A ‘Cool’ Way of Improving the Reliability of HPC Machines

Osman Sarood
Dept. of Computer Science
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
sarood1@illinois.edu

ABSTRACT

Soaring energy consumption, accompanied by declining reli-
ability, together loom as the biggest hurdles for the next gen-
eration of supercomputers. Recent reports have expressed
concern that reliability at exascale level could degrade to
the point where failures become a norm rather than an ex-
ception. HPC researchers are focusing on improving existing
fault tolerance protocols to address these concerns. Research
on improving hardware reliability, i.e., machine component
reliability, has also been making progress independently. In
this paper, we try to bridge this gap and explore the po-
tential of combining both software and hardware aspects
towards improving reliability of HPC machines. Fault rates
are known to double for every 10°C rise in core tempera-
ture. We leverage this notion to experimentally demonstrate
the potential of restraining core temperatures and load bal-
ancing to achieve two-fold benefits: improving reliability of
parallel machines and reducing total execution time required
by applications. Our experimental results show that we can
improve the reliability of a machine by a factor of 2.3 and
reduce the execution time by 12%. In addition, our scheme
can also reduce machine energy consumption by as much as
25%. For a 350K socket machine, regular checkpoint /restart
fails to make progress (less than 1% efficiency), whereas our
validated model predicts an efficiency of 20% by improving
the machine reliability by a factor of up to 2.29.

Keywords

Energy minimization, Temperature thresholds, Temperature
capping, Fault tolerance, Thermal control, Checkpointing
restart, Actionable modeling, Load balancing

1. INTRODUCTION

HPC research and its endeavor to build larger machines
faces two major challenges today: power consumption and
reliability. Estimates show that the combined energy con-
sumption for all the data centers in the world is equivalent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SC ’13 November 17-21, 2013, Denver, CO, USA

Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503228

Esteban Meneses
Dept. of Computer Science
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
emenese2@illinois.edu

Laxmikant V. Kale
Dept. of Computer Science
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
kale@illinois.edu

to 235 billion KWh that accounts for more than 1.3% of
the world’s overall electricity consumption [1]. Half of the
energy consumed by a data center can be attributed to cool-
ing [2, 3, 4]. Although the machine room temperature should
be between 18°C-27°C as recommended by ASHRAE [5],
most data centers operate at machine room temperatures
in the range of 13°C-18°C [6] due to fear of increased node
failures at higher temperatures. If processor operation at
acceptable temperatures could be ensured, data center op-
erators can run data centers at higher machine room temper-
atures. This is what motivates the temperature restraining
component of our work.

Modern day microprocessors contain on-chip temperature
sensors accessible through software with minimal overhead.
These processors also provide means to change the volt-
age and frequency at which the chip operates, known as
Dynamic Voltage and Frequency Scaling (DVFS). Running
processors at lower voltage and frequency results in a reduc-
tion in power consumption. It also makes the processor cool
down because of reduced thermal energy dissipation.

These qualities make DVF'S very appropriate for keeping
processors cool. A component of the runtime system can
periodically check processor temperatures and decrease the
frequency when the processor heats up beyond a user-defined
threshold. If the temperature falls below a lower threshold,
the runtime system can increase the processor frequency to
improve performance. This scheme ensures that processor
temperatures are restrained between a temperature range
and avoids overheating. However, in tightly coupled science
and engineering HPC applications, DVFS is not as straight-
forward because computations on one processor may be de-
pendent on data produced by other processors. Therefore, if
one processor slows down, it might cause the entire compu-
tation to slow down. Our earlier work [7, 8] experimentally
showed that a temperature aware load balancer can be used
in conjunction with DVFS-based temperature control to re-
duce cooling energy by as much as 57%. In addition to
reducing cooling energy consumption, lower processor tem-
peratures can also improve the reliability of a machine. Past
work shows that the failure rate of a compute node doubles
with every 10°C increase in temperature [9, 10, 11, 12].

In this work we show that by restraining processor tem-
peratures, we can empower the user to select the reliability
of the system from within a range. An increase in reliability
can improve the performance of an application especially by
using load balancing for overdecomposed systems [13]. We
also show how different applications can affect the Mean
Time Between Failures (MTBF) for a machine due to dif-

http://dx.doi.org/10.1145/2503210.2503228

ferent thermal profiles. We present and analyze the trade-
offs of improving reliability and its associated cost, i.e the
slowdown caused by DVFS-driven temperature control. In
particular, this paper makes the following contributions:
e We analyze how restraining temperature of individual
processors improves the reliability of the entire ma-
chine (§ 2.1).

e We formulate a model that relates total execution time
of an application to reliability and the associated slow-
down for temperature restraint (§ 2.2).

e We propose, implement and evaluate a novel approach
that extends our earlier work [7, 8] and combines tem-
perature restraint, load balancing and checkpoint/restart
to increase reliability while reducing total execution
time for an application (§ 3). We do several exper-
iments that span over an hour and have at least 40
faults. This work is, as far as we know, the first exten-
sive experimental study that provides insights on the
effects of temperature restraint on estimated MTBF
for HPC machines.

We first validate the accuracy of our model (§ 4) and
then use it to show the scheme’s expected benefits for
larger machines (§ 5). Our results show that for a
340K socket machine, we improve the machine effi-
ciency from 0.01 to 0.22 as a result of improving the
machine reliability by a factor of up to 2.29.

2. IMPLICATIONS OF TEMPERATURE
CONTROL

Processor temperature has a profound impact on the fault
rate of a processor. For every 10°C increase in processor
temperature the fault rate doubles [9, 10, 11, 12]. We refer
to this this relation as the 10-degree rule in the rest of the
paper. While restraining processor temperature improves
reliability, it also causes an execution time slowdown due
to DVFS. In this section, we use temperature control to
estimate the improvement in reliability and its impact on
the total execution time of an application.

2.1 Effects of temperature control on
reliability
MTBEF for a processor (m) is exponentially related to its
temperature and can be expressed as: [12, 14, 15]

m=Axe T (1)

where T is the processor temperature, A and b are constants.
Assuming an m of 10 years at 40°C, m per processor based
on the 10-degree rule can be expressed as:

m = 160 x ¢ 2057 (2)

In a system where the failure of a single component can
cause the entire application to fail, the MTBF of the system
can be defined as (M) [16]:

1
N
Zn:l an
where N is the number of nodes and m,, is the MTBF for
socket n. Although the absolute value of core temperatures

is important for each processor’s reliability (Equation 2),
reliability of the entire cluster also depends on the variance

M= (3)

‘ ‘
[_ICool Processors
Il Hot Processors

w » o
T T T
1
]
L L L

Number of processors

N
T
[
L

| H 1 |
%0 55 60 65 70 75 80 85
Processor temperature (°C)

Figure 1: Histogram of max temperature for each
node of the cluster using Wave2D

of core temperatures for all the processors present in the
cluster (Equation 3). Presence of hot spots can degrade
reliability of the system.

To analyze processor temperature behavior, we ran a 5-
point stencil application, Wave2D, on a 32 node (128 cores)
cluster for over 30 mins and recorded the maximum temper-
ature reached by each processor. The results are pictured
in Figure 1 where each bar shows the number of processors
reaching a specific maximum temperature during the 30-min
run. The red bars in Figure 1 indicate the presence of a hot
spot composed of three processors that heated up to 78°C-
80°C. The maximum temperature reached by the remaining
29 processors ranged from 55°C-63°C (shown in blue). The
average temperature for the cool processors was T. = 59°C,
with a standard deviation of o = 2.17°C. Feeding the tem-
perature data from Figure 1 to Equations 2 and 3 estimates
the MTBF to be 24 days for our cluster. As Equation 2 out-
lines, we can increase m for each processor by restraining its
temperature to a lower value and hence increase overall M
for the cluster. To estimate the improvement in M, we do
the following;:

1. Remove the hot spot by bringing the hot processors’
distribution back to that of cool processors

2. Shift the entire distribution towards the left so that
the processors operate at an average temperature of
50°C instead of 59°C

Suppose we remove the hot spot by restraining temperature
for the three hot processors to T. = 59°C, i.e., the average
temperature for cool processors. Using these new temper-
ature values for the three processors in the hot spot, along
with the actual temperature values we got for cool proces-
sors, we re-estimate M and notice an increase of 7 days (from
24 to 31 days). The estimated improvement in M after hot
spot removal is shown by the dashed line in Figure 2 which
joins the two points representing value of M with (red circle)
and without (blue diamond) hot spot. We can now predict
M given a temperature restraint for a processor in the hot

[o2]
o

(¢,
o
T

ol
(=]
T

IS
(1)
T

4% (52°C)
1.5% (54°C) i

0.5% (56°C) i

w
[$)]
T

[¢%)
o
T

]
!
1
L

MTBF of 32-node cluster (days)
N
o

N
[$))
T

!
]
1
1
L

50 55 60 65 70 75 80
Maximum allowed temperature (°C)

N
o

Figure 2: Effect of cooling down processors on
MTBF of the system

spot. For example, keeping the three processors in the hot
spot to 70°C would result in an estimated 27.5 days for M.

So far we’ve established that hot spot removal improves
M. Next, we study the effect of restraining temperatures for
all the processors to 50°C. For this, we generate 32 normally
distributed random temperature values with a mean of 50°C
and o = 2.17°C (same as cool processors) and re-estimate
M. The improvement in M for any temperature restraint
between 50°C to 59°C (black ‘+’ and blue diamond in Fig-
ure 2 respectively) can be estimated from the solid line in
Figure 2.

These improvements motivated us to use our temperature
aware load balancer [8] for restraining temperatures and for
studying the slowdown associated with using DVF'S for tem-
perature control. For the purpose of this study, we assume
that the reliability stays constant while the input voltage to
the processor is decreased. To test how well DVFS restrains
core temperature, we ran Wave2D using different tempera-
ture thresholds. The small green dots in Figure 2 represent
experiments carried out on our 32-node cluster. The per-
centage in the labels represents the slowdown in execution
time compared to the experiment where temperatures are
not restrained and all processors always work at maximum
frequency. The number in brackets shows the temperature
threshold used for that experiment. Decreasing temperature
threshold causes the points to move towards the left indicat-
ing a decrease in average temperature for all the processors.
Since the processors are operating at lower temperatures,
the estimated M keeps increasing according to Equations 2
and 3. However, this improved reliability comes at the cost
of DVFS induced slowdown which keeps increasing with re-
duction in temperature threshold.

2.2 Effects of temperature control on total
execution time
In this section, we focus on analyzing whether improve-
ment in M is significant enough to overcome the slow down
associated with temperature control. To this end, we com-
bine the checkpointing technique for fault tolerance from [17]

with temperature control, to formulate the resulting execu-
tion time. This formulation will allow us to investigate the
relative impact of different parameters of our framework and
enable us to project the results to exascale.

Checkpoint-restart mechanism saves the current state of
an application for later restart. Checkpoint time (9), is the
time to dump application state to local storage and check-
point period (7) is the frequency of checkpointing. In a
fault prone environment, if the system checkpoints too of-
ten, then time may be wasted unnecessarily in dumping the
checkpoints. In contrast, a low checkpoint frequency will
mean a high amount of work lost in a failure and large re-
covery time. Therefore, it is clear that a balance must be
found. There are well-known models [18, 19] to determine
the optimum checkpoint period for a particular combination
of system and application.

We leverage DVFS, to incorporate temperature control
and its corresponding slowdown, to extend a popular check-
point/ restart model [18]. Our model assumes that failure
arrival is exponentially distributed and failures are indepen-
dent of each other. We use a collection of parameters to
represent different factors that affect performance of a re-
silient framework. Table 1 lists all the parameters of our
performance model along with a short description of each.

Table 1: Parameters of the performance model

Parameter Description

Time to completion in a fault-free scenario
MTBF of the system

Total execution time

Checkpoint time

Optimum checkpoint period

Restart time

Temperature control slowdown

T eNES

With the above parameters, we obtain the total execution
time of an application as follows:

T = TSolve + TCheckpoint + TReco’ue'r' + TRestaT't (4)

where Tsoive is the time it takes to complete program exe-
cution in fault-free scenario, Tcheckpoint is the total check-
pointing time during the entire program execution, Trecover
is the time to recover lost work for all the faults occurring
during execution, and Trestqrt is the time necessary to de-
tect all the failures and have the entire system ready to
resume execution.

The detailed formulation for total execution time (7") of
a program under temperature restraint becomes:

T:Wu+<@—1)5+£<7+6)+11%)
T

M 2 M

here p is the ratio between an application’s total execution
time in a fault-free scenario with and without temperature
restraint. In other words, the parameter p represents the
cost of temperature restraint that includes load balancing
decision time as well as object migration. In Equation 5,
(@ -) represents the number of checkpoints, % is the
number of faults expected to occur during execution, and

(%*‘S) is the average recovery time per fault.

3. APPROACH

In this section, we propose a novel approach, based on
task migration and temperature control, to efficiently control
the estimated reliability of HPC machines (within a range).
While doing so, our approach simultaneously minimizes to-
tal execution time including the overheads of fault tolerance,
i.e., checkpointing, recovery and restart. Our scheme should
work well with any parallel programming framework allow-
ing task migration. We start by giving an overview of the
system model, followed by details of how to use DVFS and
task migration to efficiently restrain processor temperature.
We then discuss the checkpoint/restart mechanism and con-
clude by giving an overview of how to combine temperature
control, load balancing and checkpoint/restart.

3.1 System Model

We conceive the underlying machine as a set of processors
connected through a network that does not guarantee in-
order delivery. Each processor is able to run an arbitrary
number of tasks. The collection of all the tasks running
on the processors compose the parallel application. Each
task will hold a portion of the data and perform its part of
computation. The only mechanism to exchange information
in the task set is via message passing.

Tasks are migratable: each task can serialize its state and
be moved to a different processor. A smart runtime system
is responsible for monitoring the underlying machine and
balancing the load of different processors to achieve bet-
ter performance. The runtime system uses synchronization
points in the application to trigger load balancing and check-
point /restart frameworks. The runtime system also moni-
tors the temperature in each processor and can change the
frequency at which processors operate.

3.2 Temperature control and communication
aware load balancer

‘We now describe our temperature control mechanism along
with communication aware load balancing to mitigate the
cost of temperature restraint. The idea is to let each pro-
cessor work at the maximum possible frequency as long as
it is below a user-defined maximum temperature threshold.
Since machines of today do not allow DVFS on a per-core
basis, we use the average temperature for all the on-chip
cores to decide whether or not to change the frequency. A
key parameter for us is the lower temperature threshold after
which we can increase the frequency of the chip. If this lower
threshold is close to the maximum threshold, it can cause
frequency flapping and lead to expensive object migrations
done to achieve load balance.

The pseudocode for our temperature restrain strategy is
given in Algorithm 1 with a description of variables in Ta-
ble 2. We start with all the processors checking their tem-
perature against the user defined maximum threshold. If the
temperature (t{c) exceeds the max threshold, the frequency
for that chip (C;) is decreased by one level (P-state). In
contrast, if the temperature is less than Ty, operating fre-
quency for that chip is increased by one level.

Once the frequencies have been changed, the system might
become load imbalanced where some processors (with low-
ered frequency) are now overloaded. We leverage task mi-
gratability to correct the load imbalance and transfer ob-
jects from the slower-hot processors to the faster-cool pro-
cessors. This load balancing strategy is an extension of our

Table 2: Description for variables used in
Algorithm 1 and Algorithm 2

Variable Description
n number of tasks in the application
P number of processors
Taz maximum temperature allowed
Trin minimum temperature allowed
k current load balancing step
taskTime’ execution time of task ¢ during
step k (in ms)
procTime® time spent by processor i executing
tasks during step k (in ms)
i frequency of processor i during step & (in Hz)
mF processor number assigned to task ¢
during step k
taskTicks® number of clock ticks taken by it" task
during step k
procTicks® number of clock ticks taken by i*" processor

during step k
th average temperature of chip i at start of
step k (in °C)
heap of overloaded processors
set of underloaded processors

overHeap
underSet

previous work [8] which did not account for communication
costs in its load balancing decisions. Algorithm 2 shows the
pseudocode for our communication aware load balancer. We
start by estimating the total ticks required for each task
during the last load balancing period as a product of each
task’s execution time and the frequency at which its host
processor was operating (line 3). To fix load imbalance,
we calculate the amount of work assigned to each proces-
sor (procTicks) during the recent load balancing period in
terms of ticks (line 7). While calculating procTicks, we also
calculate the sum of frequencies (sumFregs at line 8) at
which all the processors should operate in the coming load
balance period. We use sumF'reqs to categorize a processor
as heavy or light for the upcoming load balance period in
the function createOver HeapAndUnderSet. This function
takes the procT'icks for all the processors and uses isH eavy
and ¢sLight methods (line 26-line 30) to determine if a pro-
cessor is overloaded or underloaded based on a tolerance
number. It uses the isHeavy method to create a max heap
for all the overloaded processors whereas the underloaded
processors are determined by using isLight method and are
kept in a set.

After identifying overloaded and underloaded processors,
we transfer tasks from the former to the latter until no over-
loaded processors are left in the max heap (line 11-line 24).
For migration cost minimization, we assume that the initial
task-to-processor mapping (m vector) is the best and strive
to restore it when trying to transfer tasks. To track the ini-
tial mapping, we introduce the notion of a foreign task. A
task is said to be foreign if it currently resides on a pro-
cessor other than the one to which it was initially mapped.
We then pop the most overloaded processor from the max
heap (line 12) and check if it has any foreign tasks (line 13).
If so, we randomly select one foregin task (line 14), other-
wise we randomly select one regular task (line 16). Once
the bestTask is determined, we look for the best possible

Algorithm 1 Temperature Control

Algorithm 2 Communication Aware Load Balancing

1: On every processor i at start of step k

2: if t¥ > T)a0 then

3: decreaseOneLevel(C;) {increase P-state}
4: else if tf < Toin then

5: increaseOneLevel(C;) {decrease P-state}
6: end if

processor to transfer it to. The function getBestProcList
(line 31-line 36) takes the bestTask, iterates over all under-
loaded processors and calculates the amount of communica-
tion that occurs between the bestTask and each of the un-
derloaded processors i. The function getCommForTask on
line 33 takes the bestT'ask along with an underloaded proces-
sor ¢ and returns the amount of communication that occurs
between them in Kilobytes. Using the candidate processors
from sortedProcsList (line 18), the method get Best Proc se-
lects the processor (best Proc) which communicates the most
with bestTask and would not be overloaded after receiv-
ing bestTask. To trigger the actual transfer, the mapping
(M sirass) is updated along with the procTicks variables
for both the donor and the bestProc (receiver) at line 20-
22. Now that the bestT'ask has been decided for migration
from donor to bestProc, we update the loads of overHeap
and underSet to reflect this migration (line 23) and continue
the loop from line 11.

3.3 Checkpoint/Restart

Rollback-recovery techniques are highly popular in large-
scale systems to provide fault tolerance. Among those tech-
niques, checkpoint/restart is the preferred mechanism in
HPC. The fundamental principle behind checkpoint /restart
is to periodically save the state of the system and rollback to
the latest checkpoint in case of a failure. Several libraries im-
plement one of the many variants of checkpoint/restart [17,
20, 21, 22].

Our fault tolerance scheme is called double local-storage
checkpoint /restart [17]. Local-storage refers to any stor-
age device local to the processor (main memory, solid-state
drive, local hard disk). Additionally, every processor will
store a checkpoint copy in two places. One checkpoint copy
will be saved in the local storage of the processor and an-
other copy in the local storage of a checkpoint buddy. In
case of a failure, all processors will rollback to the previous
checkpoint. The affected processor will receive the check-
point from its buddy. The rest of the processors will pull
the checkpoint from their own local storage.

Checkpointing is performed in coordination such that all
participating processors store their checkpoint at a synchro-
nization point determined by the programmer. Once the
checkpoint call is made, every processor collects the state
of all the tasks residing on it and proceeds to store its two
copies of the checkpoint. The runtime system provides a
simple interface for each task to dump its state.

We assume the underlying system runs a failure detection
mechanism with a processor being considered as the failure
unit. Indeed, our checkpoint/restart is resilient to single-
processor failures. Multiple-processor failures may be toler-
ated, but there is no total certainty in the general case. We
follow the fail-stop model for processor failures. This means,
after a processor crashes, it becomes unavailable and does
not come back again. Such processor is replaced by a spare

: On Master processor

: for i € [1,n] do
taskTicksf_l = taskTimef_l X fnzil
totalTicks += taskTicks" !

end for

for i € [1,p] do
procTicks™™ = procTimef™! x fF=1
freqSum += fF

end for

10: createOverHeapAndUnderSet()

11: while over Heap NOT NULL do

12: donor = deleteMaxHeap(over Heap)

13: if numForeignObjs(donor) > 0 then

14: bestTask = get ForeignTask(donor)
15: else

16: bestTask = getRandomT ask(donor)
17: end if

18: sortedProcsList = getBestProcsList(bestT ask)
19: bestProc = getBestProc(sorted ProcsList)

200 MPgrask = bestProc

21: procTickst 1 — = taskTicksy, tro .

22: procTicksf;%Pmc+ = taskTicks’g;iTask

23: updateHeapAndSet()

24: end while

26: procedure isHeavy (i)

27: return procTicks? ™ > (1 + tolerance) * totalTicks
+(fE/ freqSum)

28:

29: procedure isLight(i)

30: return p?"ocTick:sf*1 < totalTicks * ff/freqSum

31: procedure getBestProcList(bestTask)

32: for i € underSet do

33: bestProcs|i].comm = getCommForTask(i,bestTask)
34: bestProcsli].procld = i

35: end for

36: return bestProcs

processor taken from a pool of available processors.

3.4 Framework

In this section, we explain how we provide controllable
resilience for HPC systems by bringing together all three
modules of our approach, i.e., temperature control (T'C),
communication aware load balancing (LB) and checkpoint-
restart. Figure 3 shows our framework with a system of two
processors (X and Y') running a total of five tasks (from
A to E) that are executed in each iteration of a parallel
program. The initial distribution of tasks places tasks A
and B on processor X while tasks C, D, and E are mapped
to processor Y.

As Figure 3 shows, the program performs temperature
control and load balancing (TC & LB) several times during
a checkpointing period, i.e., between two adjacent check-
points. The program performs several iterations until the
TC & LB modules are called after iteration . The TC mod-
ule detects processor Y running at a temperature higher
than the max threshold and reduces its frequency. Follow-
ing this, the LB module takes control and removes the load

| . Task A |:| Task B . Task C |:| Task D

Failure Time

Processor X
Processor X'

Processor Y

Checkpoint
TC & LB

o
=
IS
o
=
O
9
i=
)

Iteration (i-1) Iteration i

Iteration (i+1)

Iteration (i+2) Iteration (i+2)

Figure 3: Dynamic power management and resilience framework. The runtime system routinely adjusts the
frequency of processors and solves the load imbalance that may appear. This temperature-capping process
decreases the failure rate. However, if a failure occurs, the checkpoint/restart mechanism provides fault

tolerance.

imbalance by migrating task D from Y to X as outlined in
Algorithm 2. The system checkpoints after iteration ¢ + 1
and continues with execution. A failure takes down pro-
cessor X during iteration ¢ 4+ 2, which gets replaced by a
spare processor that we call processor X’. The checkpoint
buddy of processor X provides checkpoint data for X to
the replacement processor X’ to resume execution until the
program finishes.

4. EXPERIMENTS

In this section, we provide a comprehensive experimental
evaluation of our techniques using three different applica-
tions. The first one is Jacobi2D: a canonical benchmark
that iteratively applies a five-point stencil over a 2D grid of
points. The second application, Wave2D, uses a finite dif-
ference scheme over a 2D discretized grid to calculate the
pressure resulting from an initial set of perturbations. The
third application, Lulesh, is a shock hydrodynamics applica-
tion which was defined and implemented by Lawrence Liv-
ermore National Laboratory (LLNL) [23].

The rest of this section describes our implementation,
testbed and experimental results. All experimental results
are based on real hardware, and there are no simulation re-
sults in this section.

4.1 Implementation using Charm++

CHARM++ is a parallel programming runtime system that
leverages processor virtualization. It provides a methodol-
ogy where the programmer divides the program into smaller
chunks (objects or tasks) which are distributed amongst the
p available processors by the runtime system [13]. Each of
these small chunks is a migratable C++ object that can re-
side on any processor. The runtime system keeps track of
task execution time and maintains this log in a database to
be used by a load balancer for quantifying the amount of
work in each task [24].

Based on this information, the load balancer in the run-
time system detects load imbalance following which it mi-
grates objects from an overloaded processor to an under-
loaded one [25]. The load balancing decision is based on the
heuristic of principle of persistence, according to which com-
putation and communication loads tend to persist over time
for a certain class of iterative applications. At small scales,
the cost of the entire load balancing process, from instru-
mentation through migration, is generally a small portion of
the total execution time, and less than the improvement it
provides in execution time. When this does not hold, a strat-
egy must be chosen or adapted to match the application’s
needs [26]. Our communication aware load balancer can be

easily adapted to existing hierarchical schemes, which have
been shown to scale to the largest machines available [27].
By limiting the cost of decision-making and scope of migra-
tion, we expect these schemes to offer similar benefits while
restraining processor temperatures.

4.2 Testbed and experimental settings

We evaluated our scheme on a cluster of 32 nodes (128
cores). Each node has a single socket with a four-core In-
tel Xeon X3430 processor chip. Each chip can be set to 10
different frequency levels (‘P-states’) between 1.2 GHz and
2.4 GHz. It also supports Intel’s TurboBoost [28], allow-
ing processors to overclock up to 2.8 GHz. The operating
system on the nodes is CentOS 5.7 with 1lm-sensors and
the coretemp modules installed to provide core temperature
readings. We use the cpufreq module to enable software-
controlled DVFS. The cluster nodes are connected by a 48-
port gigabit ethernet switch. We use a Liebert power dis-
tribution unit installed on the rack containing the cluster to
measure the machine power at 1 second intervals on a per-
node basis. We gather these readings for each experiment
and integrate them over the execution time to obtain the
total machine energy consumption.

In Section 2.1, we estimated the MTBF' for our cluster
(M) to be in the range of 24 - 55 days. To carry out ex-
periments representative of a much larger system, we scale
our cluster M proportionally. We chose an m of 1 hour
at 40°C per socket. For a system of 690K sockets, these
settings emulate an m of 10 years per socket. After demon-
strating the accuracy of our model by showing that it closely
matches experimental results, we make predictions for larger
machines. The three applications we considered exhibited
different temperature profiles. Therefore, to make our ex-
periments realistic, we used actual temperature values to
estimate M for each application for experiments without
temperature restraint. More precisely, we estimate M us-
ing the max temperature that each of the 32 nodes reaches.
Table 3 shows the cluster-wide average max temperatures
for each application in case of no temperature restraint. We
refer to this baseline case as NC' for the rest of the paper.
For experiments where we restrain temperatures, we use the
maximum temperature threshold to estimate M. The val-
ues of M corresponding to each temperature threshold are
shown in Table 4. After determining M for each tempera-
ture threshold, we generate sequences of exponential random
numbers for each experiment, by taking each M as the distri-
bution mean. We manually insert faults according to these
random number sequences for each experiment, by killing a
process on any one of the nodes using the kill -9 command

Table 3: Application parameters for NC case

Parameter Lulesh Jacobi2D Wave2D
0 (s) 9.57 7.65 8.01
Tovg(°C) 55.31 53.42 55.56
M (s) 40.31 44.40 39.02
7(8) 18.2 18.4 17.0
R (s) 2.2 1.52 1.60
Recovery (%) 33.31 29.05 31.19
Checkpointing(%) 21.40 20.11 20.89
Restart(%) 5.38 3.48 4.03

to wipe off all data. To recover from the artificially inserted
failures, we calculate the optimum checkpoint period (7) for
each experiment as follows [18]:

T=V20M -6 (6)

Given that 7 depends on M and the checkpoint time (),
we obtain a different optimum checkpoint period for each
application when running at a given temperature threshold.
The 6 for each application is listed in Table 3.

4.3 Experimental results

To establish and quantify the benefits of our scheme and to
validate the accuracy of our model (outlined in Section 2.2),
we carried out a number of experiments. We demonstrate
how we can improve reliability using temperature control
and compare the execution time for experiments with and
without temperature control. All experiments reported in
this section are compared to the baseline experiments (rep-
resented by NC') where all processors always operate at the
maz frequency without any temperature control. Since the
load balancing technique is not the main focus of this study,
we would not be giving a detailed comparison of the im-
proved load balancer proposed in Section 3 and the one pro-
posed in our earlier work [8]. However, our proposed new
strategy does improve execution time for all three appli-
cations. For Ty, =49°C, the communication-aware load-
balancer can reduce execution time by 14%, 18%, and 5%
for Wave2D, Lulesh and Jacobi2D, respectively, compared
to the load-balancer proposed in our earlier work [8]. Each
data point (experiment) reported in this section represents a
benchmark running for more than 1 hour and being subject
to at least 40 faults.

Table 3 lists the average temperature for each applica-
tion. Both Lulesh and Wave2D have an average max tem-
perature that is 2°C higher than that for Jacobi2D. Due to
this difference in temperature profile, we ran Jacobi2D for a
max temperature threshold range of 42°C-52°C as opposed
to 44°C-54°C used for Lulesh and Wave2D. This difference
in thermal profile is also responsible for making different
applications operate at different average frequencies. For
example, when running below a temperature threshold of
46°C, the average frequencies across the cluster for Lulesh,
Jacobi2D and Wave2D, were 2.30 Ghz, 2.31GHz and 2.27
GHz, respectively. Although our testbed has a maximum
Turbo Boost frequency of 2.8Ghz, using DVFS to restrain
temperatures resulted in lower average frequency for all the
applications. A detailed discussion about the interaction be-
tween temperature, frequency and performance can be found
in our earlier work [8].

Table 4: MTBF (sec) for different temperature
thresholds (42°C - 54°C)

Trmax 54 52 50 48 46 44 42
M 43.8 50.4 578 66.4 76.2 87.5 100.2

Figure 4 shows percentage reduction in execution time us-
ing both temperature restrain and load balancing compared
to the baseline experiments, i.e., NC. The two curves in
each plot compare experimental results with model predic-
tions, both of which closely match. The model predictions
for Figure 4 were gathered by feeding checkpoint time, slow-
down, restart time and useful work time to Equation 5 and
using golden section search and parabolic interpolation to
optimize 7 for minimum total execution time. It is not sur-
prising to see the inverted U shape of all three curves which
strongly suggests a tradeoff between reliability (M) and the
DVFS induced slowdown () due to temperature restraint.
Figure 4 also shows the ratio of M for the machine using
our scheme relative to the NC case. For example, by re-
straining temperatures to 42°C in case of Jacobi2D, M for
the machine increased 2.3 times compared to the case of
NC'. Hence, restraining the temperature to a lower value
may decrease the benefits of our scheme but it would always
improve estimated reliability of the machine.

4.3.1 Interplay between temperature, MTBF and
checkpointing overheads

MTBF for a machine (M) is dependent on each proces-
sor’s temperature. Higher processor temperatures for Lulesh
and Wave2D imply a lower M than Jacobi2D (Table 3).
This forces Wave2D and Lulesh to spend a higher percent-
age of time in recovery as they encounter more failures com-
pared to Jacobi2D (Table 3). Although M for Wave2D and
Lulesh are very close in case of NC, they spend different per-
centage of time in recovery, i.e., 31.19% and 33.31% respec-
tively. This observation can be explained by looking at the 7
values for both of them (Table 3). According to Equation 6,
a larger checkpoint time (§ in Table 3) for Lulesh results in a
larger 7 which increases the average recovery time for Lulesh
(T;r‘s in Equation 5). On the other hand, Lulesh’s higher 7
causes it to spend almost an equal % of time in checkpointing
as Jacobi2D and Wave2D | i.e., 21.40% (Table 3), despite
Lulesh’s large §. Although the time per checkpoint (4) for
Lulesh is the highest, the product of number of checkpoints
and § comes out to be equal to other applications due to
fewer checkpoints (@ - 1) for Lulesh. Lulesh also spends
5.38% of total time in restarts which can be attributed to
the higher restart cost of 2.2 secs (Table 3).

4.3.2 Comparing the benefits amongst applications

Although all three applications have a inverted U shaped
curve, their maxima occur at different temperature thresh-
olds. We define this optimum point for each application
by the tuple (Timaw,Tmaz), Where Tpqz is the temperature
threshold corresponding to the point representing maximum
reduction in execution time for an application. Figure 4
shows that the optimum points for Jacobi2D, Wave2D, and
Lulesh are (46°C,14.2%), (48°C,13.5%), and (50°C,11%) re-
spectively. We notice that the applications differ in both
members of the tuple. An application’s optimum point de-

o

- - ~Model
— Experiment

1.62X 1.42X

=

o

186X e

1)

Reduction in execution time (%)
®

Reduction in execution time (%)
®

SO\ 123X

214X S
B 1.07X-

o

1.68X - - -~Model
— Experiment

2.00X 1.74X - - ~Model
14] - = = AN 1.52) —— Experiment

1.32X

1.46X 2.30X

1.15X

111X

Reduction in execution time (%)
ou

44 52 54 44

46 48 50 46 48 50 44 46 48 50
Max allowed temperature (C) Max allowed temperature (C) Max allowed temperature (C)

52 54 912 52

(a) Lulesh (b) Wave2D (c) Jacobi2D

Figure 4: Reduction in execution time for different temperature thresholds

351 —— Lulesh
- ¢ -Wave2D
301 . —o—Jacobi2D ||

25

Execution time penalty (%)

912 44 46 48 50 52 54
Max allowed temperature (°C)

Figure 5: Execution time penalty for DVFS

pends on the tradeoff between percentage reduction in each
category of total time (recovery, checkpoint and restarting
times) which is a result of improvement in M, and its as-
sociated cost. This slowdown, including overhead of object
migration during load balancing, is shown in Figure 5.

Another observation we can make is that the tempera-
ture threshold and the cost of temperature control p are di-
rectly related. Figure 5 shows that Lulesh had the maximum
slowdown leading to a larger optimum temperature thresh-
old (50°C) and therefore it receives minimum reduction in
execution time (11%) among all three applications. On the
other hand, Jacobi2D, experiences the least slowdown which
results in the maximum reduction in execution time, i.e.,
14.2%, and the lowest optimum temperature threshold. The
slowdown for Wave2D lies in between Lulesh and Jacobi2D
which results in a reduction in execution time that is be-
tween 11%-14.2%, i.e., 13.5%.

4.3.3 Understanding application response to
temperature restraint

All applications we considered respond differently to tem-
perature restraints which is why each one has a different op-
timum point. For more insights, we compare and contrast

‘ [Recovery [Checkpoint [] Restart | Cost ‘
20 T T T T T

181 L- Lulesh
J - Jacobi2D

Reduction/ Increase in each category of time (%)

LJLJy LJLJ LJLJ LILy LJILJ
44 46 48 5 52

Maximum temperature threshold (°C)

Figure 6: Gains/cost of increasing reliability for dif-
ferent temperature thresholds

how Jacobi2D and Lulesh respond to temperature control in
Figure 6. Here, we plot the percentage of time reduced for
each category of execution time (including recovery, check-
point, and restart times), as a percentage of total time taken
in case of NC.

We used the following formula to determine the recov-
ery percentage (p;°®) corresponding to the max temperature
threshold of :°C for Figure 6:

rec t'rec _ t;‘ﬁc
prec=NC_ 4100 (7
Tnc

where Tn¢ is the total execution time in case of NC, ti5&
is the recovery time for NC and t;°“ is the recovery time for
the experiment where the max threshold was i°C. Figure 6
also shows the cost of temperature control for Lulesh and
Jacobi2D which represents DVFS-incurred slowdown in do-
ing useful work (W in Equation 5). This cost p{°** as well
as the percentage reduction in checkpoint pfkp " and restart
times p;“® are calculated similar to p;°° in Equation 7. We
make two observations from Figure 6.

First, we look at the total gain (sum of recovery, check-
pointing and restart gains). While the total gains are always

greater for Lulesh compared to Jacobi2D (except for 44°C),

25

—e—Jacobi2D
- +-Lulesh
——Wave2D

n
o
T

—_
(&)
T

Machine energy savings (%)
=

{9
T

912 44 46 48 50 52 54
Max allowed temperature (°C)

Figure 7: Reduction in machine energy consumption
for all applications

its cost of temperature control is always significantly lesser
than that for Lulesh. Hence, the net gain (total gains - cost)
for Jacobi2D makes it much more appropriate for our scheme
compared to Lulesh.

Next, we observe that pig©, psg¢ and p55© are higher for
Lulesh compared to Jacobi2D whereas for lower thresholds,
pai’ and pyg° are lower for Lulesh. Recall from Figure 4
that Lulesh improves reliability of the system more than Ja-
cobi2D, i.e., (1.86X, 2.14X) compared to (1.74X, 2.00X) for
thresholds of 46°C and 44°C, respectively. Even then, the
high timing penalty for Lulesh depicted in Figure 6 is limit-
ing the gains from increased reliability. The timing penalty
not only contributes directly as cost of improving reliabil-
ity by prolonging useful work, it also indirectly affects the
benefits of our scheme by limiting the gains we obtain in
recovery. So if a timing penalty of u gets added to the total
execution time, then the faults, checkpoints and restart that
happen during u essentially work to cancel out some of the
gains achieved by temperature restraint during the earlier
part of execution. This is precisely why the timing penalty
shrinks the gain bars in Figure 6. However, even with the
higher timing penalty of Lulesh, its gains are sufficient to
reduce execution time as compared to the case of NC.

4.3.4 Reduction in energy consumption

After highlighting how our scheme successfully reduces
execution time and increases M, we now analyze the reduc-
tion in machine energy consumption that happens as a direct
consequence of our scheme. Figure 7 shows the percentage
reduction in machine energy consumption for each appli-
cation compared to the baseline case (NC'). These num-
bers represent actual machine energy consumption for ex-
periments measured using power meters. The figure shows
that we were able to reduce machine energy consumption by
as much as 25% in case of Jacobi2D by restraining processor
temperatures at 42°C. Although the reduction in execution
time contributes to reduction in energy consumption, the
major part of savings comes from temperature control which
reduces a machine’s power consumption. In addition to the
reported reduction in machine energy, our scheme should

40

—o—Jacobi2D (46 °C)-1.74X s
——Wave2D (48 °C)-1.73X 9
30| - + ~Lulesh (50 °C)-1.48X #
- & - Jacobi2D (42 °C)-2.29X i

Reduction in execution time (%)

1K 2K 4K 8K 16K 32K 64K 128K 256K
Number of sockets

Figure 8: Execution time reduction for all
applications at very large scale

also reduces the cooling energy significantly [8].

5. LARGE-SCALE PROJECTIONS

In Section 4, we thoroughly investigated our approach and
validated our model by carefully comparing it against exper-
imental results. Now, we use the validated model to project
the benefits of our scheme for larger machines. We esti-
mate improvement in machine efficiency for larger number
of sockets and also analyze the benefits of our scheme while
increasing memory size of an exascale machine.

5.1 Benefits for increasing number of sockets

Figure 8 shows the reduction in execution time we achieve
for all three applications compared to the case of NC. For
this plot, we use an m of 10 years per socket with a restart
time of 30 secs. We show all three applications using their
optimum temperature thresholds (Tnaz) from Section 4.3.2.
Moreover, to highlight how T}4. influences the reduction in
execution time, we plot Jacobi2D for Tpna.= 42°C as well.
We assume checkpoint time to be 240 secs [29]. The dashed
black line in Figure 8 shows 0% reduction in execution time.
The points below this signify an overhead of our scheme
whereas the ones above this line represent reduction in total
execution time using our scheme. The numbers in the leg-
end of Figure 8 represent the times improvement in M for
each application. Even though we can see an execution time
penalty of 15% for 1K sockets in case of Jacobi2D with a
Tmax of 42°C, it increases the reliability of the machine by a
factor of 2.29X. The same Jacobi2D runs with lesser penalty
at Tax of 46°C for 1K sockets but its reliability decreases
to 1.74X.

For a smaller number of sockets(less than 32K), running
Jacobi2D with a Tyee of 42°C incurs a cost that is much
higher than the gains. However, beyond the crossover point
(32K), the cost is justified as the gains become significantly
higher. Hence, the optimum T4, can be different for dif-
ferent applications at various scales, e.g., at 230K sockets,
Jacobi2D with a Tinae of 42°C reduces the execution time
by 38% compared to 32% if run at Ty,qq of 46°C.

Efficiency can be defined as the fraction of the total ex-

1 ‘ T __:48°C
ax

I

Machine Utilization
o o
S

©
w
T

o
[N}
T
I

e
T
i

o

1 1 i i i Lo
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Number of sockets

Figure 9: Projected efficiency for Wave2D

ecution time, including the fault tolerance overheads, that
is spent in doing useful work. A decrease in total execution
time can be thought of as an improvement in machine ef-
ficiency. Figure 9 plots the machine efficiency for Wave2D
at Tyax = 48°C using the same parameters as Figure 8.
It is encouraging to observe that even though we account
for DVFS incurred slowdown in our efficiency calculation,
our scheme still improves machine efficiency significantly for
larger number of sockets. The numbers shown in Figure 9
represent the ratio of efficiency for our scheme relative to
the case of NC. For less than 32K sockets, we get a lower
efficiency compared to the case of NC (efficiency < 1X).
However, after 32K sockets, our scheme starts outperform-
ing NC case (> 1 efficiency values). For 340K sockets, our
scheme is projected to operate the machine with an efficiency
of 0.22 (95% reduction in execution time) compared to 0.01
for the NC case. Finally, for 350K sockets, the efficiency for
NC case drops to 0.003 making the machine almost nonop-
erational using only checkpoint/restart, whereas our scheme
can still operate the machine at an efficiency of 0.2.

5.2 Sensitivity to memory-per-socket and
MTBF

The checkpoint time of 240 sec predicted in Kogge’s re-
port [29] is made under the assumption that an exascale
machine will have 224K sockets with 64GB of memory per
socket. Adding more memory to the proposed machine in-
creases the number of components which can significantly
decrease the reliability. With the proposed memory size
(13.6 PB), the machine will have a flop-memory ratio of 0.01
Petaflops/TB which is far smaller than 96 Petaflops/TB and
134 Petaflops/TB for Sequoia and K computer [30] respec-
tively. To evaluate if our scheme can enable an exascale sys-
tem to have more memory, we predicted the improvement
in M as well as the reduction in execution time our scheme
can achieve compared to the case of NC as we keep on in-
creasing memory per socket. Adding memory implies more
data to checkpoint. We use the same methodology used in
Kogge’s report [29] to calculate the checkpoint time as we
keep on increasing memory per socket. Figure 10 shows the
results from our model for Jacobi2D projected on exascale

N
o

—=—10y / /
——— 20y / /

- -+ --30y / /

w
O
I

(]
o

- -))
o o =] o

o

Reduction in execution time (%)

16 32 64 128 256 16 32 64 128
Mem per chip (GB)

Figure 10: Reduction in execution time for different
memory sizes of exascale machine

machine. MTBF per socket can have a significant effect
on the total execution time of an application. MTBF of
LANL’s clusters is 10 years per socket [31] where as Jaguar
had a 50 years MTBF per socket [32]. Other studies show
MTBF per socket to be between 20-30 years [33, 34]. For
capturing the sensitivity of our scheme to MTBF, we plotted
lines corresponding to 5 different MTBF per socket ranging
from 10-50 years. Figure 10 shows that our scheme will de-
crease the execution time for any memory size per socket
using any of the five MTBF values. Even the two memory
sizes used in Kogge’s report [29], i.e. 16GB and 64GB, will
end up benefitting from our scheme.

6. RELATED WORK

The classical solution for coping with an ever increasing
failure rate due to larger machine sizes and thermal varia-
tions is to increase the checkpoint frequency. Unfortunately,
checkpoint/restart can not be used indefinitely as the failure
rate grows.

Some alternatives have been explored to keep up with
a small MTBF. Using local storage to store the state
of the tasks has been proposed in the double in-memory
checkpoint/restart mechanism [17, 22]. Checkpointing in
the memory of the nodes is fast and checkpoint periods can
become smaller to tolerate frequent failures. Although this
mechanism may not tolerate the failure of more than one
node, several studies have confirmed that in a high percent-
age of the failures, only one node is affected [22, 35]. Another
possibility is to improve recovery time through message-
logging. In such protocols, a failure only requires the crashed
node to roll back. The rest of the system will re-send the
messages and wait for the crashed node to catch up with the
rest of the system. A technique called parallel recovery [36]
leverages message-logging by distributing the tasks on the
failed node to be recovered in parallel on other nodes of the
system. This mechanism has been demonstrated to tolerate
a higher failure rate [37]. More recently, replication of tasks
has been proposed to deal with high failure rates [38]. How-
ever, replication decreases the utilization of the system to
50% at the best. An extremely high failure rate will make

this sacrifice pay off, as the utilization of a system using
checkpoint/restart drastically decreases if failures are very
frequent.

In this paper we take a different approach of dealing with
faults. Instead of finding efficient schemes that deal with
faults, we aim to avoid failures by controlling temperature
in all the nodes of a system using DVFS. The net result
of this temperature capping is a smaller failure rate. We
compensate for loss of performance due to DVFS with load
balance and over-decomposition. A decreased failure rate
is particularly more convenient for checkpoint/restart, but
our scheme can be used in tandem with any fault-tolerance
method. One of the key advantages of decreasing the fail-
ure rate is the reduction in maintenance cost of the super-
computing facility. Each failure may require at least a re-
boot, but in some situations manual intervention of experts
is needed to diagnose the root cause of the crash.

7. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper provides the first
study that uses runtime managed temperature capping to
increase the estimated reliability of HPC machines. We for-
mulate a model to estimate the benefits of combining check-
point/restart and temperature capping. We first validate
the accuracy of our model by comparing it with experi-
mental data and later use it to predict the benefits of our
scheme for larger machines. Experimental results show that
while reducing the execution time and improving reliability,
our scheme can reduce the machine energy consumption by
as much as 25%. At exascale, for a 350K socket machine,
regular checkpoint/restart fails to make progress (less than
1% efficiency), whereas our validated model predicts an ef-
ficiency of 20% by improving the machine reliability by a
factor of up to 2.29.

Our approach uses migratability to alleviate the perfor-
mance penalization induced by temperature capping. How-
ever, improving the reliability of a supercomputer also brings
important benefits for environments that do not support mi-
gration, such as MPI. An immediate effect of reducing the
number of failures in a system is a lower maintenance cost.

In future, we plan to investigate the effects of thermal
throttling on MTBF [39] and evaluate the benefits of limit-
ing such fluctuations. We also plan to incorporate thermal
capping in other fault tolerance protocols e.g. message log-
ging and parallel recovery [36], and compare their benefits
to our current scheme.

8. ACKNOWLEDGEMENTS

This research was supported in part by the US Depart-
ment of Energy under grant DOE DE-SC000184 and Na-
tional Science Foundation under grant NSF ITR-HECURA-
0833188. We are thankful to Prof. Tarek Abdelzaher for
letting us use the testbed for experimentation under grant
NSF CNS 09- 58314. We acknowledge the great help Xi-
ang Ni provided us in solving several technical issues with
the runtime system. We also thank Phil Miller and Shehla
Saleem Rana for their valuable help in editing and proof-
reading the paper.

9. REFERENCES

[1] T. Renzenbrink, “Data Centers Use 1.3% of WorldOs
Total Electricity. A Decline in growth.” [Online].

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Available: http://www.techthefuture.com/energy/

C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal,
and R. Friedrich, “Smart cooling of data centers,”
ASME Conference Proceedings, vol. 2003, no. 36908b,
pp. 129-137, 2003.

R. F. Sullivan, “Alternating cold and hot aisles
provides more reliable cooling for server farms,” White
Paper, Uptime Institute, 2000.

R. Sawyer, “Calculating total power requirements for
data centers,” White Paper, American Power
Conversion, 2004.

R. American Society of Heating and A.-C. Engineers,
“2008 ashrae environmental guidelines for datacom
equipment.” [Online]. Available: http:
//tc99.ashraetcs.org/documents/ASHRAE_Extended_
Environmental Envelope_Final Aug_1_2008.pdf

A. Liu, “The data center temperature debate.”
[Online]. Available: http://ezinearticles.com/
?The-Data-Center- Temperature-Debate&id=2637938
O. Sarood and L. V. Kale, “A ’cool’ load balancer for
parallel applications,” in Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC
"11. New York, NY, USA: ACM, 2011, pp.
21:1-21:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063412

O. Sarood, P. Miller, E. Totoni, and L. V. Kale, “Cool
load balancing for high performance computing data
centers,” vol. 61, no. 12. Los Alamitos, CA, USA:
IEEE Computer Society, 2012, pp. 1752-1764.

C. hsing Hsu, W. chun Feng, and J. S. Archuleta,
“Towards efficient supercomputing: A quest for the
right metric,” in In Proceedings of the
HighPerformance Power-Aware Computing Workshop,
2005.

W.-c. Feng, “Making a case for efficient
supercomputing,” vol. 1, no. 7. New York, NY, USA:
ACM, Oct. 2003, pp. 54-64. [Online]. Available:
http://doi.acm.org/10.1145/957717.957772

——, “The Importance of Being Low Power in
High-Performance Computing,” Cyberinfrastructure
Technology Watch Quarterly (CTWatch Quarterly),
vol. 1, no. 3, August 2005.

Ericsson, “Reliability Aspects on Power Supplies,”
Technical ReportDesign Note 002, Ericsson
Microelectronics, April 2000.

L. Kalé, “The Chare Kernel parallel programming
language and system,” in Proceedings of the
International Conference on Parallel Processing,

vol. IT, Aug. 1990, pp. 17-25.

J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The
impact of technology scaling on lifetime reliability,” in
Dependable Systems and Networks, 2004 International
Conference on, 2004, pp. 177-186.

J. A. Chung H. Hsu, W. Feng, “Towards Efficient
Supercomputing: A Quest for the Right Metric.”
[Online]. Available:
http://sss.cs.vt.edu/presentations/hppac05.ppt.pdf

F. Petrini, K. Davis, and J. Sancho, “System-level
fault-tolerance in large-scale parallel machines with
buffered coscheduling,” in Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th

http://www.techthefuture.com/energy/
http://tc99.ashraetcs.org/documents/ASHRAE_Extended_Environmental_Envelope_Final_Aug_1_2008.pdf
http://tc99.ashraetcs.org/documents/ASHRAE_Extended_Environmental_Envelope_Final_Aug_1_2008.pdf
http://tc99.ashraetcs.org/documents/ASHRAE_Extended_Environmental_Envelope_Final_Aug_1_2008.pdf
http://ezinearticles.com/?The-Data-Center-Temperature-Debate&id=2637938
http://ezinearticles.com/?The-Data-Center-Temperature-Debate&id=2637938
http://doi.acm.org/10.1145/2063384.2063412
http://doi.acm.org/10.1145/957717.957772
http://sss.cs.vt.edu/presentations/hppac05.ppt.pdf

[17]

[21]

[22]

[25]

26

[27]

[32]

International, 2004, pp. 209-.

G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++:
An In-Memory Checkpoint-Based Fault Tolerant
Runtime for Charm++ and MPI,” in 2004 IEEE
International Conference on Cluster Computing, San
Diego, CA, September 2004, pp. 93-103.

J. T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Future
Generation Comp. Syst., vol. 22, no. 3, pp. 303-312,
2006.

J. W. Young, “A first order approximation to the
optimal checkpoint interval,” Commun. ACM, vol. 17,
no. 9, pp. 530-531, 1974.

L. Bautista-Gomez, D. Komatitsch, N. Maruyama,
S. Tsuboi, F. Cappello, and S. Matsuoka, “FTI: High
performance fault tolerance interface for hybrid
systems,” in 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC), Nov. 2011, pp. 1 —12.

P. H. Hargrove and J. C. Duell, “Berkeley lab
checkpoint/restart (bler) for linux clusters,” in
SciDAC, 2006.

A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski, “Design, modeling, and evaluation of a
scalable multi-level checkpointing system,” in SC,
2010, pp. 1-11.

“Lulesh,”
http://computation.llnl.gov/casc/ShockHydro/.

R. K. Brunner and L. V. Kalé, “Handling
application-induced load imbalance using parallel
objects,” in Parallel and Distributed Computing for
Symbolic and Irregular Applications. World Scientific
Publishing, 2000, pp. 167-181.

G. Zheng, “Achieving high performance on extremely
large parallel machines: performance prediction and
load balancing,” Ph.D. dissertation, Department of
Computer Science, University of Illinois at
Urbana-Champaign, 2005.

P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and
T. R. Quinn, “Massively parallel cosmological
simulations with ChaNGa,” in Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, 2008.

G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale,
“Periodic Hierarchical Load Balancing for Large
Supercomputers,” International Journal of High
Performance Computing Applications (IJHPCA),
March 2011.

“Intel turbo boost technology,”
http://www.intel.com/technology /turboboost/.

P. Kogge, K. Bergman, S. Borkar, D. Campbell,

W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott,

A. Snavely, T. Sterling, R. S. Williams, and K. Yelick,
“Exascale computing study: Technology challenges in
achieving exascale systems,” 2008.

“Top500 supercomputing sites,” http://top500.org.
B. Schroeder and G. A. Gibson, “Understanding
failures in petascale computers.”

D. Fiala, “Detection and correction of silent data

33]

34]

(35]

(36]

37]

(38]

39]

corruption for large-scale high-performance
computing,” in Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on, 2011, pp. 2069—2072.

P. Ramachandran, S. Adve, P. Bose, and J. Rivers,
“Metrics for architecture-level lifetime reliability
analysis,” in Performance Analysis of Systems and
software, 2008. ISPASS 2008. IEEE International
Symposium on, 2008, pp. 202—212.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers,
“The case for lifetime reliability-aware
microprocessors,” in Proceedings of the 81st annual
international symposium on Computer architecture,
ser. ISCA ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 276—. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998680.1006725

E. Meneses, X. Ni, and L. V. Kale, “A
Message-Logging Protocol for Multicore Systems,” in
Proceedings of the 2nd Workshop on Fault-Tolerance
for HPC at Extreme Scale (FTXS), Boston, USA,
June 2012.

S. Chakravorty and L. V. Kale, “A fault tolerance
protocol with fast fault recovery,” in Proceedings of the
21st IEEE International Parallel and Distributed
Processing Symposium. IEEE Press, 2007.

E. Meneses, O. Sarood, and L. V. Kale, “Assessing
Energy Efficiency of Fault Tolerance Protocols for
HPC Systems,” in Proceedings of the 2012 IEEE 24th
International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2012),
New York, USA, October 2012.

K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges,
and D. Arnold, “Evaluating the viability of process
replication reliability for exascale systems,” in
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis. New York, NY, USA: ACM, 2011, pp.
44:1-44:12. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063443

J. Srinivasan, S. Adve, P. Bose, and J. Rivers,
“Lifetime reliability: toward an architectural solution,”
Micro, IEEFE, vol. 25, no. 3, pp. 70-80, 2005.

http://computation.llnl.gov/casc/ShockHydro/
http://www.intel.com/technology/turboboost/
http://top500.org
http://dl.acm.org/citation.cfm?id=998680.1006725
http://doi.acm.org/10.1145/2063384.2063443

	Introduction
	Implications of Temperature control
	Effects of temperature control on reliability
	Effects of temperature control on total execution time

	Approach
	System Model
	Temperature control and communication aware load balancer
	Checkpoint/Restart
	Framework

	Experiments
	Implementation using Charm++
	Testbed and experimental settings
	Experimental results
	Interplay between temperature, MTBF and checkpointing overheads
	Comparing the benefits amongst applications
	Understanding application response to temperature restraint
	Reduction in energy consumption

	Large-scale Projections
	Benefits for increasing number of sockets
	Sensitivity to memory-per-socket and MTBF

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

