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Introduction

• Various kinds of interconnect networks deployed 
today for supercomputers

• mesh, fat-tree, Kautz graph, dragonfly

• Link sharing leads to contention and performance 
slowdowns

• Communication optimization becoming increasingly 
important
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Topology aware mapping

• Mapping the communication graph of an application 
to the physical topology can optimize 
communication

• Diverse set of parameters from the application graph 
and the processor topology

• one solution may not do well in all cases

• Specific heuristics for mesh topologies and regular/
irregular communication graphs

3



Lawrence Livermore National Laboratory
LLNL-PRES-495871 Abhinav Bhatele @ ESCAPE 2011

Automatic Mapping Framework
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Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more e⇥cient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such
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Two different scenarios

• There is no spatial information associated with the 
node

• Option 1: Work without it

• Option 2: If we know that the simulation has a geometric 
configuration, try to infer the structure of the graph

• We have geometric coordinate information for each 
node

• Use coordinate information to avoid crossing of edges and for 
other optimizations
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Finding the nearest available 
processor

• Algorithms in this paper:

• pick a vertex in the graph to map

• find a “desirable” processor to place it on

• Spiraling

• Quadtree
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Finding the nearest available 
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• Algorithms in this paper:

• pick a vertex in the graph to map
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• Spiraling
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Finding the nearest available processor
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Fig. 1. Execution time (in microseconds) for 16, 384 consecutive calls to the spiraling and quadtree algorithms for findNearest from the AFFN mapping
algorithm for irregular graphs

to a processor in the physical topology. Irregular communi-
cation graphs provide an instance of the mapping problem in
its most general form. In an irregular communication graph,
each node can have an arbitrary number of neighbors and the
weights on the edges can also be different. We discuss two
kinds of heuristics to handle two different cases –

Scenario 1: There is no information about the physics be-
hind the application, from which the communication graphs
were obtained. In this case, we use heuristics that exploit
the neighbor relations between different nodes (Section IV).
The heuristics make no assumptions about patterns in the
communication graph.

Scenario 2: It is known that the application has a geometric
structure even though the graph is irregular. Quite often,
when simulating fractures in planes or solid objects using
unstructured grids, the tasks in the parallel application have
some geometric coordinate information associated with them,
and the communication structure is related to the geometry
(i.e. entities with nearby coordinates communicate more.) If
we have this coordinate information, we can exploit it to do a
better mapping (Section VI). Even if we do not have access to
this information but the domain is known to have a geometric
structure, we can try to infer the geometric arrangement of the
tasks using graph layout algorithms (Section V).

The heuristics presented in this paper are applicable for
mapping to two or three-dimensional mesh topologies but
also extensible to any other topology. This is facilitated by
the general idea on which all algorithms in this paper are
based: At each step, they select a “suitable” object to map
and find a “desirable” processor to place the object on. If
the desired processor is not available (it is overloaded based
on some criteria), another processor close to this processor
is chosen. As long as we can define functions to choose a
desirable processor and to find the nearest available processor
for a specific topology, the heuristics are generally applicable.

We begin with providing an efficient implementation to
find the nearest available processor in a two-dimensional

(2D) mesh. We then discuss mapping heuristics for different
scenarios and evaluate the heuristics based on the mapping
of communication graphs obtained from an unstructured grid
application.

III. FINDING THE NEAREST AVAILABLE PROCESSOR

We want to find the nearest available processor given
1) a “desirable” processor, and 2) a table indicating which
processors are available. One possible implementation is to
start at the desirable processor and spiral around it, first
looking at processors at distance 1, then distance 2, 3 and
so on. All processors at a certain distance are enumerated by
choosing one coordinate (x) first and then calculating the other
coordinate (y) based on the current value of distance being
considered. The first available processor that we come across
is returned as the answer. We refer to this as the spiraling
(through enumeration) algorithm for finding the nearest avail-
able processor.

The spiraling implementation presented above has a worst
case time complexity of O(p) where p is the number of
processors. Hence, if findNearest2D is called for each
node during mapping, it leads to a worst-case time complexity
of O(p2) for the mapping algorithm (number of nodes in
the communication graph, n = p). Figure 1 (left) shows the
running time for the algorithm when it is called from one of
the mapping algorithms (AFFN, see Section VI) for irregular
graphs. All timing runs for this paper were done on a 2.4
GHz Intel Core 2 Duo processor. Towards the end (for the last
two thousand calls), the execution time for findNearest2D
calls is quite significant. As more and more processors become
unavailable, spiraling around the desirable processor continues
for longer and longer distances before an available processor
is found. This can be avoided, in practice, by keeping a list
of the available processors when their number drops below a
certain threshold.

However, using an alternate implementation based on a
quadtree data structure (octree in case of 3D), we think that
the average-case running time of this algorithm can be reduced
further. It should be noted that both implementations give the
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Fig. 1. Execution time (in microseconds) for 16, 384 consecutive calls to the spiraling and quadtree algorithms for findNearest from the AFFN mapping
algorithm for irregular graphs

to a processor in the physical topology. Irregular communi-
cation graphs provide an instance of the mapping problem in
its most general form. In an irregular communication graph,
each node can have an arbitrary number of neighbors and the
weights on the edges can also be different. We discuss two
kinds of heuristics to handle two different cases –

Scenario 1: There is no information about the physics be-
hind the application, from which the communication graphs
were obtained. In this case, we use heuristics that exploit
the neighbor relations between different nodes (Section IV).
The heuristics make no assumptions about patterns in the
communication graph.

Scenario 2: It is known that the application has a geometric
structure even though the graph is irregular. Quite often,
when simulating fractures in planes or solid objects using
unstructured grids, the tasks in the parallel application have
some geometric coordinate information associated with them,
and the communication structure is related to the geometry
(i.e. entities with nearby coordinates communicate more.) If
we have this coordinate information, we can exploit it to do a
better mapping (Section VI). Even if we do not have access to
this information but the domain is known to have a geometric
structure, we can try to infer the geometric arrangement of the
tasks using graph layout algorithms (Section V).

The heuristics presented in this paper are applicable for
mapping to two or three-dimensional mesh topologies but
also extensible to any other topology. This is facilitated by
the general idea on which all algorithms in this paper are
based: At each step, they select a “suitable” object to map
and find a “desirable” processor to place the object on. If
the desired processor is not available (it is overloaded based
on some criteria), another processor close to this processor
is chosen. As long as we can define functions to choose a
desirable processor and to find the nearest available processor
for a specific topology, the heuristics are generally applicable.

We begin with providing an efficient implementation to
find the nearest available processor in a two-dimensional

(2D) mesh. We then discuss mapping heuristics for different
scenarios and evaluate the heuristics based on the mapping
of communication graphs obtained from an unstructured grid
application.

III. FINDING THE NEAREST AVAILABLE PROCESSOR

We want to find the nearest available processor given
1) a “desirable” processor, and 2) a table indicating which
processors are available. One possible implementation is to
start at the desirable processor and spiral around it, first
looking at processors at distance 1, then distance 2, 3 and
so on. All processors at a certain distance are enumerated by
choosing one coordinate (x) first and then calculating the other
coordinate (y) based on the current value of distance being
considered. The first available processor that we come across
is returned as the answer. We refer to this as the spiraling
(through enumeration) algorithm for finding the nearest avail-
able processor.

The spiraling implementation presented above has a worst
case time complexity of O(p) where p is the number of
processors. Hence, if findNearest2D is called for each
node during mapping, it leads to a worst-case time complexity
of O(p2) for the mapping algorithm (number of nodes in
the communication graph, n = p). Figure 1 (left) shows the
running time for the algorithm when it is called from one of
the mapping algorithms (AFFN, see Section VI) for irregular
graphs. All timing runs for this paper were done on a 2.4
GHz Intel Core 2 Duo processor. Towards the end (for the last
two thousand calls), the execution time for findNearest2D
calls is quite significant. As more and more processors become
unavailable, spiraling around the desirable processor continues
for longer and longer distances before an available processor
is found. This can be avoided, in practice, by keeping a list
of the available processors when their number drops below a
certain threshold.

However, using an alternate implementation based on a
quadtree data structure (octree in case of 3D), we think that
the average-case running time of this algorithm can be reduced
further. It should be noted that both implementations give the
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each node can have an arbitrary number of neighbors and the
weights on the edges can also be different. We discuss two
kinds of heuristics to handle two different cases –
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were obtained. In this case, we use heuristics that exploit
the neighbor relations between different nodes (Section IV).
The heuristics make no assumptions about patterns in the
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unstructured grids, the tasks in the parallel application have
some geometric coordinate information associated with them,
and the communication structure is related to the geometry
(i.e. entities with nearby coordinates communicate more.) If
we have this coordinate information, we can exploit it to do a
better mapping (Section VI). Even if we do not have access to
this information but the domain is known to have a geometric
structure, we can try to infer the geometric arrangement of the
tasks using graph layout algorithms (Section V).

The heuristics presented in this paper are applicable for
mapping to two or three-dimensional mesh topologies but
also extensible to any other topology. This is facilitated by
the general idea on which all algorithms in this paper are
based: At each step, they select a “suitable” object to map
and find a “desirable” processor to place the object on. If
the desired processor is not available (it is overloaded based
on some criteria), another processor close to this processor
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1) a “desirable” processor, and 2) a table indicating which
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so on. All processors at a certain distance are enumerated by
choosing one coordinate (x) first and then calculating the other
coordinate (y) based on the current value of distance being
considered. The first available processor that we come across
is returned as the answer. We refer to this as the spiraling
(through enumeration) algorithm for finding the nearest avail-
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The spiraling implementation presented above has a worst
case time complexity of O(p) where p is the number of
processors. Hence, if findNearest2D is called for each
node during mapping, it leads to a worst-case time complexity
of O(p2) for the mapping algorithm (number of nodes in
the communication graph, n = p). Figure 1 (left) shows the
running time for the algorithm when it is called from one of
the mapping algorithms (AFFN, see Section VI) for irregular
graphs. All timing runs for this paper were done on a 2.4
GHz Intel Core 2 Duo processor. Towards the end (for the last
two thousand calls), the execution time for findNearest2D
calls is quite significant. As more and more processors become
unavailable, spiraling around the desirable processor continues
for longer and longer distances before an available processor
is found. This can be avoided, in practice, by keeping a list
of the available processors when their number drops below a
certain threshold.

However, using an alternate implementation based on a
quadtree data structure (octree in case of 3D), we think that
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Spiraling vs Quadtree
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Spiraling vs Quadtree

• Performance when 
called from AFFN: a 
mapping algorithm
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Mapping Irregular Graphs
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No coordinate information
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No coordinate information

• Breadth first traversal (BFT)

• Start with a random node and one end of the processor mesh

• Map nodes as you encounter them close to their parent
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No coordinate information

• Breadth first traversal (BFT)

• Start with a random node and one end of the processor mesh

• Map nodes as you encounter them close to their parent

• Max heap traversal (MHT)

• Start with a random node and one end/center of the mesh

• Put neighbors of a mapped node into the heap (node at the top 
is the one with maximum number of mapped neighbors)

• Map elements in the heap one by one around the centroid of 
their mapped neighbors
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Mapping visualization

BFT: 2.89 MHT: 2.69
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Inferring the spatial placement
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Inferring the spatial placement

• Graph layout algorithms

• Force-based layout to reduce the 
total energy in the system

• Use the graphviz library to 
obtain coordinates of the 
nodes
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Inferring the spatial placement

• Graph layout algorithms

• Force-based layout to reduce the 
total energy in the system

• Use the graphviz library to 
obtain coordinates of the 
nodes
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With coordinate information

• Affine Mapping (AFFN)

• Stretch/shrink the object graph (based on coordinates of nodes) to 
map it on to the processor grid

• In case of conflicts for the same processor, find the nearest available 
processor

• Corners to Center (COCE)

• Use four corners of the object graph based on coordinates

• Start mapping simultaneously from all sides

• Place nodes encountered during a BFT close to their parents

14
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Mapping visualization

AFFN: 3.17 COCE: 2.88
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• COCE+MHT Hybrid:

• We fix four nodes at geometric 
corners of the mesh to four 
processors in 2D

• Put neighbors of these nodes 
into a max heap

• Map from all sides inwards

• Starting from centroid of 
mapped neighbors

16

��� �

��

� �

�

��

��

	




�

���
��

��

�	

�	

��

��

��

��

��

��

��

��

�


��

��

�	

����

��

�


�� ��

��

��

�	 ����

��

�� ����

��


�


	

�� ��

��


�

�	

��

�


	�

	�

	�

	�

��

��

	�

��

��


�





	�

		

	�

��

	


	�

��

��

�	�� �


��


�


�


�

��


�

��


�

��

��

�


��

COCE: 2.78



Lawrence Livermore National Laboratory
LLNL-PRES-495871 Abhinav Bhatele @ ESCAPE 2011

Time Complexity

17
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Time Complexity

• All algorithms discussed above choose a desired 
processor and spiral around it to find the nearest 
available processor

• Heuristics generally applicable to any topology 

17
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Time Complexity

• All algorithms discussed above choose a desired 
processor and spiral around it to find the nearest 
available processor

• Heuristics generally applicable to any topology 

• Depending on the running time of findNearest:

17

BFT COCE AFFN MHT COCE+MHT

O(n) O(n) O(n) O(n logn) O(n logn)

O(n (logn)2) O(n (logn)2) O(n (logn)2) O(n (logn)2) O(n (logn)2)
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Running Time
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Evaluation

• Metric for comparison: hop-bytes

• Indicates amount of traffic and hence contention on 
the network

• Previously used metric: maximum dilation

19

Heuristic-based techniques for mapping irregular
communication graphs to mesh topologies
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Abstract— Mapping of parallel applications on the network
topology is becoming increasingly important on large supercom-
puters. Topology aware mapping can reduce the hops traveled
by messages on the network and hence reduce contention,
which can lead to improved performance. This paper discusses
heuristic techniques for mapping applications with irregular
communication graphs to mesh and torus topologies. Parallel
codes with irregular communication constitute an important
class of applications. Unstructured grid applications are a classic
example of codes with irregular communication patterns. Since
the mapping problem is NP-hard, this paper presents fast
heuristic-based algorithms. These heuristics are part of a larger
framework for automatic mapping of parallel applications. We
evaluate the heuristics in this paper in terms of the reduction
in average hops per byte. The heuristics discussed here are
applicable to most parallel applications since irregular graphs
constitute the most general category of communication patterns.
Some heuristics can also be easily extended to other network
topologies.

Keywords-mapping; interconnect topology; communication op-
timization; performance; irregular patterns

I. INTRODUCTION

The field of high performance computing has made tremen-
dous progress in the last ten years. The size of the largest
machines has increased by over an order of magnitude from
10,000 cores in 2001 to 500,000 in 2011. Interconnect topol-
ogy of the supercomputers can play an important role in
determining application performance at this scale. Interference
both within and across jobs can affect performance which
necessitates topology aware mapping of codes to processors.

N-dimensional mesh and torus interconnects are in
widespread use today on the largest machines, in part due
to their ease of design and installation. IBM Blue Gene
and Cray XT/XE machines are relevant examples of such
supercomputers. The machine at the top on the June 2011
Top500 list† has a 6D mesh interconnect [1]. Increasing sizes
of such machines leads to networks with a large diameter.
Messages travel farther with increasing network diameters
leading to sharing and contention for links. Network con-
tention can degrade application performance and hence, there
is a need for topology aware mapping algorithms for parallel
applications [2], [3].

†http://www.top500.org/lists/2011/06

Mapping of one graph on to another is a well-analyzed
problem in mathematics, VLSI and parallel computing. It
is also known to be NP-hard [4], [5]. Techniques from ge-
netic algorithms, simulated annealing, graph partitioning and
heuristics-based methods have been used to attack this general
problem [5]–[12]. In this paper, however, we focus specifically
on mapping of applications with irregular communication
graphs to mesh topologies. Graph partitioning libraries such
as SCOTCH provide support for mapping graphs to network
topologies [13]. However, there are no published results using
such libraries for mapping scientific applications running on
real hardware. We also exploit domain specific knowledge
about the application such as geometric coordinates associated
with the physical space being simulated, to aid our mapping
decisions. Application-specific information has not been used
by most mapping algorithms and frameworks, to the best of
our knowledge.

Heuristics presented in this paper are part of a larger
mapping framework that handles both regular and irregular
communication graphs. The automatic mapping framework is
described in [14] which discusses various aspects of the map-
ping problem – obtaining the application graph and processor
topology, pattern matching to identify regular patterns and
heuristics for mapping of regular (structured) communication
graphs.

The mapping heuristics presented in this paper are evaluated
in terms of the success in reducing the average hops traveled
per byte,

average hops per byte =

 
nX

i=1

di � bi

!
÷
 

nX

i=1

bi

!

where di is the number of hops traversed by a message of bi
bytes and n is the total number of messages sent. The hop-
bytes metric or hops per byte gives an approximate indication
of the overall contention on the network [7], [15]. Although
it does not capture hot-spots created on specific links, it is
still an easily derivable metric that correlates well with actual
application performance when communication to computation
ratio is high [16].

II. THE MAPPING PROBLEM

The mapping problem involves computing a mapping for
each node/task/object in the application communication graph
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Mapping Simple2D to a 2D mesh
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Mapping Simple2D to a 2D mesh
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Mapping Simple2D to a 3D mesh
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Summary

• Heuristics for mapping irregular graphs to mesh 
topologies

• best heuristic chosen at runtime (based on hop-bytes)

• Mapping library to help the application developer

• Extensible to other topologies also

23
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