Charm++ for Productivity and Performance

A Submission to the 2011 HPC Class Il Challenge

Laxmikant V. Kale*

Anshu Arya, Abhinav Bhatele, Abhishek Gupta, Nikhil Jain, Pritish Jetley, Jonathan Lifflander,
Phil Miller, Yanhua Sun, Ramprasad Venkataraman?*, Lukasz Wesolowski, Gengbin Zheng

Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana-Champaign, Urbana, IL 61801
Hkale, ramv}@illinois.edu

We present our implementation of the HPC Challenge
Class II (productivity) benchmarks in the Charm++- [1] pro-
gramming paradigm’. Our submission focuses on explaining
how over-decomposed, message-driven, migratable objects
enhance the clarity of expression of parallel programs and
also enable the runtime system to deliver portable perfor-
mance. Our submission includes implementations of three
required benchmarks: Dense LU Factorization, FFT, and
Random Access. We also include two additional benchmarks
that represent relevant scientific computing algorithms of
some complexity: Molecular Dynamics and Barnes-Hut. We
believe our implementations demonstrate that a high-level
productivity oriented model can also deliver portable per-
formance via an intelligent runtime. Our code-size results
can be seen in Table 1 and a summary of the performance
metrics can be seen in Table 2.

1. PROGRAMMING MODEL

We describe relevant aspects of the Charm++ program-
ming model in order to set the context for explaining the
benchmark implementations.

1.1 Salient Features

1.1.1 Object-based

Parallel programs in Charm++ are implemented in an
object-based paradigm. Computations are expressed in terms
of work and data units that are natural to the algorithm be-
ing implemented and not in terms of physical cores or pro-
cesses executing in a parallel context. This immediately has
productivity benefits as application programmers can now
think in terms that are native to their domains.

The work and data units in a program are C++ objects,
and hence, the program design can exploit all the benefits of
object-oriented software architecture. Classes that partici-
pate in the expression of parallel control flow (chares) inherit
from base classes supplied by the programming framework.
They also identify the subset of their public methods that
are remotely invocable (entry methods). This is done in a
separate interface definition file described in subsection 1.2.

'This document was released by Lawrence Livermore Na-
tional Laboratory for an external audience under release
number LLNL-MI-508671.

Charm++ messages can also be C++ classes defined by the
program. Any C++ class (be it a work unit, data unit, or
message) that is transmitted across processes has to define a
serialization operator, called pup() for Pack/UnPack. This
allows the transmission of complex message types, as well as
the movement of work / data units across processes during
execution.

Chares are typically organized into indexed collections,
known as chare arrays. Chares in an array share a type, and
hence present a common interface of entry methods. A single
name identifies the entire collection, and individual elements
are invoked by subscripting that name. Code can broadcast
a message to a common entry method on all elements of an
array by invoking that method on the array’s name, without
specifying a subscript. Conversely, the elements of an array
can perform asynchronous reductions whose results can be
delivered to an entry method of the array itself or of any
other object in the system.

In essence, Charm++ programs are C++ programs where
interactions with remote objects is realized through an inher-
itance and serialization API exposed by the runtime frame-
work.

1.1.2 Message-Driven

Messaging in Charm++ is one-sided, sender-driven and
asynchronous. Parallel control flow in Charm++ is expressed
in the form of method invocations on remote objects. These
invocations are generally asynchronous, in that control re-
turns to the caller before commencement or completion of
the callee, and thus no return value is available. If data needs
to be returned, it can flow via subsequent remote invocation
by the callee on the original caller, be indirected through a
callback, or the call can explicitly be made synchronous.

These semantics immediately fit well into the object-based
paradigm. Each logical component (chare) simply uses its
entry methods to describe its reactions when dependencies
(remote events or receipt of remote data) are fulfilled. It
is notified when these dependencies are met via remote in-
vocations of its entry methods. Upon such invocation, it
can perform appropriate computations and also trigger other
events (entry methods) whose dependencies are now fulfilled.
The parallel program then becomes a collection of objects
that trigger each other via remote (or local) invocations by
sending messages. Note that these chares do not have to

Code C++4+ CI Working Driver Total
Subtotal

LU 1231 418 1649 476 2125

FFT 112 47 159 22 181

RandomAccess 155 23 178 n/a 178

MD 645 128 773 n/a 773

Barnes-Hut 2871 56 2927 9861 13130

Table 1: Lines of code in each benchmark.

‘C++’ and ‘CI’ refer to Charm++ code necessary to solve

the specified problem. ‘Driver’ refers to additional code used for setup and verification. All numbers were

generated using David Wheeler’s SLOCCount.

Code Machine Max Cores Best Performance
LU Cray XT5 8K 67.4% of peak
FFT IBM BG/P 64K 2.512 TFlop/s
RandomAccess IBM BG/P 64K 22.19 GUPS
MD Cray XE6 16K 1.9 ms/step (125K atoms)

IBM BG/P 64K 11.6 ms/step (1M atoms)
Barnes-Hut IBM BG/P 16K 27 x 10° interactions/s

Table 2: Performance summary: largest scale of execution and the best performance achieved

explicitly expect a message arrival by posting receives. In-
stead, the arrival of messages triggers further computation.
The model is hence message-driven.

Its worthwhile to note that the notion of processes / cores
has not entered this description of the parallel control flow
at all. This effectively separates the algorithm from any
processor-level considerations that the program may have
to deal with; making it easier for domain experts to express
parallel logic.

1.1.3 Over-decomposed

Divorcing the expression of parallelism (work and data
units) from the notion of processes / cores allows Charm++
programs to express much more parallelism than the avail-
able number of processors in a parallel context. The funda-
mental thesis of the Charm++ model is that the applica-
tion programmer should over-decompose the computations
in units natural to the algorithm, thereby creating an abun-
dance of parallelism that can be exploited.

1.1.4 Runtime-Assisted

Once an application has been expressed as a set of over-
decomposed chares that drive each other via messages, these
can be mapped onto the available compute resources and
their executions managed by a runtime system. The pro-
gramming model permits an execution model where the run-
time system can:

e maintain a queue of incoming messages, and deliver
them to entry methods on local chares.

e overlap data movement required by a chare with entry
method executions for other chares.

e observe computation / communication patterns, and
move chares to balance load and optimize communi-
cation.

e allow run-time composition (interleaving) of work from
different parallel modules.

A list of advantages of the Charm++ programming and
execution model can be found at http://charm.cs.illinois.
edu/why/.

1.2 Interface Definitions

The Charm++ environment strives to provide a conve-
nient, high-level interface for parallel programmers to use
in developing their applications. Rather than requiring pro-
grammers to do the cumbersome and error-prone bookkeep-
ing necessary to identify the object and message types and

associated entry methods that make up their program, Charm—++

provides code generation mechanisms to serve this purpose.
When building a Charm-++ program, the developer writes
one or more interface description files (named with a .ci
extension), listing the following:

1. System-wide global variables set at startup, known as
read-only variables,

2. Types of messages that the code will explicitly con-
struct and fill, specifying variable-length arrays within
those messages, and

3. Types of chare classes, including the prototypes of
their entry methods.

Interface descriptions can be decomposed into several mod-
ules that make up the overall system, generated declarations
and definitions for each of which will be placed in a separate
file (named with .decl.h and .def.h extensions, respec-
tively). A Charm++ program’s starting point, equivalent
to main() in a C program, is marked as a mainchare in
its interface description. The runtime starts the program
by passing the command-line arguments to the mainchare’s
constructor.

http://charm.cs.illinois.edu/why/
http://charm.cs.illinois.edu/why/

1.3 Structured Dagger

One effect of describing a parallel algorithm in terms of in-
dividual asynchronous entry methods is that the overall con-
trol flow is split into several pieces, whose relationship can
become complicated in any but the simplest program. For
instance, one pattern that we have observed is that objects
will receive a series of similar messages that require some
individual processing, but overall execution cannot proceed
until all of them have been received. Another pattern is
some entry method must execute in a particular sequence,
even if their triggering messages may arrive in any order.
To facilitate expressing these and other types of higher-level
control flow within each object, Charm++ provides a syntax
known as Structured Dagger [2]. Structured Dagger lets the
programmer describe a sequence of behaviors in an object
that can be abstractly thought of as a local task dependence
DAG (from which the name arises).

The basic constructs in Structured Dagger are drawn from
the traditional control-flow constructs in C-like languages:
conditional execution based on if/else, and for and while
loops. The constructs operate as in common sequential C
or C++ code. In addition to basic C constructs, Structured
Dagger provides the when clause to indicate that execution
beyond that point depends on the receipt of a particular
message. Each when clause specifies the entry method it is
waiting for, and the names of its argument(s) in the body of
the clause. A when clause may optionally specify a reference
number or tag expression limiting which invocations of the
associated entry method will actually satisfy the clause. A
reference number expression appears in square brackets be-
tween an entry method ’s name and its argument list. Defini-
tions for entry methods named in when clauses are generated
by the interface translator. Though not used in this submis-
sion, Structured Dagger also provides the overlap construct
for divergent control flow, akin to a task fork/join mech-
anism specifying that a sequence of operations must com-
plete, but not an ordering between them. Because a chare
is assigned to a particular core at any given time, these op-
erations do not execute in parallel, avoiding many problems
encountered by concurrent code.

The various Structured Dagger constructs are implemented
in generated code by a collection of message buffers and
trigger lists, and have negligible overhead, comparable to a
few static function calls. If the body of a Structured Dag-
ger method is viewed as a sequential thread of execution, a
when can be seen as a blocking receive call. However, rather
than preserving a full thread stack and execution context,
Structured Dagger saves just the current control-flow loca-
tion, and returns to the scheduler. Local variables to be
preserved across Structured Dagger blocks are encoded as
member variables of the enclosing chare. In contrast, thread
context switches to provide the same behavior with a less so-
phisticated mechanism can be much more costly. Charm++
does provide mechanisms to run entry methods in separate
threads when blocking semantics are needed for other pur-
poses.

2. DENSE LU FACTORIZATION
2.1 Productivity

Charm++ is a general and fully capable programming
paradigm and our LU implementation does not employ any

linear algebra specific notations. Our implementation is very
succinct and presents several distinct benefits.

2.1.1 Composable Library

The implementation is presented as a modular library that
can be composed into client applications. By composition,
we imply both modularity during program design and seam-
lessness during parallel execution. Factorization steps can
be interleaved with other computations from the applica-
tion (or even with other factorization instances of the same
library!) on the same set of processors.

2.1.2 Flexible Data Placement

The placement of matrix blocks on processes is completely
independent of the main factorization routines; is encapsu-
lated in a sequential function, and can be modified with
minimal effort.

2.1.3 Block-Centric Control Flow

For block sizes on which dgemm calls perform well, we typ-
ically need hundreds of blocks assigned to each processor
core to meet the memory usage requirements. Such over-
decomposition is also necessary for load balance. By elevat-
ing these over-decomposed, logical, entities to become the
primary players in the expression of parallelism, Charm-++
enables a succinct representation of the factorization logic.
Additionally, Structured Dagger allows the control flow for
each block to be directly visible in the code in a linear style
effectively independent of other activity on the same proces-
SOr.

2.1.4 Separation of Concerns

The factorization algorithm has been expressed from the
perspective of a matrix block. However, processor-level con-
siderations (e.g, memory management) are implemented as
separate logic that interacts minimally with the factoriza-
tion code. This demonstrates a clear separation of concerns
between application-centric domain logic and system-centric
logic. Such separation enhances productivity of both appli-
cation domain experts and parallel systems programmers.
It also allows easier maintenance and tuning of parallel pro-
grams.

2.2 Performance

We have scaled our implementation to 8064 cores on Jaguar
(Cray XT5 with 12 cores and 16GB per node) by increasing
problem sizes to occupy a constant fraction of memory (75%)
as we increased the number of cores used. We obtain a con-
stant 67% of peak across this range. We also demonstrate
strong scaling by running a fixed matrix size (n = 96,000)
from 256 to 4096 cores of Intrepid (IBM Blue Gene/P with
4 cores and 2GB per node). The matrix size was chosen to
just meet the requirements of the spec (occupying 54% of
memory) at the lower end of the strong scaling curve (256
cores). Our results are presented in Figure 1. Extensive
experiments with LU are an expensive proposition as the
amount of computation increases as n® (where n is the ma-
trix size). We fully expect the implementation to scale to
much larger partitions and demonstrate high performance
on multiple architectures.

2.2.1 Adaptive Lookahead

Our implementation provides completely dynamic, memory-
constrained lookahead so that panel factorizations are over-

100

Theoretical peak on XT5 ——
Weak scaling on XT5 —m—
Theoretical peak on BG/P ----
Strong scaling on BG/P --e- -
10 b
@
Q.
L .
c e -
R O
=
°
e\ T -
1 S
. Pt
0155 024 8oz
Number of Cores
Figure 1: Weak scaling (matrix occupies 75% of

memory) from 120 to 8064 processors on Jaguar
(Cray XT5). Strong scaling (n = 96,000) from 256 to
4096 processors on Intrepid (IBM BG/P).

lapped as much as memory usage limits will allow. In keep-
ing with its library form, applications can choose to restrict
the factorization to use only a fraction of the available mem-
ory.

2.2.2 Asynchronous Collectives

Charm++ collective operations are also asynchronous like
its other messaging semantics and can be overlapped with
other work. For example, this allows asynchronous pivot
identification reductions to be overlapped with updating the
rest of the sub-panel. Masking such latencies allows this
implementation a wider choice of data placements.

2.3 Implementation

We use a typical block-decomposed algorithm for the LU
factorization process. Our focus in this effort has been less
on choosing the best possible factorization algorithm than
on demonstrating productivity with a reasonable choice.

The input matrix of n X n elements is decomposed into
square blocks of b x b elements each. We delegate underlying
sequential operations to an available high performance linear
algebra library, typically a platform-specific implementation
of BLAS and perform partial pivoting for each matrix col-
umn.

2.3.1 Data Distribution

Matrix blocks are assigned to processors when the library
starts up, according to a mapping scheme, and are not re-
assigned during the course of execution. Charm-++ facil-
itates the expression and modification of the data distri-
bution scheme by encapsulating the logic into a simple se-
quential function call that uses the block’s coordinates to
compute the process rank it should be placed on:

process rank = f(Tiock, Yblock) (1)

This is a standard feature in Charm++ and is available
to all indexed collections of chares (chare arrays). This al-
lows library users to evaluate data distribution schemes that
may differ from the traditional two-dimensional block-cyclic
format.

2.3.2 Asynchrony and Overlap

In our implementation, each block is placed in a message-

driven object, driven by coordination code written in Struc-
tured Dagger [2]. The coordination code describes the mes-
sage dependencies and control flow from the perspective of
a block. Thus, every block can independently advance as
it receives data and we avoid bulk synchrony by allowing
progress in the factorization when dependencies have been
met. With many blocks per processor, overlap is automati-
cally provided by the Charm++ runtime system.

2.3.3 Block Scheduler

Our solver implements dynamic lookahead, using a dy-
namic pull-based scheme to constrain memory consumption
below a given threshold. To implement the pull-based scheme,
we place a scheduler object on each processor in addition
to its assigned blocks. The scheduler object maintains a
list of the blocks assigned to its processor, and tracks what
step they have reached. Within the bounds of the memory
threshold, it requests blocks from remote processors that are
needed for local triangular solves and trailing updates. An
earlier technical report [3] describes the dependencies be-
tween the blocks and how the scheduler object uses this to
safely reorder the selection of trailing updates to execute.
We include this in our submission to demonstrate that the
programming model allows separation of concerns in a par-
allel context.

2.4 Verification

Our LU implementation conforms fully to the spec and
passes the required validation procedures for all the results
presented here. We have supplied a test driver with the
library that generates input matrices, invokes the library for
the factorization and solves, and validates the results while
also measuring performance. Performance and validation
statistics are printed at the end.

3. GLOBAL FFT
3.1 Productivity

Charm’s virtualization allows us to trivially over-decompose

a parallel FFT and take advantage of overlapping commu-
nication and computation by changing an input parame-
ter. At core counts less than 1024, some amount of over-
decomposition improves performance by up to 50% with no
modification to the code. At higher core counts, virtualiza-
tion results in smaller serial FFTs and slower performance,
so we simply choose a decomposition equivalent to the num-
ber of processors. Additional code to split messages or ex-
plicitly handle overlapping communication and computation
is unnecessary.

3.2 Performance

Runs were performed on the ALCF Surveyor Blue Gene/P
machine. Performance scales well up to one mid-plane (2048
cores) and then stagnates due use of a simple point-to-point
communication pattern. However, software routing via the
Mesh Streaming library in Charm allows the FFT to scale
up to at least 64k cores. ESSL was used to perform serial
FFTs. Figure 2 and table 3.2 summarize the results.

3.3 Implementation

Our implementation of Global FFT takes input size N
and performs a complex 1D FFT on an Nz N matrix where

GFlopls

—A— p2P All-to-all
—E— Mesh All-to-all

N Serial FFT limit
10

I I L I I I I
256 512 1024 2048 4096 8192 16384 32768 65536
Cores

Figure 2: Performance of Global FFT on Surveyor
(IBM BG/P)

Cores Gflops Size
256 19.386 327682
512 39.897 460802

1024 57.315 655362
2048 219.155 921602

4096 252.337 1310722
8192 409.359 1802242
16384 756.228 2621442
32768 1379.728 3604482
65536 2512.835 5242882

Table 3:
(BG/P)

subsequent rows are contiguous data elements of a double
precision complex vector. Three all-to-all transposes are re-
quired to perform the FFT and unscramble the data. All-to-
all operations are executed via point-to-point messages and
external libraries (FFTW or ESSL) perform serial FFTs on
the rows of the matrix.

3.4 \Verification

Verification is performed via two methods: (1) the bench-
mark code self-validates by executing an inverse FFT on the
output result and (2) the output is dumped to a file and an
inverse FFT is performed on the dumped data by a separate
MPI program that invokes parallel FFTW.

4. RANDOM ACCESS
4.1 Productivity

Global FFT - Results from Surveyor

4.1.1 Quiescence Detection

Implementations of RandomAccess typically contain code
for determining when all updates are completed globally.
This task is simplified in Charm-++ by using its built in qui-
escence detection feature, which monitors the global number
of messages sent and delivered and identifies the point when
all messages have been delivered. The interface to detect
quiescence in Charm++ consists of a single call which spec-
ifies the method to execute upon reaching a quiescent state.

4.1.2 Automatic Topology Determination

The Charm++ Topology Manager [4] automates the task
of determining physical network topology for a partition as-
signed to a job. We use it to provide topology information
for a routing and message aggregation library.

IIDerfectIScaIinglg e

s2r Charm++ —+— o
16 A
8 22.19

GUPS
N

1 e
0.5 /
0.125 /

1 1 1 1 1 1 1 1
128 256 512 1K 2K 4K 8K 16K 32K 64K
Number of cores

Figure 3: Performance of random access on Intrepid
(IBM BG/P)

Cores GUPS Memory (TB)

128 0.10 0.031
256 0.19 0.062
512 0.34 0.125
1024 0.61 0.250
2048 1.18 0.500
4096 2.02 1.000
8192 3.70 2.000
16384 6.96 4.000
32768 12.69 8.00
65536 22.19 16.00

Table 4: Performance of random access on Intrepid
(IBM BG/P)

4.1.3 Communication Libraries

Charm++ contains libraries for improving network com-
munication performance for various scenarios. For this bench-
mark we use the Mesh Streamer library, further described
below, for optimizing all-to-all communication on small mes-
sages.

4.2 Performance

The results on Blue Gene/P are presented in Figure 3 as
well as in Table 4.

4.3 Implementation

Using Charm++ the global table is evenly distributed
across all nodes. Each core is responsible for generating
a subset of the random numbers and updating its local ta-
ble. The notion of a group in Charm++, which can be
thought of as a chare array with one chare per core, is used,
where the global table is distributed among the chares in
the group. Each group member takes charge of generating
the 64-bit numbers and updating its local table in turns.
The Charm++ runtime system controls the sending and re-
ceiving of messages. Termination of the updating process is
carried out by using Charm++ quiescence detection, which
helps to simplify the code.

The small size of individual data items in this bench-
mark makes it prohibitively expensive to send each item
as a separate message. To improve performance, we use
a Charm-++ message aggregation and routing library called

Mesh Streamer. Mesh Streamer assumes a three dimensional
mesh layout of the processors. The separate Charm++
Topology Manager library assigns dimensions of this mesh
to match the physical network topology of the partition as-
signed for the run. Each message submitted by the user to
the library arrives at its destination processor after at most
three communication steps, one along each dimension of the
mesh. At each step, messages are buffered so that different
messages traveling to the same plane, column, or specific
processor are placed in the same buffer. For the purposes of
this benchmark, Mesh Streamer was modified to buffer at
most 1024 data elements at each core.

4.4 Verification

The verification is done by repeating the Random up-
dates. In our implementation memory is distributed among
the members of the group. Each region of memory is only
accessed by one group member, making the implementation
thread-safe. There were no errors found.

S. MOLECULAR DYNAMICS

LeanMD is a molecular dynamics simulation program writ-
ten in Charm-++4. This benchmark simulates the behavior
of atoms based on the Lennard-Jones potential, which is
an effective potential that describes the interaction between
two uncharged molecules or atoms. The computation per-
formed in this code mimics the short-range non-bonded force
calculation in NAMD [5, 6] and resembles the miniMD ap-
plication in the Mantevo benchmark suite [7] maintained by
Sandia National Laboratories.

The force calculation in Lennard-Jones dynamics is done
within a cutoff-radius, r. for every atom. In LeanMD, the
computation is parallelized using a hybrid scheme of spatial
and force decomposition. The three-dimensional (3D) sim-
ulation space consisting of atoms is divided into cells of di-
mensions that are equal to the sum of the cutoff distance, r.
and a margin. In each iteration, force calculations are done
for all pairs of atoms that are within the cutoff distance.
The force calculation for a pair of cells is assigned to a dif-
ferent set of objects called computes. Based on the forces
sent by the computes, the cells perform the force integration
and update various properties of their atoms — acceleration,
velocity and positions.

5.1 Productivity

Our implementation of LeanMD takes only 773 lines of

code while offering capabilities that are sometimes not matched

by production molecular dynamics applications. In compar-
ison, miniMD from the Mantevo benchmark suite, which
nurtures similar objectives of representing real applications,
requires just under 3000 lines of code [7] but does not offer
many of the capabilities of LeanMD.

Below, we present several Charm-++ features that have
been exploited in LeanMD that significantly improve pro-
grammer productivity without sacrificing performance and
in some cases, such as load balancing, lead to performance
improvements.

5.1.1 Dense and Sparse Charm++ Arrays

Indexed collection of objects in Charm+-+ provides an
elegant and easy to understand abstraction for representing
dissimilar but related work units. Different phases and com-
putation in an application can be assigned to different chare

arrays. Cells are a dense 3D chare array that represent a
spatial decomposition of the 3D simulation space. They are
responsible for sending positions and collecting the forces for
their atoms. Computes, on the other hand, form a sparse
6-dimensional array of chares. Such a representation makes
it convenient for a pair of cells with coordinates (x1, y1, z1)
and (x2, y2, z2) to use a compute with coordinates (x1, y1,
z1, x2, y2, z2) to calculate forces for their atoms.

5.1.2 Ability to run variable size jobs

Charm++ enables users to run applications on any num-
ber of cores without any restrictions on the size or shape
of the processor partitions that are used. Additionally, it
provides the freedom to choose a convenient number of work
units, depending on the simulation, independent of the num-
ber of cores the application is run on. Note that, this free-
dom does not come at the expense of performance which ei-
ther improves or follows the general trend seen in the more
restricted environment.

5.1.3 Structured Dagger

LeanMD requires substantial amount of control flow infor-
mation to be exchanged between the two chare arrays, cells
and computes. Structured Dagger provides a lucid and easy
to use mechanism to trigger dependent events and main-
tain the application control flow. It obviates the need for
user maintained flags, counters and temporary variables and
vastly improves the readability of the code.

5.1.4 Automatic Load Balancing

A measurement-based load balancing framework in Charm++

enables strong scaling with minimal effort from the applica-
tion programmer. It is critical in an application like LeanMD,
which can suffer from substantial load imbalance because of
the variation in sizes of computes resulting from a spherical
cutoff. Measurement-based load balancing is well suited for
applications where the recent past is a predictor of the near
future. This works well for LeanMD because atoms migrate
slowly and hence the load fluctuations are gradual.

5.1.5 Communication Libraries

Charm++ provides a set of communication libraries which
supports efficient multicast and reduction operations. In
each iteration of LeanMD, the atoms contained in a cell are
sent to every compute that needs them. Also, the resultant
forces on atoms in a cell are obtained by a summation of the
forces calculated by each compute that received those atoms.
LeanMD exploits the ability of the runtime to generate effi-
cient spanning trees over arbitrary sets of processors.

5.2 Performance

We present performance numbers for LeanMD on two ma-
chines: 1) Intrepid - an IBM Blue Gene/P installation at
ANL and 2) Hopper - the Cray XE6 at NERSC. LeanMD
was run using two molecular systems - one consisting of
125, 000 atoms and a second larger system of 1 million atoms.
Note that the runs on Hopper were done on non-power of
two cores so as to use all the cores allocated to the job (on
Hopper, allocation happens in multiples of 24 cores).

Figure 4 presents the results for the molecular system of
125,000 atoms on Intrepid and Hopper. For this small sys-
tem of atoms, without load balancing, we observe that the
performance saturates at 1024 cores. However, if load bal-

Performance on Intrepid (125,000 atoms)

1000
No LB

Refine LB 230

S
S

Time per step (ms)

)

AN

256

Number of cores

Figure 4: Performance of LeanMD for a 125,000-atom

XE6)
Performance on Intrepid (I million atoms)
10000 ¢
No LB .
Refine LB 223
£ o000k
o
2
o
a
o
£ 100 |
fisd

256 512 1024 2048 4096 8192 16384 32768 65536

Number of cores

Time per step (ms)

Performance on Hopper (125,000 atoms)

100
o No LB .
Refine LB =30

)
T

264 528 1032 2064 4104 16392

Number of cores

8208

system on Intrepid (IBM BG/P) and Hopper (Cray

Time per step (ms)

Performance on Hopper (I million atoms)

10000
No LB .
Refine LB =3

1000

10 mn
264 528

=)
S

.

1032 2064 4104 8208

Number of cores

Figure 5: Performance of LeanMD for a 1 million atom system on Intrepid (IBM BG/P) and Hopper (Cray

XE6)

ancing is used, the performance keeps on improving till 8192
cores after which the gains are small because of the relatively
small size of the system. The parallel efficiency at 8192 cores
compared to the 256-core performance is 60% on Intrepid
and for a similar increase in the number of cores, it is 50%
on Hopper. Note that, on Hopper, the time per step at
16392 cores is less than 2 ms which is very good considering
that each step of LeanMD has two way data communication
and a good amount of computation.

Performance results for the 1 million atom system are pre-
sented in Figure 5. On Intrepid, using load balancing, the
performance of LeanMD improves by 52x (efficiency of 83%)
as the number of cores is increased from 256 to 16384. Be-
yond 16, 384 cores, reduced performance gains are observed
possibly due to the topology oblivious nature of load bal-
ancers used. The performance using load balancing shows a
super linear speed up on Hopper as it improves by 33x as
the number of cores increases by 32x. This can be attributed
to a smaller work set per core that results in better cache
performance.

Figure 6 presents the performance numbers for running
LeanMD on allocation with non-powers of two cores. The
number of cores was increased from 64 to 128 with an in-
terval of 4 cores between consecutive runs. Two important
points are demonstrated via this experiment: 1) Charm++

MD on non power-of-2 cores

Time per step (ms)

Number of cores

Figure 6: Performance of LeanMD for non power of
2 cores on Intrepid (IBM BG/P)

can be used to run applications on arbitrary number of cores
and 2) Charm++ preserves the performance characteristics
of an application for any arbitrary number of cores.

5.3 Implementation

In the Charm++ implementation the computation is par-
allelized using a hybrid scheme of spatial and force decom-
position. The three-dimensional (3D) simulation space con-
sisting of atoms is divided into cells of dimensions that are
equal to the sum of the cutoff distance, r. and a margin.

In each iteration, force calculations are done for all pairs of
atoms that are within the cutoff distance. The force calcula-
tion for a pair of cells is assigned to a different set of objects
called computes.

At the beginning of each time step, every cell multicasts
the positions of its atoms to the computes that need them
for force calculations. Every compute receives positions from
two cells and calculates the forces. These forces are sent back
to the cells which update other properties of the atoms. Ev-
ery few iterations, atoms are migrated among the cells based
on their new positions. Structured Dagger is used to control
the flow of operations in each iteration and trigger depen-
dent events. The load balancing framework is invoked peri-
odically after a certain number of iterations to redistribute
computes and cells among the processors. In the submitted
version, the parallel control flow is described in the run func-
tions of each chare in leanmd.ci. The reduction for forces
computed by computes is in physics.h.

5.4 Specification and Verification

For a pair of atoms, the force can be calculated based on

the distance by,
- A B R
F = <rT3 — 17) X T (2)

where A and B are Van der Waals constants and r is the
distance between the pair of atoms. Table 5 lists a set of
parameters and their values used in LeanMD.

Parameter Values

A 1.6069 x 10713
B 1.0310 x 10777
Atoms per cell 150
Cutoff distance, r. 12 A
Cell Margin 2 A
Time step 1 femtosecond

Table 5: Simulation details for LeanMD
The benchmark computes kinetic and potential energy

and uses the principle of conservation of energy to verify
that the computations are stable. Users can choose to run
the benchmark for as many timesteps as desired, and verifi-
cation statistics are printed at the end.

6. BARNES-HUT

The N-body problem involves the numerical calculation
of the trajectories of N point masses (or charges) moving
under the influence of a conservative force field such as that
induced by gravity (or electrical charges). In its simplest
form, the method models bodies as particles of zero extent
moving in a collision-less manner. The objective is to cal-
culate the net force incident on every particle at discrete
time steps. These forces are then used to update the veloc-
ity and position of each particle, leading into the next time
step, where the net force on each particle is calculated once
more, etc. In general, the force may be long-range in nature
(as is the case with gravity), so that interactions between
distant particles must also be calculated. Thus, in order
to obtain a good approximation to the actual solution of
a system, O(N?) computations must be performed. Given
its quadratic complexity, the amount of work done by this
all-pairs method makes it infeasible for systems with large
N.

Barnes and Hut [8] devised a hierarchical N-body method
that performs significantly fewer computations but at the
cost of a greater relative error in the computed solution.
The method relies on the spatial partitioning of the input
system of particles, thereby imposing a tree-structure on it.
Particles that are close to each other in space are grouped
into closely related nodes of the tree. This allows the ap-
proximation of forces on a particle due to a distant group
of particles through the multipole moments of that group.
Note that applying such an approximation to points rela-
tively close to the group will result in gross errors of calcu-
lation. In such a case, sub-partitions within the group are
tested for proximity to the point. This technique, applied
systematically, yields an expected complexity of O(NIgN),
making it suitable for large systems of particles.

6.1 Implementation

Below we describe the structure of the Barnes-Hut method
in greater detail. We also discuss the distributed tree data
structure used to partition particles and detail its construc-
tion.

6.1.1 Space partitioning trees

The Barnes-Hut algorithm relies on the organization of
particles into a spatial tree. The leaves of such a tree rep-
resent particles, or small groups of particles called buckets.
Each node of the tree represents a spatial partition enclosing
a certain number of particles. Space partitioning trees may
be constructed to have different properties and structures.
For example the kd-tree attempts to balance the number
of particles within each child of a parent node. Here, we
focus on the distributed binary space partitioning tree as
the underlying data structure for the Barnes-Hut algorithm.
This data structure has several desirable properties, such as
good aspect ratio of partitions (leading to a reduction in the
surface area per unit volume, and therefore total communi-
cation) and flexibility in deciding the communication grain
size. However, by itself the binary space partitioning tree
does not guarantee an even distribution of particles or com-
putational load across partitions. The tree is constructed
recursively in the following fashion. Given a node that rep-
resents a particular partition of space, if the node has more
than a threshold number of particles, it is split along an
axis (the axis is chosen in a round-robin fashion) to create
two new children of equal size, maintaining the axis-aligned
nature of the children.

When constructing the tree in parallel on a distributed
memory machine, it is customary to divide the procedure
into two distinct phases, namely domain decomposition and
tree construction. In the Charm-++ implementation that we
discuss here, both phases are managed by a PE-level entity
(i.e. a group) called the DataManager. Therefore, we will
refer to DataManagers (DMs) and PEs interchangeably.

6.1.2 Domain decomposition

The objective of the domain decomposition phase is to
assign particles to members of a one-dimensional chare ar-
ray of TreePieces. This step is similar to the sorting of keys
in parallel, both in structure and effect. In fact, the iter-
ative master-worker structure used here closely resembles
that of histogram sort [9]. Each PE (i.e. DM) begins by
loading its share of particles from an input file. The PE
then performs a local sort on its particles. An iterative dis-

tributed histogramming phase follows, in which a master PE
obtains the total number of particles in each active node. A
node is active if the histogramming procedure is currently
determining the number of particles in it through a global
reduction. The reduction operation is done on arrays of
counts contributed by worker PEs. If it is determined that
an active node has more than a threshold number of parti-
cles, it is removed from the active list and its children are
made active. This new list of active nodes is broadcast to
the workers, each of which performs a local partitioning of
the parents’ particles among the new, active children. On
the other hand, if a node is determined to be within the
user-specified threshold of particles, it is removed from the
active list and a corresponding TreePiece is created. At this
point, each PE flushes the subset of its particles that lie be-
neath that node to the TreePiece. When there are no active
nodes remaining, domain decomposition is complete. The
master also broadcasts a list of key ranges to the workers,
thereby informing all PEs of the range of particles held by
each TreePiece. This information is needed in order to label
the nodes of a local tree with ownership data in the tree
construction phase (described below).

6.1.3 Tree construction

Upon receiving all the particles intended for it, each TreePiece

submits its particles to the DataManager on its PE. This al-
lows all particles on a PE to be agglomerated by the Data-
Manager, resulting in a larger locally accessible tree for all
TreePieces on the PE. The DataManager calculates the mo-
ments (in our simple implementation these are the total
mass and center of mass) of all nodes that are exclusively
on its PE. However, in general each PE holds only a sub-
set of the particles in the system, so that the global tree
cannot be recreated in its entirety on any PE. Therefore,
in order to enable access to remote portions of the tree the
DataManager annotates it with ownership information. In
effect, the information about the (disjoint) range of parti-
cles held by each TreePiece is used to calculate the range
of owners of each node. Note that nodes, especially those
at shallower levels of the tree, can be shared among many
TreePieces since they may enclose particles assigned to a
number of TreePieces. In particular, the root is shared by
all TreePieces.

Time

Incoming

remote data / requestforfdata \ f

o — @ I&HH:H

Local work continues

Request for " Data received

Data sent

Remote Traversal

Local Traversal

Incoming Data Request
Update particles positions

Figure 7: Time Progression view showing 2 proces-
sors executing an iteration of Barnes-Hut

6.1.4 Tree traversal

The computation of gravitational forces is preceded by a
traversal of the distributed Barnes-Hut tree by each TreePiece.
The traversal can be defined recursively, and is at the heart
of the O(NlgN) complexity of the algorithm. Given a target
particle, on which net force is to be calculated, and a source
node (initially the root), the traversal checks whether the
distance between the particle and node is large enough to
apply the Barnes-Hut approximation. If so, an interaction
between the particle and the moments of the node is com-
puted and the node is discarded. If the node is not far
enough, the children of the node are considered in turn. In
the Charm++ version of the code the DataManager provides
TreePieces with seamless access to remote nodes. If the node
is a leaf, pairwise interactions between its particles and the
target are performed. In our implementation, the cost of
traversing the tree is amortized over several local particles
by grouping them into buckets. Of course, by group parti-
cles into buckets, we are forcing interactions that needn’t be
performed, but this extra computation is insignificant when
compared to the benefit of reduced memory accesses due to
fewer traversals. For each bucket of local particles the global
tree is traversed in two parts — a local traversal is conducted
on that portion of the Barnes-Hut tree that is local to the
PE whereas a remote traversal operates on the remainder of
the distributed Barnes-Hut tree, leading to communication
between tree pieces in the form of requests for remote nodes
and particles. By assigning greater precedence to remote
traversals than local ones, we can use the Charm++ feature
of automatic computation-communication overlap to
accelerate the critical path: in effect, the latency of high-
priority remote data communication can be overlapped with
low-priority local work. This effect is illustrated by figure 7.

Requests for remote data are funneled through the Data-
Manager so as to merge requests for the same particles and
nodes from local TreePieces. This optimization in itself can
substantially reduce the volume of communication. We com-
bine this technique with a software-managed remote data
cache to increase the amount of data reuse. Upon receipt of
remote data, the DataManager maintains a copy of the data
so that it may be reused by other TreePieces that require it.

6.1.5 Advancing particles

Once the net force on each particle has been calculated, we
integrate the kinematical equations of motions for it over the
duration of a single time step. We use a single-timestepping
second-order leapfrog integration technique for this purpose.
Note that this translation can only be performed once it is
guaranteed that all traversals have completed. This serves
as the boundary for an iteration; following it, particles are
once again decomposed onto TreePieces, this time based on
the new positions of the particles.

6.2 Performance and Productivity Benefits

This subsection briefly enumerates some of the key fea-
tures of the Charm++ implementation of the Barnes-Hut
algorithm and how they were facilitated by the Charm++
programming model and runtime system.

6.2.1 PE-level Software cache

Charm++ provides entities called groups to enable man-
agement and aggregation tasks at the level of PEs. In our
Barnes-Hut code we use the DataManager group to aggre-

gate inter-processor communication and improve reuse of
remotely fetched data.

6.2.2 Automatic Overlap between computation and
communication.

The asynchronous message-driven model of Charm++ pro-
vides explicit opportunities for the overlap of computation
and communication. Asynchronous communication does not
require participation from the recipient, so that message la-
tency can be overlapped with useful computation done after
communication. Adaptive overlap helps to improve the per-
formance of the Barnes-Hut code in several phases: (1) to
overlap particle exchange latencies with decomposition work
for remaining active nodes following domain decomposition;
(2) in the tree building phase, requests for remote moments
may be fired before attending to local calculation of mul-
tipole moments and (3) to mask latency of communication
associated with remote data requests and responses in the
tree traversal phase.

6.2.3 Prioritization to accelerate critical path

Charm++ has explicit support for best-effort prioritiza-
tion of messages. Such support is of use in giving precedence
to critical tasks, on which other objects are dependent. In
the case of the Barnes-Hut code, priorities are used in two
contexts: (1) To give precedence to remote data requests,
since the requesting TreePieces may be waiting to receive
the associated data and (2) to encourage automatic overlap
of communication intensive remote traversals with compu-
tation intensive local traversals.

6.2.4 ORB Load Balancing

The Charm++ run time system incorporates a dynamic,
measurement-based load balancing infrastructure, thereby
separating the issues of decomposing data units onto work
units and mapping the work units onto the processing ele-
ments. This removes the burden of dynamic load balanc-
ing from programmers, allowing them to use generic or cus-
tomized strategies for load balancing. Such a separation is of
great value in N-body simulations, where the appropriate-
ness of balancing strategies can depend greatly on the distri-
bution of data. N-body codes written in other paradigms,
for instance, must perform decomposition with an eye to
maintaining load balance. See, for instance, the cost-zone
partitioning used by the authors of the SPLASH bench-
marks [10].

6.3 Performance

We present performance results obtained by running our
implementation on Intrepid, the IBM Blue Gene/P Super-
computer located at Argonne National Laboratory. Figure 8
presents the results for Barnes-Hut on synthetic 10- (10m)
and 50-million (50m) particle systems generated according
to the Plummer model for star clusters. Using the ORB
load balancing strategy, the code scales up to 16k cores with
the 50m dataset, yielding a parallel efficiency of 69% relative
to performance at 2k cores. We expect that the code will
demonstrate better scaling behavior with (a) a more sophis-
ticated load balancer, (b) larger input data size and (c) a
more uniform distribution of particles, the kind of which are
used in large-scale cosmological simulations.

Barnes-Hut scaling on BG/P

16.00 ‘
50m ——

- 10m
8 8.00
c
8
@ 4.00
oy
2 200
2
= 1.00

0.50 ‘ .

2k 4k 8k 16k

Cores

Figure 8: Performance of Barnes-Hut for 10 and 50
million particle systems on Intrepid (IBM BG/P)

6.4 Specifications and Verification

We provide a brief description of the simulation method
and input distribution so that the reader may recreate the
conditions of our experiments.

1. Input system. The one and ten million particle data
sets used as input were generated using the Plummer
model for initial conditions of star clusters. These
generate a fairly non-uniform distribution of particles,
thereby testing the load balancing infrastructure. The
particle data set was generated using code adapted
from the barnes benchmark of the SPLASH suite.

2. Our code evaluates itself for correctness by verifying
the conservation of total energy of the input system.
The total energy is calculated and reported at iteration
boundaries.

3. We used standard values for several simulation param-
eters. Among these, the opening angle, 0, was set
to 0.5 and the softening parameter € was set to 0.05.
Load balancing was initiated every 10 iterations, so as
to provide enough instrumentation time to the load
balancer. Finally, the tree was constructed to have a
maximum of 8 particles per leaf.

7. CONCLUSION

Charm++ is an extremely general-purpose parallel pro-
gramming paradigm capable of high performance. It is suit-
able for a wide spectrum of parallel programs. Over the
years it has attempted to present abstractions and seman-
tics that are derived as generalizations of successful domain-
specific solutions. The benchmarks presented here do not
use any domain-specific languages tailored to the problem.
However, its possible to envision domain-specific languages
or targeted, parallel abstractions deployed atop this general
model for further productivity benefits. Our implementa-
tions should underscore the productivity impact of the pro-
gramming model and the benefits of the approaches we have
discussed in section 1.

8. READING ORDER

We suggest reading the submitted applications in the or-
der listed below, in order to obtain a coherent introduction
to the various features of Charm++ that they use.

Global FFT.

1.

fft1d.ci — contains control flow in the doFFT() func-
tion.

. fftild.cc — contains all serial code and initialization

routines

. verify.cc — contains residual calculation and verifica-

tion initialization

Molecular Dynamics.

1.

leanmd.ci — contains the parallel control flow; focus
on run() function of each chare.

. Cell.cc — contains important functions of Cell; focus

on sendPositions() and updateProperties().

. Compute.cc — interact() function that does the force

computation

. Main.cc — start point of application; passes control to

run()

Dense LU Factorization.

1.

2.

lu.ci — Control flow for the factorization and solve
process is described here, starting from the steps that
every block executes, then proceeding to the factor-
ization steps taken by blocks in different active panel
positions (above diagonal, below diagonal, on diago-
nal). The methods used during solving and startup
follow. Implementations of sequential methods called
from lu.ci can be found in order of reference in 1u.C.
These include the data copying and sending used in
pivoting, and routines to set up BLAS calls.

mapping.h — Some data distributions available for use
with the factorization/solver library. These can be
set independently of the algorithm’s computation and
communication logic.

. benchmark.C — Setup and validation code.

. scheduler.C — Logic to determine when blocks of re-

mote data should be retrieved based on what work
local blocks are ready to do, within the bounds of a
memory constraint. Also tracks when latency-sensitive
active panel work is occurring in order to defer bulk
trailing updates.

Random Access.
randomAccess.ci should be read first followed by
randomAccess.cc

Barnes-Hut.

barnes.ci contains the description of the parallel inter-
faces. Examine the interfaces used for the different phases
in the computation (decomposition, tree building, traver-
sal) and use this as a launch point to examine the rest of
the code. All relevant parallel code is in the DataManager
and TreePiece files.

9.
[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

REFERENCES

L.V. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++.
In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91-108. ACM Press, September 1993.

L. V. Kale and Milind Bhandarkar. Structured
Dagger: A Coordination Language for Message-Driven
Programming. In Proceedings of Second International
Euro-Par Conference, volume 1123-1124 of Lecture
Notes in Computer Science, pages 646—653, September
1996.

Jonathan Lifflander, Phil Miller, Ramprasad
Venkataraman, Anshu Arya, Terry Jones, and
Laxmikant Kale. Exploring partial synchrony in an
asynchronous environment using dense lu. Technical
Report 11-34, Parallel Programming Laboratory,
August 2011.

Abhinav Bhatele, Eric Bohm, and Laxmikant V. Kale.
Optimizing communication for charm++ applications
by reducing network contention. Concurrency and
Computation: Practice and Experience, 23(2):211-222,
2011.

Abhinav Bhatele, Sameer Kumar, Chao Mei, James C.
Phillips, Gengbin Zheng, and Laxmikant V. Kale.
Overcoming scaling challenges in biomolecular
simulations across multiple platforms. In Proceedings
of IEEE International Parallel and Distributed
Processing Symposium 2008, April 2008.

Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J.
Bohm, Laxmikant V. Kalé, James C.Phillips, and
Chris Harrison. Enabling and scaling biomolecular
simulations of 100 million atoms on petascale machines
with a multicore-optimized message-driven runtime. In
Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.
Michael A. Heroux, Douglas W. DoerinCer, Paul S.
Crozier, James M. Willenbring, H. Carter Edwards,
Alan Williams, Mahesh Rajan, Eric R. Keiter,

Heidi K. Thornquist, and Robert W. Numrich.
Improving performance via mini-applications.
Technical report, Sandia National Laboratories,
September 2009.

J. E. Barnes and P. Hut. A hierarchical O(NlogN)
force calculation algorithm. Nature, 324, 1986.

L. V. Kale and Sanjeev Krishnan. A comparison based
parallel sorting algorithm. In Proceedings of the 22nd
International Conference on Parallel Processing, pages
196-200, St. Charles, IL, August 1993.

J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared memory.
Computer Architecture News, 20(1):5-44, March 1992.

	Programming Model
	Salient Features
	Object-based
	Message-Driven
	Over-decomposed
	Runtime-Assisted

	Interface Definitions
	Structured Dagger

	Dense LU Factorization
	Productivity
	Composable Library
	Flexible Data Placement
	Block-Centric Control Flow
	Separation of Concerns

	Performance
	Adaptive Lookahead
	Asynchronous Collectives

	Implementation
	Data Distribution
	Asynchrony and Overlap
	Block Scheduler

	Verification

	Global FFT
	Productivity
	Performance
	Implementation
	Verification

	Random Access
	Productivity
	Quiescence Detection
	Automatic Topology Determination
	Communication Libraries

	Performance
	Implementation
	Verification

	Molecular Dynamics
	Productivity
	Dense and Sparse Charm++ Arrays
	Ability to run variable size jobs
	Structured Dagger
	Automatic Load Balancing
	Communication Libraries

	Performance
	Implementation
	Specification and Verification

	Barnes-Hut
	Implementation
	Space partitioning trees
	Domain decomposition
	Tree construction
	Tree traversal
	Advancing particles

	Performance and Productivity Benefits
	PE-level Software cache
	Automatic Overlap between computation and communication.
	Prioritization to accelerate critical path
	ORB Load Balancing

	Performance
	Specifications and Verification

	Conclusion
	Reading Order
	References

