite automaton
(DFA). Recall that a DFA is a tuple (Σ, Q, qλ, F, σ) where Σ
is a finite alphabet, Q is a finite set of states, qλ is an initial
state (qλ ∈ Q), F is a set of final states (F ⊆ Q), and σ is a
transition function (σ : Q × Σ → Q). For example, Figure 3
can be rewritten as a list of symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor
(PTA) [38], [37]. A PTA is a tree-like DFA that has all the
prefixes of the sample as states, and is strongly consistent with

Fig. 3. Timeline view of phases of MILC: time is on x axis and four
processors are stacked on y axis. Colors represent different computations.
This figure illustrates the regular iterative pattern of MILC.

qλstart qa qab qabc
a b c

Fig. 4. PTA for sample abc.

the sample, which means that it only accepts the sample2.
Algorithm 1 demonstrates how a PTA can be built from a
sample. In essence, the PTA has one state for each prefix of
the sample. For example, if the sample is abc, the PTA has a
state for a, ab, and abc. The transition function has only one
transition per state, which goes to the state representing the
next longer prefix. For example, the state for a only goes to
the state for ab. Figure 4 illustrates the PTA that is built by
this algorithm for sample abc.

Algorithm: Build-PTA
Input: Sample S
Output: DFA A=(Σ, Q, qλ, F, σ)
F ← ∅;
Q← {qu : u ∈ PREF (S)};
for qu·a ∈ Q do

σ(qu, a)← qu·a;
end
F ← F ∪ {qS};

Algorithm 1: Build PTA from sample.

Learning from text by a PTA can be challenging since the
number of states can grow large. However, in practice, the
number of SEBs that execute in the profiling stage is small.
Furthermore, the number of DFA states can be reduced easily.
For example, the application might have 1000 relaxation steps
followed by 1000 CG steps in each overall iteration. This
translates to 2001 DFA states since there these many prefixes
in the string of the iteration pattern in our formulation. To
reduce this number, we combine all of the CG steps together
to form only one symbol since the same SEB is repeated. This
fits our purpose since similar SEBs will have the same cache
configuration. In this way, our example will have only three
states in its DFA. Note that there are state merging techniques
that can be used to merge compatible states (please refer to the
references [36], [37]). However, for practical cases, the number
of states is already very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will
be used for the rest of the application execution by the RTS

2We have simplified the definitions and the algorithm for our purpose but in
general, there can be multiple positive and negative samples of the language
to learn from.



to predict the future of the application. In this formulation,
predicting the future of the application is similar to simple
pattern matching of regular expressions. For instance, when the
RTS is in state a and the next state is ab, the RTS predicts that
the SEB that b represents will be executed next, so it changes
the configuration to the best one for b before its execution.

Using our approach, the patterns of sophisticated HPC ap-
plications can be expressed by simple regular expressions. For
example, NAMD performs three force calculation steps (a),
before an FFT for long range force calculations (b). Therefore,
the regular expression (a3b)∗. MILC’s pattern illustrated in
Figure 3 seems more complicated, but it can be expressed
as the regular expression ((a0a1a2a3)5b0b1b2b3)∗ using our
method.

Some HPC applications consist of multiple potentially very
different regular modules, but they can be handled similarly.
Although the application might seem more complicated, the
resulting pattern is still a regular language due to the following
lemma:

Lemma. The concatenation of multiple regular languages is
a regular language.

Therefore, the RTS will construct a single DFA, encom-
passing the execution of all the modules, and our approach is
applied without any change.

In some applications, the processors are divided into logical
groups that perform different computations, and this appli-
cation heterogeneity needs to be taken into account to be
able to apply our scheme in these cases. For example, in a
climate simulation application, some processors might simulate
parts of the physical domain that is inside a storm. Therefore,
they might be performing different computations than the
processors that do not simulate a storm. Hence, the cache
hierarchy requirements might not be the same for all of the
processors. In general, programmers (mostly in the SPMD
programming model) can divide the processors into logical
groups to perform different computations. To incorporate these
cases, when the SEBs are not the same across different
processors, the RTS can run a parallel clustering algorithm that
identifies similar processors based on their SEBs. For example,
the processors simulating the storm might be running SEB a2,
while the others are running SEB a1. In addition, the runtime
can monitor the calls that are usually used by programmers
for this purpose (such as MPI Comm split) as a hint. Then,
the test of configurations phase of our approach is applied to
each group separately. Also, each group can have a different
DFA for pattern matching. Note that we do not require all
the processors to have the same behavior. We simply need the
pattern of each group to be regular.

In some applications, the phases can be slightly different
across different overall iterations. As a hypothetical example,
suppose the application has a CG phase in each overall itera-
tion, and the number of CG iterations required for convergence
can be between 995 and 1005. This is non-deterministic
from the RTS point of view and can be modeled using a
Probabilistic Finite Automaton (PFA) or similarly as a Hidden
Markov Model (HMM) (please see references [39], [40]).
However, this general formulation will increase the complexity
of the problem and is not needed in our setting. To handle

these cases, the runtime only needs to choose a “conservative”
cache configuration when the next DFA state is not known.
In our example, assume that the next phase needs a larger L3
than the CG phase. Therefore, the runtime chooses a cache
configuration with a larger L3 for the last few iterations of
CG (from iteration 995) because it does not know exactly
when the next phase starts. This technique avoids performance
degradation of the next phase.

The conservative cache configuration is constructed by
examining the possible future states and setting the size of
each cache level to the largest of the configurations. In our
experiments, we found that this has negligible impact since
only a small fraction of the execution time would need
conservative configurations. Note that in some rare scenarios,
the structure can slightly change (such as two SEBs running in
switched orders in CHARM++ [41], [42]), but these variations
can be handled conservatively as well. Moreover, the runtime
goes to a conservative cache configuration when there were too
many mistakes in the DFA’s predictions. This avoids overheads
for the uncommon applications that are not persistent. In depth
study of these cases is beyond the scope of this paper.

C. Practical Details

The overheads of our scheme are very small compared to
the overall application runtime and also can be measured and
controlled easily by the RTS. The overhead of checking the
configurations is negligible since it only impacts a few itera-
tions. For many common applications, reconfiguration is done
only once. For most others, the runtime reconfigurations are
rare due to persistence. Note that scientific applications usually
run for a long time and for many iterations. For example,
according to the available data (for several months) of the
BlueGene/P installation at Argonne National Lab (Intrepid),
the average runtime of a job was 5176 seconds (6817s for
jobs larger than 8k core jobs, which are less likely to be test
runs). Slowing down a few iterations (usually in the hundreds
of milliseconds range) is therefore negligible.

The dominant hardware overhead for reconfiguration is
invalidation traffic (“flushing”) in the caches, which is added
to the software overheads (system calls, calculations, table
lookups, etc.) caused by the RTS. Only the modified cache
lines of inactive ways need to be flushed before turning them
off, which typically takes less than a microsecond (a few thou-
sand CPU cycles). In addition, using an experimental module
in the CHARM++/AMPI system, we found the software over-
heads to be negligible. Therefore, the total overhead is usually
on the order of microseconds, while SEBs are usually hundreds
of microseconds. The programmer usually ensures that SEBs
are long enough to amortize communication overheads, so
SEBs are usually coarse enough for reconfiguration. Therefore
even frequent reconfiguration can be practical.

Some communication calls need to be “combined” (con-
sidered as one call with no SEB in between) if they are
too close together in time, since they are logically one com-
munication step and they do not represent different SEBs.

MPI_Irecv()

MPI_Isend()

MPI_Wait()

MPI_Wait()
!~1ms

...

For example, in a particular phase MILC
repeats the pattern illustrated here for each
neighboring processor before doing the
actual local computation:



These calls need to be considered as
one call, since all of them happen in a
short one millisecond interval, and there is negligible compu-
tation in between.

In general, the unit of reconfiguration should be selected
judiciously. At one extreme, it can be as coarse-grained as the
whole iteration (and hence reconfiguration is done only once).
On the other hand, it can be as fine-grained as each SEB (or
even finer than that if possible).

In practical settings, there might be minor timing variations
of the SEBs on some processors (e.g. due to correctable ECC
errors sometimes occurring). Therefore, the RTS needs to
average SEB attributes of multiple iterations to smooth out
these minor temporal effects. Moreover, the SEB timings and
attributes do not need to match exactly. They only need to be
within a threshold.

V. EVALUATION OF RUNTIME CACHE RECONFIGURATION

A. Methodology

In this paper, we use a diverse set of common scientific
applications for evaluation of our scheme. This is important as
previous work has demonstrated the importance of benchmark
selection for cache access analysis [8]. Instead of micro-
benchmarks, we use the Mantevo mini-app suite [2] and real
applications, including NAMD [3] and MILC3[4]4. We have
confirmed that all of these applications follow the patterns we
described in Section II. Furthermore, all the processors execute
the same or very similar SEBs (from the cache access point
of view).

We also add an FFT benchmark to complement the molec-
ular dynamics mini-apps, since their computation is usually
simplified and includes only the time consuming short range
force calculations. However, the long range force calculations
can become significant depending on various parameter values.
In NAMD, those forces are integrated every four timesteps
using an FFT kernel. We use the NPB-FT benchmark to
represent that FFT kernel.

For simplicity, we assume the MPI+OpenMP programming
paradigm, which means that OpenMP is used for paralleliza-
tion across each processor’s cores. However, runtime systems
of pure MPI programs and other paradigms can easily apply
our method at the processor chip level as well.

For all the experiments of this section, we use SESC [43],
which is a cycle accurate simulator. We simulate each unique
SEB with different configurations, and find the wall clock
time of each iteration for the whole application. The simulated
system’s parameters are chosen to be similar to real processors,
and are presented in Table I. We use CACTI [44] for modeling
the power and energy consumption of the caches. We assume
that the ways of the L1 and L2 caches are activated in parallel
for each access (for less latency), while only one way of the
L3 cache is activated for each access, since L3 is not in the
critical path of the processor. Thus, turning off the ways of the

3We use su3 rmd in the MILC collection, which is usually used for
benchmarking.

4These two applications are used by thousands of scientists on large-
scale supercomputers, and were among the three applications used for the
acceptance test of Blue Waters at Illinois.

L1 and L2 will save dynamic energy, while it will only save
leakage energy in the L3 cache.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application
domains for our selection of the input sizes. For example, in
stencil codes each element represents a point in the physical
domain and the iteration’s computation is linear in the input
size. Consequently, large sizes are more common and practical.
On the other hand, large input sizes are less common in molec-
ular dynamics since the force computation in each iteration is
not linear in the number of atoms and molecules. Table II
presents the input size per processor of each application in
our experiments. These sizes are small compared to weak
scaling runs that fill the node’s main memory, but they are used
for typical strong scaling runs. In addition, input sizes larger
than the LLC usually behave similarly because of common
streaming patterns discussed in Subsection II-B. We study the
effect of input size more extensively in different experiments.

TABLE II. APPLICATION DOMAIN SIZES

Mini-App Input Domain Size per Processor
CloverLeaf 960× 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128× 128× 32 grid
HPCCG 60× 60× 60 grid
miniFE 50× 50× 50 grid
miniGhost 100× 100× 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

B. Results

Table III presents the cache configurations that result in
the best energy efficiency, with only slight execution time
penalty (0.5% penalty threshold). As can be seen, in most
cases, half of the first level instruction cache and three quarters
of the first level data caches were turned off for the best
energy efficiency. The reason is that turning off ways of L1
caches can save a lot of energy, since they are the closest to
the processor and have many more accesses. However, naive
shutdown of ways of L1 caches can be detrimental, since they
are critical for performance and increasing their miss rates can
hurt performance significantly. In our simulation results (not
presented here), some configurations with small L1 caches and
not enough capacity in other caches resulted in more than one
order of magnitude slow-down. Thus, the other levels need
to have enough capacity to back up lower level caches, and
configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is
for miniMD. The reason is that the working set (data structures
of atoms) fits in the L1 cache. Because of the high computation
per data element in molecular dynamics programs (discussed
in Section II), the benefit of having them in L1 exceeds the
power saving of turning off its ways.
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Fig. 5. Time penalty and cache energy saving of reconfiguration with different time penalty thresholds

Filtering Configurations: We try all the configurations
exhaustively since there are only a few SEBs but many
processors in a supercomputer. For small scale (down to one
processor) runs, one could try only the configurations that
are more likely to achieve better performance and energy
efficiency. Table III shows that the set of high performing
configurations is not diverse and only a few configurations
can be the best for different applications. More investigation
at the small scale is left for future work.

TABLE III. BEST CONFIGURATION FOUND WITH LOWEST ENERGY BUT
WITHOUT PERFORMANCE PENALTY. FORMAT: (NUMBER OF CACHE WAYS

ON)/(TOTAL NUMBER OF WAYS).

Mini-App L1D L1I L2 L3
CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 5(a) to 5(c) present the execution time penalty and
energy savings of different mini-apps due to reconfiguration,
with different performance penalty thresholds. Note that some
mini-apps have more than one significant kernel (presented
separately, such as miniFE-cg), while others are simple enough
to take the whole iteration as reconfiguration units. From this
figure, it is evident that with negligible change in execution
time (less than 0.5% performance penalty threshold, 0.2%
average actual penalty), very significant cache energy savings
(up to 88%) are possible. On average, about 40% of cache
energy consumption can be saved by just turning off ways of
caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than
5% threshold, 2.4% average actual penalty) can result in more
cache energy savings (about 67% on average). These small
performance differences in the computation may not result
in any performance degradation for many HPC applications
because of inter-node communication. Moreover, minimizing
cache energy without considering performance degradation
results in more savings (about 78% average savings), but it
can result in a very high penalty in some cases (6.4 times
slowdown for miniGhost). This happens for miniGhost because

its data fits in the L3 cache, but this method is trying to turn L3
ways off to save leakage energy. This is clearly a suboptimal
decision from the energy standpoint as well, because other
energy consumption sources, such as extra memory transfers,
have not been considered. One should consider other energy
sources if available for measurement consequently or cap the
performance penalty.

Figures 6(a) to 6(c) illustrate the behavior and effective-
ness of our approach for different problem sizes. Figure 6(a)
illustrates that our approach initially increases the cache size
(mostly L3) to incorporate the working set, which is the most
energy efficient decision. However, a larger cache is not very
useful for very large working set sizes and decreasing the size
adaptively is the best strategy. Figure 6(b) is consistent with
the previous one, demonstrating that when the working set fits
in the cache, less energy savings are possible (since that energy
is consumed in a useful manner, following our discussion in
Section II).

Figure 6(a) also demonstrates that our algorithm sometimes
prefers to have more than one way of the L2 cache active,
which is consistent with the results of Table III but seems
counter-intuitive in some cases. Our insight is that, especially
when there are fewer L3 ways on, at least two L2 ways are
needed to reduce the conflict misses in both L2 and L3. These
complicated scenarios are difficult to handle by methods that
do not test different configurations and only rely on system
metrics.

VI. RECONFIGURABLE STREAMING

Based on the memory patterns of HPC applications, it is
beneficial to use a streaming strategy for two of the three
application classes we identified (Section II). Following the
discussion of Section III-D, we propose an RTS-controlled re-
configurable streaming strategy. However, in our proposal, the
cache organization is not changed and the system prefetches
to the L3 cache instead of a specialized streaming buffer.
When RTS switches to the streaming strategy, a streamer
starts prefetching to the L3 cache. The streamer is a small
structure which issues extra memory requests (similar to the
CPU requests). Therefore, switching only involves turning the
streamer on and off, which takes only a few cycles. The
implementation details of the streamer hardware is similar to
previous work [34]. Note that the streamer accesses are treated
in the same fashion as the processor accesses (same cache line
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Fig. 6. Reconfiguration with different input sizes

size, etc.). In this section, we use the SESC cycle-accurate
simulator to evaluate our streaming approach.

There are two important parameters of the streaming strat-
egy that need to be tuned based on the application and its input
size. First, the size (number of ways) of the L3 to be used
for streaming (as the streaming buffer) needs to be decided.
A small streaming buffer can potentially harm performance
because useful data might be evicted prematurely, increasing
the cache miss rate. On the other hand, a larger than necessary
streaming buffer will waste energy. Second, the best streaming
depth needs to be determined carefully. Prefetching should
bring enough data to the cache to hide memory latency, but
too much extra data can evict useful data and waste memory
bandwidth and energy. The RTS can tune these parameters
dynamically. In general, choosing the streamer configuration is
done in the same manner as choosing the cache configuration,
and most of our previous discussions are directly applicable
here as well.

The hardware implementation of software-controlled re-
configurable streaming is simple. The hardware for prefetching
usually includes an adder that generates the next address to be
prefetched from the previous address. The input of that adder
can be exposed to software as a system register. Our approach
does not add repetitive prefetch instructions (as in compiler
prefetching approaches), so it avoids significant overhead.

Continuing with our HPCCG example, Figure 6(c) presents
the results when the runtime only tunes the LLC cache size for
streaming. The prefetch depth is fixed at four cache lines. The
results demonstrate that streaming can improve performance
significantly for larger input sizes of HPCCG, while saving
more energy than basic reconfiguration of the L3 cache. For the
1003 grid size, performance is improved by 30%, while saving
75% of cache energy consumption (relative to the default
configuration).

Tuning the prefetch depth seems is more challenging, and
the RTS is the best agent for this task. Figure 7 presents the
runtime of HPCCG with different prefetch depths and cache
sizes. In addition, various statistics of the system for these
configurations are presented in Figure 8. As can be seen,
the performance is better with more cache ways enabled, but
the extra energy consumption might not be worth the slight
performance increase in some cases. For example, having all
16 ways on improves performance only slightly compared to
using 8 ways, but the energy cost is considerably higher as
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revealed in Figure 8(a). Using eight ways of the LLC with
prefetch depth of 32 seems to be a good performance-oriented
tradeoff, which improves performance by 32%, while saving
50% of the cache energy. If energy is the main factor, using
only one way with prefetch depth of two can save 71% of
cache energy, while improving performance by 28%.

Analyzing the performance behavior of streaming strategies
is complex in modern processors because of intricate cache
hierarchy interactions and out-of-order/speculative execution.
Figure 8(b) illustrates that in many cases, LLC miss rate
decreases with very deep prefetching, but Figure 7 indicates
that the performance becomes worse. More analysis reveals
the reason: deeper prefetching reduces the memory delay for
the mispredicted speculative paths, causing it to interfere more
with the correct execution path. Figure 8(c) presents evidence
for this conclusion: the number of instructions issued for the
exact same computation increases with deeper prefetching.
This means that the mispredicted speculative paths are making
more progress and issuing more instructions, while the useful
instructions committed are the same. Their excessive memory
accesses evict useful data from various cache levels, harming
application performance. This example demonstrates that tun-
ing these parameters based on simple system metrics such as
cache miss rate will not necessarily improve performance, and
higher level software control in the RTS is needed.

VII. RELATED WORK

The Exascale Computing Study report [45] presents energy
consumption as the main challenge for future systems, with
data transfer within the memory hierarchy being a large
component. Other previous studies have also characterized
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scientific applications [6], [7], [8], mostly establishing that
scientific applications can be incompatible with common mem-
ory hierarchies. Cicotti et al. [46] evaluate the potential of
cache reconfiguration for HPC applications (without proposing
a practical solution), and suggest that significant savings are
possible. Our results get close to their predictions. Thus, cache
hierarchy reconfiguration is promising.

Automatic cache hierarchy reconfiguration in hardware has
been explored extensively [9], [10], [11], [12], [13], [14].
A survey by Zang and Gordon-Ross [15] summarizes the
literature on cache adaptation. However, it is hard to predict
application’s phase changes and behavior in hardware and
the hardware’s “window” might be too small to capture the
whole iteration. Also, predicting the best configuration in
hardware is difficult, and incorrect hardware reconfiguration
might result in extreme application performance slow-down.
Moreover, automatic cache reconfiguration in hardware makes
the hardware even more complicated and might also increase
the energy consumption (due to additional structures, tables,
etc.).

Compiler directed cache reconfiguration has also been
explored [17], [18]. However, the compiler’s analysis is usu-
ally limited because of the lack of runtime information. For
example, array indices can be complicated in HPC application,
inhibiting the required analysis. Thus, the RTS is the best
agent to drive the cache reconfiguration. To the best of our
knowledge, our work is the first to introduce a RTS-based
adaptive cache reconfiguration in the of context HPC systems.

VIII. CONCLUSION

Caches consume a large fraction of a processor’s power,
but a fixed cache configuration does not fit every application.
We exploit the regular structure of HPC applications and the
partitioned structure of caches to reconfigure the caches (turn
on/off ways of the cache) in the RTS, and save a large fraction
of cache energy. The RTS is the best agent to direct the
reconfiguration, since it can recognize the application’s pattern
easily (as we showed using formal language theory), without
programming effort or hardware implementation overheads.
Using the SESC cycle-level simulator, we demonstrated that
67% of the cache energy is saved on average, while incurring
only a 2.4% penalty in sequential computation. Assuming that
70% of the total power of an HPC system is consumed by
its processors, and that 40% of each processor’s power goes

to its caches, 19% of the total power is saved using our
approach. This power can be used to turn on more compute
nodes and further improve performance for over-provisioned
systems. Moreover, we established that the change of cache
strategy to reconfigurable streaming can save up to 75% of
the cache energy and also improve performance by 30% in
some cases.
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