
1

Using Migratable Objects to Enhance Fault
Tolerance Schemes in Supercomputers

Esteban Meneses, Xiang Ni, Gengbin Zheng, Celso L. Mendes, and Laxmikant V. Kalé, Fellow, IEEE

Abstract—Supercomputers have seen an exponential increase in their size in the last two decades. Such a high growth rate is expected
to take us to exascale in the timeframe 2018-2022. But, to bring a productive exascale environment about, it is necessary to focus on
several key challenges. One of those challenges is fault tolerance. Machines at extreme scale will experience frequent failures and
will require the system to avoid or overcome those failures. Various techniques have recently been developed to tolerate failures. The
impact of these techniques and their scalability can be substantially enhanced by a parallel programming model called migratable
objects. In this paper, we demonstrate how the migratable-objects model facilitates and improves several fault tolerance approaches.
Our experimental results on thousands of cores suggest fault tolerance schemes based on migratable objects have low performance
overhead and high scalability. Additionally, we present a performance model that predicts a significant benefit of using migratable
objects to provide fault tolerance at extreme scale.

Index Terms—migratable objects, fault tolerance, resilience, checkpoint/restart, message logging.

F

1 INTRODUCTION

Nature provides us with a vast set of examples of resilient
systems. From short-term reconstruction of epidermal cells
after a scratch to long-term adaptation of species to new
environments, there is a built-in capacity in the biosphere to
overcome failure. Unlike biological systems, the majority of
applications in high performance computing (HPC) do not
have an inherent ability to recover from failures. Most of the
time, parallel programs are written optimistically, assuming
that there will be no failures during execution.

Although failures were rare on the supercomputers of the
past, which contained fewer components, that is not the case
for some of the current machines and it will most likely not
be true for future supercomputers. Figure 1 shows in two
parts why fault tolerance is becoming a main concern as we
approach exascale. The first part, plot 1(a), shows a historical
view of the largest systems in the Top 500 list [1] according to
the number of sockets. The growth of these systems has been
exponential, from machines with a few thousand sockets in
1994 to a machine with more than a hundred thousand sockets
in 2007. Although the number of cores per socket continues
to increase, an exascale machine (expected to be delivered by
2018-2022) will contain more than 200,000 sockets [2]. The
flip side of such an impressive rate of growth is an increased
probability of component failure. The second part, plot 1(b),
presents the expected mean-time-between-failures (MTBF) for

• E. Meneses is with the Center for Simulation and Modeling at the
University of Pittsburgh, Pittsburgh, PA, 15260.
E-mail: emeneses@pitt.edu

• X. Ni and L.V. Kalé are with the Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801.
E-mail: {xiangni2,kale}@illinois.edu

• G. Zheng and C.L. Mendes are with the National Center for Supercom-
puting Applications, Urbana, IL, 61801.
E-mail: {gzheng,cmendes}@illinois.edu

a machine with that many sockets and the reliability per socket
ranging from 5 to 80 years. When the number of sockets
reaches the expected size of an exascale machine, the MTBF of
the machine drops to a value that can be measured in minutes.
That estimation is not pessimistic. Most predictions for failures
at exascale foresee MTBF values of several minutes [2], [3]. In
addition, several trends in architecture design (smaller feature
size, near-threshold voltage) may even increase the rate of
errors.

Aware of this situation, the HPC community has recently
focused on developing a diverse range of fault tolerance tech-
niques. There are protocols that avoid failures by relying on
failure predictors and taking actions before the failure actually
happens. Other protocols overcome failures by ensuring the
system can recover from crashes of certain components.

Several of the fault tolerance strategies in the HPC literature
can be enhanced by leveraging a model of parallel program-
ming called migratable objects. In this model, an application
is divided into small data and computation units. A smart
runtime system is then responsible for assigning these units to
nodes for execution. Additionally, the runtime system is able
to migrate the units around to speed up the computation. The
ability of over-decomposing a computation and migrating the
units is what makes this paradigm a lever for different fault tol-
erance strategies. In this paper, we describe how this model has
improved several fault tolerance strategies. We demonstrate the
potential of these ideas with an implementation of the different
protocols. We ran several parallel programs on real systems
with thousands of cores. With the help of an analytical model,
we project how these techniques will perform at extreme scale.

The contributions of this paper can be summarized as
follows:
• A comprehensive and detailed description of various fault

tolerance methods that have been enhanced using the
migratable-objects model (§3, §4, §5).

• A comparative evaluation of these methods on thousands

2

 100

 1000

 10000

 100000

 1e+06

 1994 1998 2002 2006 2010 2014 2018 2022

N
um

be
r

of
 S

oc
ke

ts

Year

Exascale

(a) Historical trend in the number of sockets per machine.

 0.25

 0.5

 1

 2

 5

 10

 20

 40

 80

10,000 20,000 100,000 200,000

M
T

B
F

 M
ac

hi
ne

 (
ho

ur
s)

Number of Sockets

13 minutes

26 minutes

53 minutes

105 minutes

210 minutes

MS=80 years
MS=40 years
MS=20 years
MS=10 years

MS=5 year

(b) MTBF of a machine for various MTBF values per socket (MS).

Fig. 1. Size and mean-time-between-failures (MTBF) of large scale machines.

of cores with an application set that includes programs
from multiple fields and written in two different program-
ming languages (§6).

• A performance model to predict the benefit of different
approaches to fault tolerance support enhanced with mi-
gratable objects at extreme scale (§7).

Our vision of an enhanced fault tolerance scheme is based
on our philosophy of what a resilient supercomputing system
should be. The driving force in the HPC community is to
build more powerful systems to solve a problem quickly or
to solve a larger problem. In any case, the notion of speedup
is fundamental. A bigger system accelerates the discovery of
interesting scientific facts. Our vision of an ideal resilient
runtime system is one that keeps the same execution speed
despite the failures in the system. That means, a good fault
tolerance mechanism keeps the progress rate of an application
as high as possible.

2 MIGRATABLE OBJECTS

Our model for parallel programming assumes a machine is
composed of a collection of processing entities (PEs) con-
nected through a network that does not guarantee in-order
delivery of messages. The set of PEs is dynamic, i.e., it may
grow or shrink depending on what nodes become available or
are declared inaccessible. A failure, for instance, may render
a PE inaccessible. The memory in each PE is private and
the only way to share information is via message passing.
In modern supercomputers, a multicore node would be the
equivalent of a PE.

In the migratable-objects model, the programmer is ex-
pected to decompose a parallel program into a large number of
objects. Each of these objects holds a portion of the data and
performs part of the computation. These objects do not share
memory, but may interact with other objects via messages.
This mechanism provides a message-driven execution of the
application. Each object is a reactive agent, responding to the
messages it receives by potentially sending more messages.
The number of objects in an application is independent of the
number of PEs in the machine. This way, the programmer
does not need to be aware of what size the system is. Instead,
his responsibility is to over-decompose the application into
many objects and coordinate the work among them. The

average number of objects per PE is referred as virtualization
ratio. A balance must be struck in defining the virtualization
ratio. A higher value increases concurrency, but also the
communication and synchronization overhead.

A runtime system is in charge of assigning the objects onto
the set of PEs. This assignment may optimize for the pecu-
liarities of the application, such as making highly connected
objects reside on the same PE. Moreover, the mapping of
objects to PEs is dynamic (i.e. it can be changed) during the
execution of an application. The runtime system may shuffle
objects around if it sees a potential performance benefit. For
example, a load imbalance in the execution may result in
objects being migrated to even the load across the set of PEs.
The ability to move objects from one place to another requires
each object to be migratable. This means that each object
knows how to serialize its state to be shipped somewhere else
in the system.

Figure 2 shows graphically the two properties previously
explained: over-decomposition and migratability. In this case,
a system contains 4 PEs (labeled from A to D) and 8
objects (named from α to θ). On Figure 2(a), we represent
over-decomposition by showing each PE containing multiple
objects. The distribution of objects into PEs does not need
to be uniform, necessarily. Figure 2(b) presents the ability of
the runtime system to migrate object γ from PE B to PE D.
These two properties permit several novel capabilities in fault
tolerance strategies. In the following sections, we will describe
the way in which each of these strategies is improved.

CHARM++ [4] is an implementation of this model. In
CHARM++, the programmer decomposes an application into a
set of C++ objects, called chares. Each chare exposes a list of
methods other chares can call. The set of chares share infor-
mation via asynchronous method invocation. CHARM++ also
provides an adaptive runtime system that handles object place-
ment, load balancing, fault tolerance and many other tasks as-
sociated with the execution of an application. An extension to
CHARM++, called AMPI [5], provides the set of abstractions
in the migratable-objects model for MPI programs. In AMPI,
an MPI application is run as a CHARM++ application, where
each MPI rank is seen as a CHARM++ chare. AMPI allows
MPI applications have over-decomposition and migration.

The migratable-objects model can be extended to include
the fault tolerance dimension. We assume the underlying

3

PE A PE B PE C
! "

PE D
$ %& ' (

(a) Over-decomposition: the program is composed by many objects spread
throughout the set of PEs.

PE A PE B PE C
! "

PE D
$ %& ' (&

(b) Migratability: objects can be moved from one PE to another by the
runtime system.

Fig. 2. Two fundamental properties of the migratable-
objects model.

machine is not reliable and experiences failures with a certain
frequency. Each failure knocks out one PE in what is known
as the fail-stop model. A failed PE stops working and becomes
nonfunctional for the rest of the execution. This means, a failed
PE does not send messages out and all in-transit messages
are lost. All the objects residing in the failed PE are lost.
Mechanisms for recovering those objects are explained in the
following sections. Spare PEs may replace the failed PEs. If
the system has spare PEs available, then the replacement PE
takes over the work of the failed PE. If no spare PEs are
available, then the set of PEs shrinks by one PE. The runtime
system adapts to this scenario and continues the execution with
one less PE.

3 PROACTIVE FAULT TOLERANCE

The first fault tolerance mechanism we will discuss is a proac-
tive approach that avoids failures by migrating the objects from
PEs that are predicted to fail soon. This mechanism assumes
that there is an agent in the system that predicts failures.
Although failure prediction is a hard problem in HPC, there are
many situations where measurements from different sensors
can point to an impending failure [6], [7], [8]. If that is the
case, the runtime system can receive a signal and proactively
move away all the objects from the PE that is expected to fail.
Other types of failures may not be predictable, but there is
nothing that prevents combining a proactive approach with a
reactive method (such as those in Sections 4 and 5).

It is easy to see how the migratable-objects model makes a
proactive approach for fault tolerance more effective. All that
is needed for the evacuation of a PE is already available in
the model. The objects can be naturally migrated from their
current PE to other safer locations and the system should be
flexible enough to cope with the update of data structures for a
correct execution. Figure 3 shows two basic functionalities that
a proactive fault tolerance approach should have: migration of
tasks and reconstruction of data structures. In Figure 3(a), the
evacuation of PE C is illustrated. After the system receives
the alarm of an impending fault in PE C, object ζ is moved
to PE A and object η is moved to PE D. These migrations
are naturally implemented in the migratable-objects model.
Moreover, having multiple objects in one PE is not a problem,
given the over-decomposition property of the model.

PE A PE B PE C
! "

PE D
$%& '(# $

(a) Evacuation of a PE. All objects living on that PE are migrated upon the
reception of an impending-fault signal.

PE A

PE C

PE D

PE B

(b) Spanning tree reconstruction. As soon as a PE is removed from the sys-
tem, the spanning tree for collective communication operations is rearranged.

Fig. 3. Operations in proactive fault tolerance.

Figure 3(b) presents the modification of a spanning tree for
collective communication operations. Initially, PE A is the root
of the spanning tree with children PE B and PE C. PE D is
a child of PE C. Once PE C is evacuated, the runtime system
should reconstruct this spanning tree by making the necessary
adjustments. The re-arrangement of the spanning tree only af-
fects the parent PE A and children PE D of the warned PE C.
The warned PE will first send the tree modification message to
its parent and children. After receiving the message, parent and
children store the changes but do not make them to the current
tree until all outstanding collective communication operations
are finished.

The major challenge of proactive fault tolerance is to keep
the communication mechanisms effective when a migration
occurs. The evacuation of a PE happens asynchronously with
the execution of the program. The application does not stop
to wait until a PE is evacuated. The runtime system must
ensure that point-to-point communication works correctly dur-
ing migration of objects. Scalable approaches for a correct
message delivery in the face of asynchronous migration of
objects can be found elsewhere [9]. Herein, we will describe
what problems may arise and what data structures should be
updated.

As pointed out in Section 2, the mapping of migratable
objects to PEs changes dynamically. The system assigns each
object to a home PE, which always knows where the object is
currently on. This data structure is called the object-to-home
mapping. However, an object may not necessarily reside on the
home PE, but on a different host PE. For instance, imagine
an object η whose home PE is B, but whose host PE is C.
If a message from PE A targets η and PE A does not know
where η resides, it will send the message to B, the home PE
of η. PE B knows that η lives on PE C, so it will forward
the message to PE C. Additionally, PE B will send a control
message to PE A to update its routing table. The next time
PE A sends a message to η, it will send it directly to PE C.

As we mentioned earlier, a proactive fault tolerance ap-
proach can be combined with other fault tolerance strategies
and even with a load balancing framework. The migratable-
objects model has the capability to rearrange the objects
among the PEs to improve performance and speed up the
application. It is natural to assume that a load imbalance

4

will arise as a result of an evacuation. So, an equally natural
decision is to run a load balancer after the evacuation.

An implementation of the ideas described in this section
is available in the CHARM++ runtime system [10]. The
utility of this approach for MPI applications has been demon-
strated [11]. The implementation of AMPI allows the runtime
system to migrate AMPI threads even when messages are in
flight. This means a thread may have multiple outstanding MPI
requests when it is migrated. If a thread migrates from PE C to
PE D, the queue of requests is also packed on PE C and sent to
PE D. On PE D, the queue is unpacked and the AMPI thread
restarts waiting on the queued requests. However, almost all
the outstanding send and receive requests are associated with a
user-allocated buffer where the received data should be placed.
Packing and moving the buffers would cause the buffers have
different addresses on the destination PE. One way to solve
this problem is by using the isomalloc technique proposed in
PM2 system [12]. This technique reserves a unique range of
virtual address space for each thread. That way, there is no
threat of memory violations after migration.

4 CHECKPOINT/RESTART
In reactive fault tolerance, the objective of the protocols is to
overcome a failure by providing a recovery mechanism after
one component fails. We assume the system has a failure-
detection mechanism. Once the failure is detected, the runtime
system starts a recovery protocol that will bring the application
back on track with the execution. We will assume that recovery
is automatic. That means, the user does not need to be aware
that a failure has happened, the runtime system will take care
of the failure without the intervention of the user.

Checkpoint/restart is easily the most popular technique in
HPC to provide fault tolerance. It is simple and effective
enough in situations where failures are relatively rare. The
fundamental principle of checkpoint/restart is to periodically
save the state of the whole system. If a component crashes,
the system rolls back to the most recent checkpoint and
restarts execution from there. Although the workings of check-
point/restart are straightforward, it adopts many variants.

The checkpoint of a system can be coordinated if the
different components agree on when to store their state. The
Chandy-Lamport algorithm for global snapshots [13] creates
a collection of node checkpoints plus in-flight messages that
constitute a global checkpoint. An uncoordinated protocol, on
the other hand, allows nodes to checkpoint at their own discre-
tion. However, collecting all node checkpoints does not make
a consistent global checkpoint. If messages are not stored,
then this scheme may suffer cascading rollback, a pathological
situation where the rollback of one node may require the entire
system to rollback several checkpoints. Coordinated check-
point can be blocking or non-blocking, depending on whether
the application has to stop execution during checkpoint, or
the checkpoint process executes along with the application.
A comparison between the two approaches can be found
elsewhere [14]. A compromise between those two types of
checkpointing, called semi-blocking checkpoint [15] requires
the application to reach a synchronization point, after which
the checkpoint runs asynchronously with the application.

When it comes to generate a global checkpoint, the amount
of data stored can differ according to what is included in
the checkpoint [16]. In a system-level checkpoint, the whole
state of the machine (including the complete address space of
processes, CPU registers, file descriptors) is to be saved. This
mechanism makes the application oblivious of the checkpoint.
BLCR [17] is a library that implements this abstraction.
Conversely, application-level checkpoint makes the application
an active participant of the checkpoint process. The user
must write a checkpoint function and decide what to store
in a checkpoint. That way, the amount of data to checkpoint
may be dramatically reduced. Additionally, the knowledge
of the programmer is used to insert the checkpoint calls at
appropriate places. SCR [18] is a library that implements this
method. The migratable-objects model encourages runtime-
based checkpoint [19], where the runtime system provides an
interface for the programmer to write the checkpoint methods.
The runtime system may also participate more actively in
deciding when to trigger a checkpoint. The migratable-objects
model can work with transparent checkpoints. Checkpoint
transparency and migratability are two orthogonal dimensions.

A global checkpoint of the system, obtained with any of the
mechanisms above, used to be stored only in the file system.
This was a natural place to store the checkpoint, since the
file system would survive the crash of a node. However, the
file system bandwidth can not easily cope with the increasing
size of the supercomputers and the data size that needs to be
checkpointed. The file system quickly becomes a bottleneck
during checkpoint. Various alternatives have been explored
to solve this problem. One popular choice is to store the
checkpoint in local storage (either main memory, disk or solid-
state drive). One such protocol is called double in-memory
checkpoint/restart [19]. In this method, a PE stores copies
of its checkpoint in its own memory and in the memory of
a buddy PE. Figure 4(a) illustrates the memory footprint of
this approach. PEs A through D contain several objects each.
The system uses a cyclic buddy assignment, where PE B
is the buddy of A, C is the buddy of B, and so on. At
worst, this mechanism triples the memory requirements of
the application, but it is able to checkpoint rapidly, scale to
large systems and it is applicable for a wide range of HPC
applications [20]. Extensions of this basic protocol drastically
reduce the memory footprint [21].

Double in-memory checkpoint/restart tolerates a failure by
using spare PEs to substitute for the failed ones. For example,
in Figure 4(a), if PE C fails, a replacement PE will receive
the checkpoint from PE D and the system can continue
execution. However, the migratable object model empowers
this scheme in several ways. First of all, depicted in Figure 4(b)
is the scenario where spare PEs are not available. In such
circumstances, there is no replacement for the failed PE C. The
adaptive runtime system solves this situation by distributing
the objects of C into the rest of the system. For this particular
case, all the objects that were on C are moved to D. The
buddy assignment is updated and the checkpoint placement
corresponds to this new assignment. Other data structures
have to be adjusted as well, such as the spanning trees for
collectives. For a more detailed discussion on how to update

5

PE A PE B PE C

! "

PE D

! "

$ %

$ %

& ' (# $%

& ' (

& ' (

! "

(a) Double in-memory checkpoint/restart. The checkpoint of an object is
stored in two places: the local memory of its host PE and the remote memory
of the buddy PE.

PE A PE B PE C

! "

PE D

! "

$ %

%

& ' (# $%

& ' (

& ' (

! "

$

$

& ' (

$

(b) Recovery from failure in the migratable-objects model. After PE C fails,
PE D takes over C’s objects. PE A gets more remote checkpoints.

Fig. 4. Memory footprint and failure recovery in double in-memory checkpoint/restart. Circles represent objects in
application, rhombi are local checkpoints and squares are remote checkpoints.

those structures, we refer the reader to Section 3.
The second way in which migratable objects improves this

approach is by offering a load balancing framework in the
case of no spare PEs. Once a failure hits the system and
PEs are lost as a result, the system can even the burden if
a PE ends up with a much higher load than the average.
Finally, migratable objects provides the right environment for
serialization methods to be written in a simple way. The
runtime system naturally handles migration of the objects,
because that is an intrinsic characteristic of the model.

An implementation of double in-memory checkpoint and
other asynchronous checkpoint methods can be found in the
CHARM++ system [10]. These protocols also work for MPI
applications through the AMPI extension. Specific versions of
these protocols are also available for a version of the runtime
system specific to systems with multicore nodes [22].

5 MESSAGE LOGGING

Although checkpoint/restart is a very popular alternative in
HPC to provide fault tolerance, it embodies a fundamental
disadvantage. It requires a global rollback: all PEs have to roll
back to the latest checkpoint in case of a failure. That downside
becomes critical in an extreme-scale system; millions of PEs
would have to roll back if one of them fails, resulting in a
massive waste of time and energy.

Message logging is a technique that avoids global rollback
by saving the messages an application sends and only rolls
back the failed PE. It then requires only a local rollback
and saves energy by having the rest of the system idle or
making progress on their own [23]. It may save time too,
because messages have no delay or contention during recovery.
Additionally, it allows the checkpoint to be either coordinated
or uncoordinated. In case of a failure of PE A, all other PEs
that have stored messages to A will re-send those messages
upon PE A’s failure. To catch up with the rest of the system,
PE A will sort the re-sent messages and process them. To
provide a correct recovery, message logging requires storing
information about non-deterministic events. Message reception
is, in general, non-deterministic. Thus, every time a non-
deterministic event occurs, a determinant is generated. A
determinant will contain all information required to ensure
recovery reaches a consistent global state. This mechanism is
based on the piece-wise deterministic assumption (PWD) [24],

which states that logging determinants is enough to guaran-
tee a consistent recovery. For example, a determinant could
be formed by the tuple 〈sender, receiver, ssn, rsn〉. Both
sender and receiver represent objects. The send sequence
number (ssn) is a unique identifier for each message, assigned
by the sender. The receiver will generate a receive sequence
number (rsn) upon reception of the message. The rsn totally
orders the reception of the message and provides a strict
sequence in which messages have to be processed during re-
covery. There are several message-logging protocols [25] that
differ in the way they handle determinants. Causal message-
logging makes the determinants travel with the messages that
causally depend on them. More specifically, determinants are
piggybacked on application messages until they are safely
stored. A specific protocol in this family, called simple causal
message-logging [26] has demonstrated scalability and low
overhead. Strategies to decrease the memory overhead of the
message log can be found elsewhere [27].

Figure 5 illustrates how message logging works. Using the
same scenario as in Figure 2(a), we see a portion of the
execution of an application. Every message is stored at the
sender PE. Each message reception generates a determinant
and that determinant has to be stored on at least one PE,
aside from the one that generated it. For instance, message m1

generates determinant d1 at PE C. The next message leaving
C, m2, carries d1. Eventually, d1 gets stored in PE D and
the acknowledgement message is sent from D to C. Upon
the reception of the ACK message, PE C stops piggybacking
that determinant. After m3 is received, its determinant, d3,
has to be stored somewhere else. Consequently, message m4

piggybacks d3. Figure 5 presents the failure of PE C and
the loss of all objects on that PE. The checkpoint buddy
of C, PE D, provides the latest checkpoint of objects ζ
and η to the replacement of PE C, named PE C ′. We
assume a pool of spare PEs for this protocol. During restart,
PE C ′ receives the determinants stored in other PEs. These
determinants will guarantee that subsequent messages are
processed in the same order as before the crash. Once all
determinants have been collected and it has been verified
there are no missing determinants, PE C ′ resumes execution
by processing the messages re-sent from all other PEs. Once
PE C ′ starts processing the messages, the PWD assumption
ensures PE C ′ will send the same messages PE C sent before
the crash. This means, messages m2 and m4 will be sent

6

PE A

PE B

PE C PE C'

! " #

$ %

& ' & '

m1

m2!d1

m4!d3

ACK

m1

d1PE D (

m3

m5

Time

m3d3
! " #

$ %

& '

(
m2

m4

Application Message Resent Message Duplicate Message Protocol Message

&
m1

d1

'

Message-Logging Recovery Parallel Recovery

'

m3

m2

Fig. 5. How message logging and parallel recovery work.

again. The receiver of those messages will detect they are
duplicate messages and will avoid processing them. Detecting
duplicate messages is straightforward since the send sequence
number uniquely identifies each message. A duplicate message
is simply a message with an ssn that has been processed
before. There are different types of messages in Figure 5.
The first type are the regular application messages. Second,
the resent messages are those resent as part of the recovery
process by PEs that did not crash. The third type are the
duplicate messages that are messages sent during recovery
from the PE that crashed. Finally, protocol messages are the
additional messages required to provide a consistent fault
tolerant scheme. This category includes checkpoint messages,
determinant messages and acknowledgements.

5.1 Parallel Recovery
The migratable-objects model provides a fundamental advan-
tage for message logging. A key observation, concerning many
HPC applications, is that most codes are tightly coupled and if
one PE fails, the rest of the system will remain idle until the
failed PE catches up with the execution of the application.
Instead of waiting idle, surviving PEs can help accelerate
recovery by receiving objects from the failed PE and perform
what we call parallel recovery [28]. Objects living on a failed
PE are distributed among other PEs for a speedup in recovery.
Figure 5 also shows the parallel recovery in the same base
scenario. The difference appears when object η does not return
to PE C ′ but gets distributed to PE B. Therefore, objects
ζ and η are effectively recovered in parallel on PEs C and
B, respectively. The distribution of objects for recovery will
create some messages to change their source or destination.
Note message m3 was originally resent to object η and has
to be redirected to PE B. The same is true for determinants.
In this example, determinant d3 must be forwarded to PE B.
Message m4 now comes from PE B instead of PE C because
it is sent by object η.

The distribution of objects to achieve parallel recovery
creates a transient load imbalance. Imagine the distribution of
objects in Figure 5 provides an even load among the PEs. After
PE C crashes, object η is migrated to PE B to be recovered
in parallel with object ζ on PE C ′. Once the recovery is
finished, object η does not return immediately to PE C ′,
but waits until the next checkpoint. During this time period,
between the completion of recovery and the next checkpoint,
the system suffers a load imbalance. More precisely, PE C ′

will be underloaded, whereas PE B will be overloaded.

Parallel recovery empowers message logging by increasing
the progress rate during recovery. If failures are common, par-
allel recovery is able to recover faster and make progress even
in the case where the MTBF is smaller than the checkpoint
period. Parallel recovery is one of the signature features of
fault tolerant CHARM++. It has been implemented and tested
with several different message-logging protocols. A compari-
son of the implementation of those protocols in CHARM++,
and which represent a better opportunity for parallel recovery,
can be found elsewhere [26].

6 EXPERIMENTAL EVALUATION

6.1 Setup
We ran our experiments on Ranger, Lonestar, and Stam-
pede supercomputers at Texas Advanced Computing Center
(TACC). Ranger is a 579-teraFLOPS machine with a total of
62,976 compute cores. Each node contains a 16-way SMP
processor and 32 GB of memory. Lonestar is 300-teraFLOPS
computer with 22,656 cores. Each node has a 12-way SMP
processor and 24 GB of memory. Stampede is a 10-petaFLOPS
machine with more than 96,000 cores divided into 6,400
nodes. Each node contains 32GB of memory. All supercom-
puters feature a fat-tree network topology on an Infiniband
interconnect.

We chose a set of CHARM++ and AMPI programs to
evaluate the different fault tolerance techniques. The first
CHARM++ program is Wave2D, which runs a finite difference
method to compute pressure information on a two-dimensional
grid. Jacobi3D is a 7-point stencil that computes the transmis-
sion of heat on a three-dimensional space. The last CHARM++
code is LeanMD, a mini-application that emulates the commu-
nication pattern in NAMD [29]. It computes the interaction
forces between particles in a three-dimensional space and
this computation is based on the Lennard-Jones potential. We
included various MPI programs in our evaluation. We adapted
the NAS Parallel Benchmarks suite (NPB) to AMPI with
migratable MPI threads. The NPB is a collection of linear
algebra numerical methods [30]. We focused our experiments
on four benchmarks from NPB: block-tridiagonal (BT), conju-
gate gradient (CG), multi-grid (MG) and scalar pentadiagonal
(SP). Finally, we also ran Sweep3D, a mini-application that
solves a neutron transport problem. Sweep3D uses discrete
ordinates in a three-dimensional space. Table 1 summarizes
the most important characteristics of the applications we used
in the experiments.

7

Program Language Domain Problem Virt.
Size Ratio

Wave2D Charm++ Physics 327682 4
Jacobi3D Charm++ Physics 2× 20483 8

LeanMD Charm++ Molecular 256 K
28Dynamics particles

NPB MPI Linear class D,E 1,4Algebra
Sweep3D MPI Physics 2503 4

TABLE 1
Main features of the programs used in experiments.

All the fault tolerance strategies discussed in this paper
were implemented in the CHARM++ runtime system. For
proactive fault tolerance, the preventive evacuation mechanism
moves away the objects from a particular PE. Although we
did not use a failure predictor, we provide an interface to
plug a failure prediction module into the runtime system. To
evaluate our evacuation framework, we used a mechanism to
inject a warning into the system. This warning informs the
system about the impending crash of a particular PE. The
double in-memory checkpoint/restart mechanism serializes all
the objects in the system every time the checkpoint call is
made. These function calls have to be introduced into the code
by the programmer. Identifying those synchronization points
is fundamental to guarantee a consistent recovery. The same
applies to the implementation of message logging. To simulate
a crash, the failure injection mechanism allows the user to
specify any number of crashes and the wall time at which
each failure will occur. The runtime system will simulate
a crash by making a particular PE unresponsive. Then, the
failure detection mechanism (implemented through a pair-wise
heartbeat) will raise a flag and the restart process will begin.
This failure detection mechanism is scalable since it has a
constant overhead for each PE. For all the experiments on
reactive fault tolerance we assumed there were replacement
PEs in the system.

6.2 Proactive Fault Tolerance

One of the most important features of an effective proac-
tive fault tolerance approach is to provide a quick response
mechanism. We investigated how rapidly a PE is evacuated
by running Jacobi3D with 2,048 cores on Stampede. Table 2
presents the evacuation time when the data size per core ranges
from 16 to 512 MB. The total time to migrate away all the
objects on a PE can be measured in milliseconds and linearly
depends on the data size. There are two datasets in the table,
representing two important events in evacuation. The local
confirmation stands for the moment when the failing PE has
released all the objects. The remote confirmation represents
the time when the failing PE has received a confirmation
from all the destinations of the objects. A remote confirmation
is expected to increase the local confirmation by a roundtrip
through the network and the processing of the objects, which
can be seen as the constant difference between the two
datasets. The real evacuation time lays somewhere between
the two, and it is constant regardless of the system size.

Data Size (MB) 16 32 64 128 256 512

Local ACK (ms) 11 26 50 105 206 428
Remote ACK (ms) 530 542 582 647 761 1054

TABLE 2
Fast evacuation time with different data sizes.

The ideal complement to a fast evacuation mechanism is
a load balancing framework. Once a PE is evacuated, the
additional objects assigned to the receiving PEs may cause
load imbalance. To even out the load in the collection of
PEs, a load balancer looks for a redistribution of the objects
to decrease the load excess on any PE. Figure 6 shows the
interaction of evacuation and load balancing in NPB-BT multi-
zone with 256 cores on Ranger. This benchmark has an initial
load imbalance that is later solved by calling a load balancer
right before iteration 20. The effect of the load balancer is
dramatic. The average iteration time is drastically reduced,
providing a speedup of 2.65. Then, at iteration 70 the system
receives a warning of an impending failure and evacuates a PE.
That creates a load imbalance in the system, which increases
the iteration time by 22%. Finally, that loss in performance is
solved by applying the load balancer once again and bringing
down the iteration time to a level similar to the one before the
evacuation (little over 1% overhead).

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

Ite
ra

tio
n

T
im

e
(s

)

Iteration

Evacuation

Load Balancing

Fig. 6. Effect of evacuation and load balancing on perfor-
mance.

6.3 Checkpoint/Restart
To illustrate the full potential of the migratable-objects model
in reducing the checkpoint overhead to a small level, we
show the results of checkpoint and restart with two different
types of applications. For weak-scaling, we use Jacobi3D and
for strong-scaling LeanMD. LeanMD computes the forces
between particles in an iterative fashion. By placing the
checkpoint calls at synchronization points between iterations,
we manage to checkpoint only the fundamental data: the
position of particles. All other intermediate data structures
are not stored as part of the checkpoint. In doing that, the
size of a checkpoint drastically decreases. Similarly, Jacobi3D
only stores the necessary data structures in the checkpoint.
All other temporary data structures are not included. The top
part of Figure 7 presents the checkpoint time for the two
applications on Stampede. These results show the time to

8

checkpoint is fast (measured in milliseconds) and that the
checkpoint framework scales well. The bottom part of Figure 7
shows the restart time, that includes notifying all the system
about the crash, synchronizing the rollback of all PEs and
retrieving the checkpoint of the failed PE. The total restart
time is constant for the weak-scaling experiment. The strong-
scaling case shows that the restart time is initially dominated
by the checkpoint transmission, but later the synchronization
cost prevails.

 1

 4

 16

 64

 256

 1024

 128 256 512 1024 2048

R
es

ta
rt

Ti
m

e
(m

s)

Number of Cores

Weak Scaling (Jacobi3D)
Strong Scaling (LeanMD)

 1

 4

 16

 64

 256

 1024

C
he

ck
po

in
t T

im
e

(m
s)

Weak Scaling (Jacobi3D)
Strong Scaling (LeanMD)

Fig. 7. Fast checkpoint and restart time.

6.4 Message Logging
Message logging can be seen as an improvement of check-
point/restart that prevents it from rolling back all PEs after
a crash. If only the crashed PE is required to roll back and
restart, important energy savings can be obtained [23]. How-
ever, message logging needs some metadata to be managed.
In particular, determinants must be generated, piggybacked
and properly handled to guarantee a consistent recovery. That
imposes some overhead. Figure 8 shows the execution-time
overhead in different applications with 1,024 cores on Ranger.
The range of message-logging overhead varies from 0.8%
to 10.0%. There are many variables that determine how
high the overhead of message logging will be. Extremely
relevant are the communication characteristics and the compu-
tation/communication ratio of the application. An application
that sends many messages with high frequency will require
many determinants to be generated and processed. This is the
case of NPB-SP and Sweep3D. Conversely, if the application
features a high amount of computation, the communication
overhead can be hidden to a certain degree. This is the
situation with Wave2D, LeanMD and NPB-MG. Also, if the
application is communication bound, the additional burden of
determinants will impact the performance more drastically.
NPB-CG is a good example of this scenario. Jacobi3D and
NPB-BT have a relatively dense communication graph that
increases message-logging overhead.

We measured how message logging scales in both weak-
scaling and strong-scaling settings on Ranger. Jacobi3D was
used to run a weak-scaling test, whereas LeanMD served as the
test code for a strong-scaling experiment. Several runs were

 0

 2

 4

 6

 8

 10

 12

 14

Wav
e2

D

Ja
co

bi3
D

Le
an

MD

NPB-BT

NPB-C
G

NPB-M
G

NPB-SP

Swee
p3

D

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d
(%

)

0.9%

5.0%

2.5% 3.2%
4.8%

0.8%

10.0%

8.1%

Fig. 8. Execution-time overhead of message logging.

executed and average time is reported. Figure 9 shows the
results for the weak-scaling experiment. The overhead is ap-
proximately constant throughout the whole spectrum and it is
close to 5%. The strong-scaling experiment of Figure 9 shows
an interesting story. We ran two different molecular systems to
test the effect of a larger problem size. The 256K-particle case
provides evidence of how a communication-bound scenario af-
fects message logging. When the computation/communication
ratio is small, the overhead of message logging cannot be
hidden by the computation in the application. A different
situation occurs when a larger problem size is used. The 1M -
particle case shows how message logging scales better and has
an overhead around 3%.

 0

 2

 4

 6

 8

 10

 12

 14

128 256 512 1024 2048

E
xe

cu
tio

n
T

im
e

O
ve

rh
ea

d
(%

)

Number of Cores

LeanMD (256K particles)
LeanMD (1M particles)

Jacobi3D

Fig. 9. Strong and weak scaling of message logging.

Migratable objects enhance message logging by allowing
parallel recovery. If objects from the failed PE are distributed
across other PEs to be recovered in parallel, then recovery
time can be reduced to a fraction. Additionally, migratable
objects allow overlapping the latency of the determinant-
acknowledgment cycle with computation for other objects.
Figure 10 presents a progress diagram, which shows the
progress of an application (using an application-specific met-
ric) versus time. In an iterative application, the number of
completed iterations can be used as a progress value. A
progress diagram is a useful visualization device, because
it allows the viewer to focus on what really matters in a
fault-tolerance strategy for HPC: progress rate. Not only is

9

it important for a fault tolerance method to have low overhead
(a small increment in the slope of the curve in a progress
diagram), but also to provide a fast recovery. We ran Jacobi3D
with 256 cores on Ranger and compared the progress rate of
checkpoint/restart and message logging. Figure 10 shows the
two approaches and the recovery time (shaded region below
the curve) when a failure is introduced at second 50 of the
execution. The run executes a total of 200 iterations and check-
points at iterations 40 and 160. Even when message logging
incurs an overhead of 5%, it manages to recover the work
lost in a failure much faster than traditional checkpoint/restart.
Whereas checkpoint/restart takes more than 30 seconds to
recover, parallel recovery manages to bring down that time
to less than 5 seconds. In this particular test, 8 PEs helped in
the recovery of a failed PE.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Pr
og

re
ss

 (i
te

ra
tio

n)

Time (seconds)

Parallel Recovery

 0

 50

 100

 150

 200

Pr
og

re
ss

 (i
te

ra
tio

n) Checkpoint/Restart

Fig. 10. Progress rate diagram and recovery.

The more PEs are available to help in recovery, the faster
the failed PE can catch up with the rest of the system. Table 3
shows this effect. Using the same scenario as Figure 10,
we changed the number of PEs helping to recover, from 1
(no parallel recovery) to 8. It is important to mention the
superlinear effect in Table 3. Message logging alone can
recover faster than normal execution. The reason is that for
this particular test, during recovery only one PE is executing.
It receives the messages it needs to keep making progress all at
once. Recovery then becomes computation bound, even if the
application is otherwise not computation-intensive. Network
latency becomes roughly zero and there is no synchronization
delay of any kind.

P 1 2 4 8
σ 2.53 3.65 4.99 7.26

TABLE 3
Recovery speedup (σ) as parallelism level (P) increases.

7 PERFORMANCE MODEL

To predict the performance of the different fault tolerance
approaches presented in the previous sections, we developed a

model to estimate the total execution time for each approach
under different circumstances. Table 4 presents a list of the
parameters of the model along with a short description for
each. A parallel application requires W time units to finish
execution in a particular system that has a mean-time-between-
failures of M . Proactive fault tolerance requires 3 parameters
(κ, π and ρ). Reactive fault tolerance requires 3 parameters
for checkpoint (δ, τ and R) and 5 more for message logging
with parallel recovery (µ, P , σ, λ, and κ).

Parameter Description

W Time to solution in a fault-free scenario
M Mean-time-to-interrupt of the system
T Total execution time
δ Checkpoint time
τ Optimum checkpoint period
R Restart time
κ Evacuation/migration cost
π Precision of failure predictor
ρ Recall of failure predictor
µ Message-logging slowdown
P Available parallelism during recovery
σ Parallel recovery speedup
λ Parallel recovery slowdown

TABLE 4
Parameters of the performance model.

The main goal of the performance model is to predict the
total execution time for an application that runs on a faulty
system. The model requires all parameters in Table 4 as inputs,
with the exception of two: the checkpoint period and the total
execution time. The checkpoint period τ will be set by the
model. Part of the goals of this model is to find the value
of the checkpoint period that minimizes the total execution
time. The output of the model is T , the total execution time.
A fundamental insight provided by this model is to predict
the potential advantage of different methods under different
circumstances. Figure 11 presents the execution assumptions
in the model. The system periodically performs a global
coordinated checkpoint with duration δ. Then, it executes for
τ time units. This pattern is repeated until a failure disrupts it.
The figure shows PE C failing and being replaced by a spare
PE. The failure occurs t time units after the last checkpoint.
The system must recover those t time units of execution.
In checkpoint/restart all PEs must rollback to the previous
checkpoint. In the case of message logging, only the crashed
PE rolls back. If parallel recovery is used, only the crashed
PE rolls back, but other PEs help during recovery.

An important guideline in the model is that check-
point/restart is assumed as the basic fault tolerance infras-
tructure. This base will be augmented with the different
approaches we discuss in this paper. We first present the model
for a checkpoint/restart mechanism that also has a failure
predictor and can proactively migrate objects before the PE
they reside in crashes. After that, we present a model for
checkpoint/restart enhanced with parallel recovery. Finally, we
describe a comprehensive model that includes both proactive
evacuation and parallel recovery.

10

PE A

PE B

PE C PE C'

PE D
! " t R

Time

t "-t

Restart
Recovery

Checkpoint Transmission Program Execution

! "!

Fig. 11. Execution framework in the performance model.

7.1 Checkpoint/Restart

The frequency of checkpoints has an important impact on the
performance of checkpoint/restart. If the system checkpoints
too often, the overhead of dumping the state of the system
may be high enough to make it impractical. Conversely, if
the system checkpoints too seldom, chances are that a failure
will make the system re-execute a huge portion of the already
completed work. Clearly, a sweet spot must be found to
optimize the use of checkpoint/restart.

An early analytical model to determine the optimum check-
point period was developed by Young [31]. This model was
later extended by Daly [32] to provide a higher-order estimate.
The parameters of the model appear in the first section of
Table 4. Essentially, this basic model defines the components
of the total execution time T :

T = TSolve + TCheckpoint + TRestart + TRecover (1)

where TSolve stands for the computation time to solve the
problem, TCheckpoint is the overhead of dumping the state of
the system, TRestart is the time spent on setting up the system
to resume execution after a failure (which includes the time
to obtain the latest checkpoint), and TRecover represents the
time to recover the lost work. Using the input parameters, the
basic model transforms Equation 1 into the following:

T =W +
(
W
τ − 1

)
δ + T

MR+ T
M

(
τ+δ
2

)
(2)

It is possible to analytically compute an expression for the
optimum checkpoint period τ using Equation 2. However, a
simple expression for τ that is usually applied as a rule-of-
thumb is [32]: τ =

√
2δM − δ.

7.2 Checkpoint/Restart with Evacuation

We can extend the performance model above to include
proactive evacuation of PEs. This new model assumes an
imperfect failure predictor. A failure successfully predicted
will be proactively avoided by evacuation. However, there may
be failures that will not be predicted and then the system will
reactively rollback and resume execution. Also, there might
be false alarms if the predictor incorrectly raises a warning
flag about a failure that never occurs. Thus, the accuracy of
the failure predictor will impact the whole performance of
the fault tolerance framework. To capture the efficiency of
the failure predictor and better model the performance of a

proactive approach, we will introduce three new parameters.
Firstly, κ will stand for the evacuation cost. Regardless of the
final result on a failure prediction, this will always be the cost
of evacuating one PE. Secondly, we will define two traditional
terms in information retrieval, precision and recall, to measure
the accuracy of the predictor [7]. Precision and recall will be
denoted by π and ρ, respectively. The formulas for both of
them are presented below:

π =
TP

TP + FP
ρ =

TP
TP + FN

where symbols TP ,FP and FN represent true positives, false
positives and false negatives, respectively. These quantities are
commonly used in statistical hypothesis testing. The subscripts
P and N represent the prediction of the failure predictor,
whereas T and F stand for the correctness in the prediction.
For example, TP is the number of correctly predicted failures
(they were positively detected as failures and the prediction
was true) and FN is the number of missed failures.

To accommodate the new parameters for proactive fault
tolerance in the basic checkpoint/restart model, we extend
Equation 1 to include evacuation time:

T = TSolve+TCheckpoint+TEvacuate+TRestart+TRecover

(3)

To factor in the possibility of the failure predictor to be
wrong, we include parameters κ, π and ρ:

T =W+
(
W
τ − 1

)
δ+ T

M
ρ
πκ+

T
M (1−ρ)R+ T

M (1−ρ)
(
τ+δ
2

)
(4)

where the fraction ρ
π represents the ratio of number of warn-

ings with respect to the number of failures. If we multiply
this quantity times T

M (the expected number of failures in an
execution), we will end up with the total number of warnings
raised by the failure predictor (including false positives).

7.3 Checkpoint/Restart with Parallel Recovery

The checkpoint/restart model of Equation 2 can be extended to
use message logging and parallel recovery. Table 4 contains the
list of necessary parameters to incorporate parallel recovery.
First of all, µ stands for the performance overhead introduced
by the message-logging protocol (message copying, but espe-
cially determinant handling). To allow a recovery in parallel,
we introduce P , that stands for the maximum parallelism that
can be achieved during recovery. This number depends on the
virtualization ratio of the application. In general, we should
not expect P to be higher than virtualization ratio. Parameter
σ captures the actual speedup achieved by recovering in
parallel [28]. This speedup applies only to the first t time units
after the crash (see Figure 11). Once the crashed PE catches
up with the rest of the system, all PEs resume execution until
the next checkpoint is reached. The last τ − t time units of
the checkpoint period are executed with a load imbalance,
since some PEs have received additional objects. Parameter
λ accounts for that slowdown. The following checkpoint will
return the migrated objects to the original PE and solve the

11

 0

 0.2

 0.4

 0.6

 0.8

 1

2K 4K 8K 16K 32K 64K 128K 256K

E
ffi

ci
en

cy

Number of Sockets

Comprehensive
Evacuation

Parallel Recovery
Checkpoint/Restart

Checkpoint/Restart NFS

(a) Scaling of efficiency. The traditional checkpoint/restart scheme will not
reach exascale. Other alternatives, empowered by the migratable-objects
model, present a viable solution.

 4

 8

 16

 32

 64

 128

 256

 512

2K 4K 8K 16K 32K 64K 128K 256K

C
he

ck
po

in
t P

er
io

d
(m

in
ut

es
)

Number of Sockets

Comprehensive
Parallel Recovery

Evacuation
Checkpoint/Restart

(b) Scaling of optimum checkpoint period. Higher failure rate forces the
system to checkpoint more often. Parallel recovery and failure avoidance
increase the checkpoint period significantly.

Fig. 12. Efficiency and checkpoint period of fault tolerance schemes at different scales.

load imbalance (κ). The extended equation to include parallel
recovery considerations is the following:

T = Wµ+
(
Wµ
τ − 1

)
δ + T

M (R+ κ)+

T
M

(
τ
τ+δ

(
τ
2σ + τ

2 (λ− 1)
)
+ δ

τ+δ

(
τ
σ + δ

2

)) (5)

7.4 Comprehensive Approach
Finally, since both proactive evacuation and parallel recovery
are not mutually exclusive, we can merge the two in one single
approach. We call this strategy comprehensive fault tolerance.
Combining equations 4 and 5, we obtain:

T = Wµ+
(
Wµ
τ − 1

)
δ + T

M
ρ
πκ+ T

M (1− ρ)(R+ κ)+

T
M (1− ρ)

(
τ
τ+δ

(
τ
2σ + τ

2 (λ− 1)
)
+ δ

τ+δ

(
τ
σ + δ

2

)) (6)

7.5 Large-Scale Projections
The major goal of the performance model is to provide a
prediction for large-scale executions. We use the analytical
framework developed in this section to estimate the total
efficiency of a system. In this context, efficiency is defined
as the ratio of useful work over total execution time. In other
words, efficiency is W

T . To obtain good estimates for the pa-
rameters in the model, we examined the relevant literature [7],
[33], [34] and used a projection from the values obtained
in Section 6. Table 5 summarizes the baseline values we
used to obtain the projections in this section. The value for
M (MTBF of the system) depends linearly on the number
of sockets. We use a MTBF per socket (MS) equal to 10
years. Then, we assume the time between failures follows
an exponential distribution. Additionally, we assume failures
are independent. Thus, the total MTBF of the system is an
exponentially distributed random variable. The value for M
can be computed by dividing MS among the total number of
sockets in the system.

Equation 2 can be used to model several kinds of check-
point/restart protocols. For instance, a higher value of δ will
represent a shared file system checkpoint scheme, whereas
a smaller value of δ will stand for a double in-memory
checkpoint mechanism. We estimate δ = 2 minutes will be

Parameter W MS δ R π ρ
Value 24h 10 years 120s 30s 0.7 0.4

Parameter µ P σ λ κ
Value 1.05 8 8 P+1

P
δ
P

TABLE 5
Baseline values of parameters in the model.

a feasible value for double in-memory checkpoint. However,
if the checkpoints were to be stored in a network file system
(NFS), then that value would increase significantly. To model
checkpoint/restart on NFS we use a value of δ = 20 minutes.

Figure 12(a) presents the value of efficiency obtained at
different system sizes. We scale the system to 256K sockets
(the expected number of sockets at exascale is at least 200K).
The higher the socket count, the higher the failure rate. Then,
it is natural to see all curves dropping as the socket count
increases. The traditional NFS-based checkpoint/restart will
not reach exascale. With an efficiency of 0 at exascale, NFS-
based checkpoint restart will not make progress, as all the time
will be spent rolling back and redoing the work lost in failures.
Using in-memory checkpoint/restart will improve efficiency
and reach exascale with 58% efficiency. Having either proac-
tive evacuation or parallel recovery will fetch an additional 7%
increase in efficiency, for a combined improvement of 14%.

The benefit of dodging failures with proactive evacuation
comes from the fact that it is much faster to migrate objects
from a failing PE than to recover from that failure. In the case
of parallel recovery, failures are recovered faster. In either case,
checkpoint period is longer than in the checkpoint/restart case.
Figure 12(b) presents the checkpoint period (τ in the model)
for each technique. Even when the benefit in efficiency of both
proactive evacuation and parallel recovery is about the same,
the size of the checkpoint period is longer in parallel recovery.

The different parameters of the model have different impacts
on efficiency. A complete sensitivity analysis is out of the
scope of this paper [27], but it is insightful to understand
how the values of precision and recall affect efficiency. The
heatmap in Figure 13 shows that increasing both recall and
precision improve efficiency. The model predicts that recall
has a higher impact on efficiency (but it is harder to improve

12

in real life). From a starting point of (0.5, 0.5), an increase
of precision to (0.9, 0.5) only increases efficiency by 1%,
whereas the same increase in recall to (0.5, 0.9) gains 14% in
efficiency. If precision is really small (lower than 0.1), there is
a negligible benefit in increasing recall. Therefore, precision
must have an acceptable value (greater than 0.3).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Precision

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

E
ffi

ci
en

cy

0.82

0.690.68

Fig. 13. Effect of precision and recall on efficiency.

The level of available parallelism also has an impact on
efficiency. Table 6 shows how different values of P in the
model affect efficiency. Clearly, more parallelism is better, but
there are diminishing returns as P increases beyond 32.

P 2 4 8 16 32 64
Efficiency 0.55 0.65 0.73 0.78 0.81 0.83

TABLE 6
Effect of parallelism in recovery.

7.6 Model Validation
The performance model was validated against the fault toler-
ance strategies presented in this paper. The experiments used
256 cores on Lonestar and emulated a run (W = 3600 s,
δ = 10 s) with exponentially distributed random failures
(M = 120 s). Table 7 shows the close match between model
and experiment in the total execution time.

Estimate (s) Run (s) Error(%)

Proactive F.T. (§3) 3639 3647 0.2
Checkpoint/R. (§4) 5792 6005 3.68
M. Logging (§5) 4694 4843 3.18

TABLE 7
Model estimates and experimental results.

8 RELATED WORK

CoCheck [35] is a tool that explored the parallel between task
checkpointing and task migration in the MPI model. It pro-
vided disk checkpoint and dynamic migration of MPI ranks.
As opposed to evacuation in the migratable-objects model, task
migration in CoCheck was synchronous with the execution
of the system, i.e., before an MPI rank could be migrated,
CoCheck had to make sure all communicating ranks would

hold back messages until the rank was at its new location.
Similar tools have recently used process-level live migration
in MPI applications [36], [37], [38]. Those tools combine
health monitoring of nodes with live migration to provide
proactive fault tolerance. The migration of an MPI rank is
called live because it occurs concurrently with the execution
of the application. Therefore, the set of dirty pages of the
migrating rank have to be sent before the migration process is
complete. The system enforces a consistent state [13] in which
all in-flight messages are stored and all processes freeze until
the migrating rank completes the migration.

A comparative study about checkpoint versus migration [39]
introduced an analytical model to contrast the two. That study
predicted that migration is more beneficial in the short term
and will eventually tie with checkpoint as larger systems be-
come available. However, the model assumes a perfect failure
predictor. In this paper, we removed that restriction by having
different values of precision and recall in our performance
model of Section 7. A different model that incorporated both
proactive migration and checkpoint is FT-Pro [40]. It uses
a stochastic model to adaptively schedule checkpoints and
migrate processors when impending failures are detected.

Replication may be a viable alternative to tolerate failures at
exascale [41]. If every rank in an MPI application gets repli-
cated, the system recovers very fast. Should a node go down,
the replicas of the lost ranks may replace them and execution
continues with almost no cost in restart and recovery. Each
rank and its replica must be synchronized for this approach
to be correct. That continuous synchronization mechanism has
an impact on the performance of the application. Moreover,
replication will always have an efficiency cost higher than 50%
of the system. In the minimal replication case (duplication), at
least half of the resources are dedicated to run redundant ranks.
Replication could only be effective if failures are very frequent
and the synchronization cost can be kept low. Replication can
be used in the migratable-objects model. The smart runtime
system could even achieve partial replication and decide which
objects get replicated. The replication ratio could be adjusted
as the execution develops.

Hierarchical schemes in checkpoint/restart provide different
levels of checkpoints during the execution of the application.
The SCR library [18] implements three types of checkpoints.
Each level has different reliability features and different costs.
An associated stochastic model computes the optimum check-
point interval for each level. Similarly, the FTI library [42] pro-
vides a multilevel checkpoint scheme. FTI uses Reed-Solomon
encoding to tolerate failures that may include multiple nodes.
It also uses dedicated threads to perform the checkpoint and
different storage devices to store the checkpoints. Hierarchical
schemes are completely compatible with migratable objects.

Reducing the performance overhead of message logging
has been tackled by exploring deterministic communication
patterns in applications [43]. For instance, a send deterministic
application will always send the same sequence of messages
regardless of the order of reception of previous non-causally
related messages. This property has been used to develop faster
message-logging protocols. These protocols can be used in the
migratable-objects model with parallel recovery.

13

9 CONCLUSIONS AND RECOMMENDATIONS

The major contributions of the migratable-objects model to
enhancing fault tolerance techniques are:
• Having migratable objects makes a proactive approach

work smoothly during the execution of the application.
Evacuating a PE is no different than migrating all the
objects living on it. All the necessary features to provide
such ability are already contemplated in the model.

• Writing checkpoint methods for reactive protocols is eas-
ier with the migratable-objects model. Checkpointing an
object can be seen as a migration of the object to storage.
Moreover, the interface exported by the runtime system
and the expertise of the programmer can significantly
reduce the size of the checkpoint.

• Since the migratable-objects model does not directly
depend on the number of physical PEs used for com-
putation, the system can adapt to the loss of a PE and
continue execution on a shrunk system.

• To accelerate recovery with message logging, objects in
the failed PE can be migrated to other locations and
be recovered in parallel. This distribution of objects
organically attaches to the computational model.

In spite of its breadth, the collection of fault tolerance tech-
niques presented in this paper is not meant to be exhaustive.
There may still be many other fault tolerance techniques that
can be enhanced by the migratable-objects model. Fundamen-
tally, this model provides a flexible mechanism to dynamically
shift computations from one part of the system to another,
enabling the implementation of a large variety of methods to
handle faults during execution on a large system.

The future of HPC will bring larger and faster machines
at the cost of higher failure rates. We make the following
recommendations to provide resilience at extreme scale:
• Automatic restart is imperative. An important fraction of

the total turnaround time of a job is the wait time in
a queue of the scheduler. Having the system detecting
and restarting the job as nodes crash will save precious
time that is spent in that queue. We believe it is essential
to make a coordinated effort in the HPC community to
bring about an interface to run through failures without
relaunching (especially manually) the job after a crash.

• A smart implementation of the checkpoint functionality is
fundamental in bringing down the cost of checkpointing
and scaling rollback-recovery mechanisms further. Mi-
gratable objects are a good means to provide such func-
tionality. Our thinking is that fast checkpoint mechanisms
must be made available to HPC applications.

• We envision future systems using failure predictors that
raise few false alarms and capture most of the failures.
Fast migration mechanisms, such as migratable-objects,
empower accurate failure prediction.

• The ability to shorten recovery time is indispensable for
the success of rollback-recovery mechanisms. Parallel
recovery uses an over-decomposed application to get high
degrees of parallelism during recovery. We recommend
the exploration of over-decomposition to improve the
efficiency of a system in the future.

ACKNOWLEDGMENTS

This research was supported in part by the US Department of
Energy under grant DOE DE-SC0001845 and by a machine
allocation on XSEDE under award ASC050039N.

REFERENCES

[1] “Top 500 supercomputer sites,” http://top500.org, 2012.
[2] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,

M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study:
Technology challenges in achieving exascale systems,” 2008.

[3] F. Cappello, “Fault tolerance in petascale/ exascale systems: Current
knowledge, challenges and research opportunities,” IJHPCA, vol. 23,
no. 3, pp. 212–226, 2009.

[4] L. Kalé and S. Krishnan, “Charm++ : A portable concurrent object
oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programmi ng Systems, Languages and Applications,
September 1993.

[5] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), LNCS 2958, College Station, Texas,
October 2003, pp. 306–322.

[6] S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction in
coalitions of clusters,” in Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, ser. SC ’07. New York, NY, USA: ACM, 2007,
pp. 41:1–41:12.

[7] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction under
the microscope: A closer look into hpc systems,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 77:1–77:11.

[8] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A study of dynamic
meta-learning for failure prediction in large-scale systems,” J. Parallel
Distrib. Comput., vol. 70, no. 6, pp. 630–643, Jun. 2010.

[9] O. S. Lawlor and L. V. Kalé, “Supporting dynamic parallel object ar-
rays,” Concurrency and Computation: Practice and Experience, vol. 15,
pp. 371–393, 2003.

[10] Sayantan Chakravorty, Celso Mendes and L. V. Kale, “Proactive fault
tolerance in large systems,” in HPCRI Workshop in conjunction with
HPCA 2005, 2005.

[11] S. Chakravorty, C. L. Mendes, and L. V. Kalé, “Proactive fault tolerance
in mpi applications via task migration.” in HiPC, ser. Lecture Notes in
Computer Science, vol. 4297. Springer, 2006, pp. 485–496.

[12] G. Antoniu, L. Bouge, and R. Namyst, “An efficient and transparent
thread migration scheme in the PM2 runtime system,” in Proc. 3rd
Workshop on Runtime Systems for Parallel Programming (RTSPP) San
Juan, Puerto Rico. Lecture Notes in Computer Science 1586. Springer-
Verlag, April 1999, pp. 496–510.

[13] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining
global states of distributed systems,” ACM Transactions on Computer
Systems, Feb. 1985.

[14] D. Buntinas, C. Coti, T. Hérault, P. Lemarinier, L. Pilard, A. Rezmerita,
E. Rodriguez, and F. Cappello, “Blocking vs. non-blocking coordinated
checkpointing for large-scale fault tolerant mpi protocols,” Future Gen-
eration Comp. Syst., vol. 24, no. 1, pp. 73–84, 2008.

[15] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint overhead in
HPC applications with a semi-blocking algorithm,” in IEEE Cluster 12,
Beijing, China, September 2012.

[16] M. Schulz, “Checkpointing,” in Encyclopedia of Parallel Computing,
2011, pp. 264–273.

[17] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)
for linux clusters,” in SciDAC, 2006.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC, 2010, pp. 1–11.

[19] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI,” in
2004 IEEE Cluster, San Diego, CA, September 2004, pp. 93–103.

[20] G. Zheng, X. Ni, and L. V. Kale, “A Scalable Double In-memory
Checkpoint and Restart Scheme towards Exascale,” in Proceedings of
the 2nd Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS),
Boston, USA, June 2012.

14

[21] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 10, pp. 972–986, Oct. 1998.

[22] E. Meneses, X. Ni, and L. V. Kale, “A Message-Logging Protocol for
Multicore Systems,” in Proceedings of the 2nd Workshop on Fault-
Tolerance for HPC at Extreme Scale (FTXS), Boston, USA, June 2012.

[23] E. Meneses, O. Sarood, and L. V. Kale, “Assessing Energy Efficiency
of Fault Tolerance Protocols for HPC Systems,” in Proceedings of the
IEEE 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), New York, USA, October 2012.

[24] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”
ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 204–226, 1985.

[25] L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic,
and causal,” International Conference on Distributed Computing Sys-
tems, pp. 229–236, 1995.

[26] E. Meneses, G. Bronevetsky, and L. V. Kale, “Evaluation of simple
causal message logging for large-scale fault tolerant HPC systems,” in
16th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011)., May 2011.

[27] E. Meneses, “Scalable message-logging techniques for effective fault
tolerance in HPC applications,” Ph.D. dissertation, Dept. of Computer
Science, University of Illinois, 2013.

[28] S. Chakravorty and L. V. Kale, “A fault tolerance protocol with fast fault
recovery,” in Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium. IEEE Press, 2007.

[29] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolec-
ular simulation on thousands of processors,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, MD, September
2002, pp. 1–18.

[30] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The NAS parallel
benchmarks,” NASA Ames Research Center, Tech. Rep. RNR-04-077,
1994.

[31] J. W. Young, “A first order approximation to the optimal checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[32] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Comp. Syst., vol. 22, no. 3, pp.
303–312, 2006.

[33] B. Schroeder and G. Gibson, “A large scale study of failures in
high-performance-computing systems,” in International Symposium on
Dependable Systems and Networks (DSN), 2006.

[34] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A study of dynamic
meta-learning for failure prediction in large-scale systems,” J. Parallel
Distrib. Comput., vol. 70, no. 6, pp. 630–643, Jun. 2010.

[35] G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI,”
in Proceedings of the 10th International Parallel Processing Symposium
(IPPS ’96), Honolulu, Hawaii, 1996.

[36] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-
level live migration in HPC environments,” in SC, 2008, p. 43.

[37] X. Ouyang, S. Marcarelli, R. Rajachandrasekar, and D. K. Panda,
“Rdma-based job migration framework for mpi over infiniband,”
in Proceedings of the 2010 IEEE International Conference on
Cluster Computing, ser. CLUSTER ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 116–125. [Online]. Available:
http://dx.doi.org/10.1109/CLUSTER.2010.20

[38] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman, “Optimized
pre-copy live migration for memory intensive applications,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New
York, NY, USA: ACM, 2011, pp. 40:1–40:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063437

[39] F. Cappello, H. Casanova, and Y. Robert, “Preventive migration vs.
preventive checkpointing for extreme scale supercomputers,” Parallel
Processing Letters, vol. 21, no. 2, pp. 111–132, 2011.

[40] Z. Lan and Y. Li, “Adaptive fault management of parallel applications for
high-performance computing,” IEEE Trans. Computers, vol. 57, no. 12,
pp. 1647–1660, 2008.

[41] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for exascale systems,” in
Supercomputing. New York, NY, USA: ACM, 2011, pp. 44:1–44:12.

[42] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi, F. Cap-
pello, and S. Matsuoka, “FTI: High performance fault tolerance interface
for hybrid systems,” in Supercomputing, Nov. 2011, pp. 1 –12.

[43] F. Cappello, A. Guermouche, and M. Snir, “On communication deter-
minism in parallel HPC applications,” in ICCCN, 2010, pp. 1–8.

Esteban Meneses is a research assistant pro-
fessor at the University of Pittsburgh. His re-
search interests include fault tolerance and load
balancing for large-scale systems. He works
on energy-efficient low-overhead techniques for
fault tolerance based on the principle of local
recovery. He has developed message-logging
protocols that exploit application characteristics
to reduce the total memory footprint of the mes-
sage log. He holds a Ph.D. in Computer Sci-
ence from the University of Illinois at Urbana-

Champaign. He received a bachelor’s and master’s degree in Computer
Science from the Costa Rica Institute of Technology. Esteban is a
recipient of a Fulbright-LASPAU scholarship.

Xiang Ni is a doctoral candidate working with
Prof. Laxmikant V. Kalé in the Parallel Program-
ming Laboratory of the University of Illinois at
Urbana-Champaign. She has a broad interest in
parallel and distributed computing with a focus
on fault tolerance. She works on implementing
cost-effective proactive and reactive strategies,
using log analysis for accurate prediction of
faults and enabling advanced actions for dealing
with faults. She has a master’s degree in Com-
puter Science from the University of Illinois at

Urbana-Champaign. She received her bachelor’s degree in Computer
Science at Beihang University in Beijing, China.

Gengbin Zheng is currently a staff member
of the National Center for Supercomputing Ap-
plications at Illinois. His research interests in-
clude parallel runtime support with dynamic load
balancing for highly adaptive parallel applica-
tions, simulation-based performance prediction
for large parallel machines and fault tolerance.
He received his Ph.D. degree in the Computer
Science Department at the University of Illinois
at Urbana-Champaign in 2005. He received the
BS (1995) and MS (1998) degrees in Computer

Science from the Peking University, Beijing, China. A paper co-authored
by him on scaling the molecular dynamics program NAMD was one of
the winners of the Gordon Bell award in SC2002.

Celso L. Mendes is currently a senior staff
member of the National Center for Supercom-
puting Applications at Illinois, where he has
been participating in the Blue Waters deploy-
ment project. He was a senior technologist at the
National Institute for Space Research (INPE),
in Brazil. As a member of the Illinois’ Pablo
group, led by Dan Reed, he worked on perfor-
mance analysis tools and techniques for parallel
systems. He worked at the Parallel Computing
Laboratory, also at Illinois, on applications of

adaptive runtime systems for large parallel machines. He received a
Ph.D. in Computer Science from the University of Illinois at Urbana-
Champaign and received both an Engineer and a Master of Engineering
degrees from the Aeronautics Technology Institute (ITA), in Brazil.

Laxmikant V. Kalé is a Professor at the Uni-
versity of Illinois at Urbana-Champaign. He has
been working on various aspects of parallel com-
puting, with a focus on enhancing performance
and productivity via adaptive runtime systems,
and with the belief that only interdisciplinary
research involving multiple CSE and other appli-
cations can bring back well-honed abstractions
into computer science that will have a long-term
impact on the state-of-art. His collaborations
include the widely used Gordon-Bell award win-

ning biomolecular simulation program NAMD, and other collaborations
on computational cosmology, quantum chemistry, rocket simulation, and
other unstructured mesh applications. He received a Ph. D. in computer
science from the State University of New York, Stony Brook. He received
the B. Tech. degree in electronics engineering from Benares Hindu
University, Varanasi, India, and the M. E. degree in computer science
from the Indian Institute of Science in Bangalore, India. He is an IEEE
Fellow and a recipient of the Sidney Fernbach Award.

