
to those used for the 64 supernode case (see Table 5, Section 6.2).
Since one dimension is a non-power-of-2 and significantly bigger
than the other three, mapping on 300 supernodes is more challeng-
ing than on 64 supernodes. It is also impossible to pack all the su-
pernodes exactly as per the mappings in the table. To handle this,
we continue to map MPI tasks in the described shapes as long as it
is possible to pack them neatly within the supernodes, and for the
remaining supernodes (that are generally small in number), we do
a random drawer assignment. For random nodes and random draw-
ers mappings, we choose the node dimensions to be 4× 4× 2× 1
tasks and the drawer dimensions to be 8× 8× 4× 1 tasks.

Figure 12 presents the average, minimum and maximum data
sent over the LL, LR and D links. Similar to the the 2D and 4D
mappings on 64 supernodes, the default mapping leads to heavy
traffic on all types of links. We observe similar LL and LR link us-
age for all mappings but the differences are significant for the usage
of D links. Again, it is important to note that the communication
volume on D links is almost ten times higher than the communica-
tion on LL and LR links (see y-axis). One difference from the 64
supernode mapping of 4D Stencil is that the blocked node mapping
does not lower link utilization as compared to the default mapping.
Also, the random drawers mapping does not perform as well as the
random nodes mapping. The random nodes mapping and the map-
pings with indirect routing lead to the lowest D link usage which
also translates to improvements in performance (Figure 13).

Figure 13: Time spent in communication and overall execution
per iteration for different mappings on 300 supernodes

The performance results, in terms of execution time per iteration
are as expected (Figure 13). As observed for the 64 supernode
mapping of 4D Stencil, random nodes mapping and indirect routing
cases give the best performance, followed closely by the random
drawers mapping. The benefit is substantial, not only in terms of
the communication time (which is reduced by 75% for the best
mapping), but also for the per iteration time. We see a reduction of
42% in the application run time relative to the default mapping. The
best mapping is worse by 24% when compared to the lower bound
which indicates that there is still some room for improvement.

8. RELATED WORK
Mapping of guest graphs on to host graphs has been a subject of

interest in mathematics, VLSI design and parallel computing since
the 1980s. In parallel computing, several techniques were devel-
oped to map communication graphs to hypercubes in the 1980s [7,
18, 19] and to torus networks in the early 2000s [4, 20]. More
recently, several application and runtime system developers have
studied techniques for mapping [1, 5, 8, 10] to three-dimensional

torus topologies with the emergence of supercomputers like the
IBM Blue Gene and Cray XT/XE series.

Two-level direct networks were proposed recently by indepen-
dent groups [2, 15, 16] and are being considered as an alternative
to the more popular torus and fat-tree designs for building exascale
machines. Hoefler et al. discuss mapping algorithms to minimize
contention and demonstrate their applicability to the PERCS net-
work through mapping simulations of sparse matrix-vector multi-
plication up to 1, 792 nodes [11]. Our work considers both regular
and irregular communication graphs and presents simulation results
on up to 307, 200 cores. Use of the BigSim simulation framework
allows us to present detailed link utilization and timing information
for different applications. We also discuss the interplay of mapping
and routing and present best choices for both.

In this paper, we did not consider hybrid codes (MPI + OpenMP
or pthreads). Mapping of hybrid codes is a specific instance of the
general mapping problem since one can assume one core per node
and one MPI task being mapped to each core. We also restricted our
discussion to static communication patterns in this work. Changes
in communication within an application can be handled by a dy-
namic load balancer, which in turn can deploy the discussed map-
ping algorithms. Considering inter-job contention, both static and
dynamic is beyond the scope of this work and will be discussed in
a future publication.

9. CONCLUSION
Multi-level direct networks have emerged as a new technology

to connect a large number of processing elements together. De-
fault MPI rank-ordered mapping with direct routing on such net-
works leads to significant hot-spots, even for simple two and four-
dimensional near-neighbor communication patterns. This paper
discusses techniques and analyzes various choices for congestion
control on these networks.

We use detailed packet-level network simulations for up to three
hundred thousand MPI tasks and three different communication
patterns to compare various mappings – default mapping, blocked
mapping to nodes, drawers, or supernodes and mapping to random
nodes and drawers. We also compare direct versus indirect routing
for some of the mappings. We show performance improvements
of up to 42% for some mapping and routing combinations. For
the communication patterns simulated in this paper, we find that
if direct routing is used, mapping blocks of MPI tasks to random
nodes gives the best performance and evenly distributed usage of
D links. We also observe that indirect routing can achieve perfor-
mance comparable to an intelligent mapping and obviates the need
for mapping, at the cost of increasing overall traffic on the network.

This paper also highlights the utility of simulation-based predic-
tions to analyze algorithms and make design choices before a par-
allel machine is installed and available for use. This will become
increasingly important as machine sizes grow, making it essential
to do application and hardware co-design.

Acknowledgments
This research was supported in part by the Blue Waters sustained-
petascale computing project (which is supported by the NSF grant
OCI 07-25070 and the state of Illinois) and by a DOE Grant DE-
SC0001845 for HPC Colony II. Runs for this paper were done on
Blue Print and Ember, resources at NCSA. The authors would like
to thank Ryan Mokos for building the Blue Waters network sim-
ulation model used in this paper. This document was released by
Lawrence Livermore National Laboratory for an external audience
as LLNL-CONF-491454.


